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Abstract: In a distributed system such as Internet of things, the data volume from
each node may be limited. Such limited data volume may constrain the perfor-
mance of the machine learning classification model. How to effectively improve
the performance of the classification in a distributed system has been a challen-
ging problem in the field of data mining. Sharing data in the distributed network
can enlarge the training data volume and improve the machine learning classifica-
tion model’s accuracy. In this work, we take data sharing and the quality of shared
data into consideration and propose an efficient Blockchain-based ID3 Decision
Tree Classification (BIDTC) framework for distributed networks. The proposed
BIDTC takes advantage of three techniques: blockchain-based ID3 decision tree,
enhanced homomorphic encryption, and stimulation smart contract to conduct
classification while effectively considering the data privacy and the value of user
data. BIDTC employs the data federation scheme based on homomorphic encryp-
tion and blockchain to achieve more training data sharing without sacrificing data
privacy. Meanwhile, smart contracts are integrated into BIDTC to incentivize
users to share more high-quality data. Our extensive experiments have demon-
strated that the proposed BIDTC significantly outperforms existing schemes in
constructed consortium blockchain networks.

Keywords: Blockchain; classification algorithm; decision tree; homomorphic
encryption

1 Introduction

Much data is produced by social networks, engineering sciences, biomolecular research, commerce, and
security logs [1]. To extract the information hidden in such big data, machine learning techniques such as
statistical model estimation and predictive learning have emerged [2]. Classification is a critical
supervised machine learning technique that can learn from the training data and label test data as different
predefined classes [3]. Many classification algorithms such as Iterative Dichotomiser 3 (ID3), Support
Vector Machine (SVM), and K-Nearest Neighbor (KNN) have been intensively studied [4,5]. Most of the
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existing classification schemes are based on centralized settings where a large training dataset is available in a
single host. However, in a distributed computing system such as Internet of Things (IoT), the data is likely
scattered around the system, which makes it difficult to have a large centralized dataset for training and
classifications [6–8]. For example, the work in Ang et al. [6] proposed the ensemble approach PINE to
classify concepts of interest in a distributed computing system. PINE combines reactive adaptation,
proactive handling of upcoming changes, and adaptation across peers to achieve better accuracy. A
distributed classification algorithm (P2P-RVM) for the peer-to-peer networks was proposed in Khan et al.
[7], which is based on the relevance vector machines. To solve the distributed multi-label classification
problem, the work in Xu et al. [8] proposed a quantized distributed semi-supervised multi-label learning
algorithm, where the kernel logistic regression function is used, and the common low-dimensional
subspace shared by multiple labels is learned. The work in Vu et al. [9,10] tries to consider data privacy
by use of encrypted traffic. Similarly, the flow-based relation network classification model RBRN was
proposed in Zheng et al. [11] to overcome the imbalanced issues of encrypted traffic. However, in these
existing approaches, either the data privacy or the value of the user data was not taken into consideration.

It is challenging to optimize the classification accuracy while effectively taking the data privacy and data
value into consideration in a distributed system. As each user node in a distributed network system has a
limited amount of data for model training, the classification accuracy may be limited due to the
insufficient training data at the node. Data sharing among nodes can be employed to enlarge the training
dataset and improve classification accuracy. However, such data sharing gives rise to data privacy
leakage, which is of great importance for many security-sensitive IoT applications. In this work, we
propose an efficient Blockchain-based ID3 Decision Tree Classification (BIDTC) framework to take data
sharing and the quality of shared data into consideration during the classification process. The proposed
BIDTC employs a blockchain-based distributed storage and fully homomorphic encryption scheme for
data sharing among the distributed nodes. By adopting the blockchain-based data federation classification
and the smart contract-based stimulation scheme, the proposed BIDTC allows an individual node to have
an enlarged training dataset in the distributed environment. As the decision tree-based classification is
widely adopted and requires a short training time for knowledge acquisition in various applications
[12,13], the proposed BIDTC integrates the decision tree-based classification with the blockchain-based
scheme.

The organization of the rest of the paper is as follows. The related literature is summarized in Section 2.
Section 3 proposes a blockchain-based data sharing architecture for training the classification model. A
blockchain-based ID3 decision tree classification algorithm for the distributed environment is presented in
Section 4. Experimental evaluations and the analysis of the results are presented in Section 5. Finally,
Section 6 concludes the paper.

2 Related Work

The related work is summarized in this section, which mainly includes the literature work in the decision
tree-based classification, fully homomorphic encryption, and blockchain technologies.

2.1 Decision Tree-based Classification

The decision tree technique is widely used in data analysis and prediction [14–21]. For example, in [16],
the C4.5 decision tree algorithm is applied to achieve precision marketing prediction. The C5.0 decision tree
classifier is proposed in [17] for the general and Medical dataset, in which the Gain calculation function is
modified by adopting the Tsallis entropy function. A service decision tree-based post-pruning prediction
approach is proposed to classify the services into the corresponding reliability level after discretizing the
continuous attribute of services in service-oriented computing [18]. The ID3 is one of the standard
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algorithms for the decision tree learning process, which calculates the entropy to select the condition
attributes [19–21].

2.2 Fully Homomorphic Encryption

Several privacy-involved machine learning classification has been proposed recently [22,23]. For
example, fully homomorphic encryption (FHE) is proposed for classification without leaking user privacy,
especially in the outsourcing scenarios of the distributed environment [24]. An ElGamal Elliptic Curve
(EGEC) Homomorphic encryption scheme for safeguarding the confidentiality of data stored in a cloud is
proposed in Vedara et al. [25]. In Ren et al. [26], a practical homomorphic encryption scheme is proposed
to allow the IoT systems to operate encrypted data. A privacy-preserving distributed analytics framework
is presented for big data in the cloud by using the FHE cryptosystem [27]. In order to reduce the
excessive interactions and ciphertext transformation, the work in Smart et al. [28] proposed the SIMD to
improve the efficiency of homomorphic operations by encrypting multiple small plaintexts into a
ciphertext. In [29], a private decision tree classification algorithm with SIMD-based fully homomorphic
encryption is proposed.

2.3 Blockchain

The blockchain is a distributed ledger database and has attracted much recent attention in the academic
community [30]. The blockchain paradigm takes advantage of key technologies such as peer-to-peer
networking, the distributed ledger, the consensus mechanism, and the smart contracts, which has many
applications in fields such as Internet of Things (IoT), finance, and manufacture [31]. In Wang et al. [32],
a blockchain-powered parallel healthcare system (PHS) framework is proposed to support comprehensive
healthcare data sharing and care auditability. A blockchain-based framework for supply chain provenance
is proposed in Cui et al. [33], and the analysis for this framework is performed to ensure its security and
reliability. A theoretical framework for trust in IoT scenarios and the blockchain-based trust provision
system are investigated in Bordel et al. [34]. The blockchain technique is deployed to create a secure and
reliable data exchange platform across multiple data providers in Nguyen et al. [35]. In Wang et al. [36],
a blockchain-based data secure storage mechanism for sensor networks is proposed. The blockchain-
based privacy-aware content caching in cognitive Internet of vehicles is presented in Qian et al. [37], in
which the privacy protection and secure content transaction are examined.

3 Data Sharing for Classification

The dataset owned by a single node in a distributed system is usually limited and insufficient for training a
classification model with high accuracy. In order to improve the classification accuracy, data sharing among nodes
is needed. In addition, both the value and the privacy of the shared data are of great importance in the applications
such as healthcare and finance. To jointly take the data sharing, data privacy, and the value of data into
consideration, we propose a blockchain-based data sharing architecture for classification, as shown in Fig. 1.

There are double chains and different types of nodes in the proposed data sharing architecture. As shown
in Fig. 1, a node in the blockchain network can be a data provider, data requestor, storage server, or ledgering
node. The data providers in the blockchain network can share valuable data with encryption throughout the
whole network. The sharing procedure will be recorded by the ledgering node and finally be written into
the corresponding blockchain. If one of the data requestors demands more training datasets to improve
the classification accuracy, it can send the request message to a storage server in the blockchain network.
As a result, better performance of classification can be achieved by data requestors, and the financial
profits can be obtained by data providers when the predefined blockchain-based smart contracts are
executed, as shown in Fig. 1.
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3.1 Double Blockchains

In the proposed blockchain-based data sharing architecture, the consortium chain is employed to store
and share the training datasets among multiple nodes in the blockchain network. The data in the consortium
chain is mainly from several related nodes such as institutions or companies [38]. In Fig. 1, we propose
double blockchains according to the various transactions in the system. One chain for Transaction I is
used to store the block data and share the encrypted data by data providers. The other chain is for
Transaction II, which is used to store the block data for improving the classification performance by
enlarging the volume of the related training dataset. The chain with Transaction II enables some nodes to
make financial profits through the blockchain-based pre-negotiated smart contracts between the data
providers and the data requestors.

3.2 Roles of Node

As shown in Fig. 1, every node in the consortium blockchain network has one or multiple roles: data
provider, data requestor, storage server, or ledgering node. The data provider needs to encrypt the
plaintext data M to generate ciphertext data C, then upload the ciphertext file and the corresponding
encryption algorithm to a data storage server. At the same time, the data provider can obtain the
download address of the file and calculate the hash value of ciphertext data to verify the data integrity.
The access policies for the uploaded data can be defined by data providers. The data owned by data
providers can be packed as a transaction and added to a blockchain (after the confirmation by ledgering
nodes in the focused consortium blockchain network). Note that the storage server is not a physical
centralized storage node/device. It can be a virtual/logic node like cloud-based storage existing in the
consortium blockchain network.

The data requestors can issue a request to the ledgering nodes for some shared data. The ledgering nodes
verify the different identities of access policies corresponding to the requested data. Once approved, the data
requestors can download the requested encrypted data from the storage servers and train the classification
models on the federated training datasets. In the meantime, the smart contracts for the transactions
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Figure 1: The architecture of the blockchain-based data sharing
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associated with data sharing between the data requestors and the data providers can be executed
automatically.

3.3 Data Storage and Sharing

Each node that has valuable data can obtain some rewards from data sharing. The implementation
process requires two phases associated with the two chains of the blockchain network. In phase I, the
data providers share their valuable encrypted data to the storage servers. Such sharing is recorded and
validated by the ledgering nodes running the consensus algorithm. The data requestors can then issue
requests for specific shared data and receive the shared data along with the encryption algorithm after
authentication. In phase II, the data requestors encrypt their local data using the obtained encryption
algorithm and federate the obtained encrypted training data with their local encrypted data, then train the
classification models on the newly federated training data. Correspondingly, the data requestors will pay
the predetermined electronic currency to the data providers according to the blockchain-based smart
contracts.

4 Blockchain-based Improved ID3 Decision Tree Classification

In this section, we present a new Blockchain-based ID3 Decision Tree Classification (BIDTC)
framework for the blockchain-based data sharing architecture. The proposed BIDTC takes into account
the relation between the current condition attributes, the other condition attributes in the learning process,
and the stimulation mechanism in smart contracts.

4.1 An Improved ID3 Decision Tree Classification

The original ID3 classification algorithm only takes the current condition attributes and decision attributes
into consideration during the process of calculating the gain. Here, we present an improved ID3 algorithm to
take advantage of all the attributes from the system that includes the relationship between the current condition
attributes and the other condition attributes. In specific, we denote A = ðA1;A2; . . . ;AN Þ as a set of N conditions
attributes with values of ðR1;R2; . . . ;RN Þ, respectively. Assuming that the occurrence of attribute Ai(i = 1,
2, . . . ; N) is Ni, the frequency of Ai can be defined as below.

FðAiÞ ¼ Ni

N
(1)

Then the weight of the attribute Ai can be calculated as Eq. (2).

WAi ¼ FðAiÞPN
i¼1 FðAiÞ

(2)

Assume that Ỷ is a decision attribute withM possible values RY ¼ Ỷ1;Ỷ2; . . . ;ỶM

� �
, Ai(i=1, 2, . . . ; N)

has Ui possible values, and Ri is set as Ri2 1;2;...;Nf g ¼ a1; a2; . . . ; aUið Þ. Then, the relationship degree between
the condition attribute Ai and the decision attribute Ỷ can be defined as Eq. (3).

RD Ai;Ỷ
� � ¼

PUi
k¼1 Akj

�� ���PM
j¼2 Akj

�� ����� ���
Ui

(3)

The Akj

�� �� in Eq. (3) is the number of instances that the k-th value of Ai belongs to the j-th class of decision
attribute Ỷ. According to Eq. (3), we can calculate the weighted degree as Eq. (4).
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WRD Ai;Ỷ
� � ¼ RD Ai;Ỷ

� �
PN

i¼1 RD Ai;Ỷ
� � (4)

Assuming that the training data samples are in S ¼ xi;Ỷi

� �jxi 2 R1 � R2 � . . . � RN ; Ỷi 2 R�y
� �

, where xi
has a corresponding output class labelỶi. Let Pj be the percentage of training samples belonging to the class j of
decision attribute Ỷ. Then, the class involved entropy E Ỷ

� �
for the attribute Ỷ is defined as follows.

E Ỷ
� � ¼ �XM

j¼1 Pj � log2Pj (5)

Similarly, the condition entropy E ỶjAi

� �
for each attribute Ai can be defined in Eq. (6).

E ỶjAi

� � ¼XUi

k¼1 E Ỷjak
� � ¼ �XUi

k¼1
XM
j¼1

Pkj � log2Pkj

 !
(6)

Therefore, the formula of calculating the information gain of the condition attribute Ai can be defined as
follows.

Gain ỶjAi

� � ¼ E Ỷ
� �� E ỶjAi

� �
(7)

The ID3 decision tree algorithm starts with the dataset at the root node and recursively partitions the data
into lower-level nodes based on the split criterion. Only nodes that contain multiple different classes need to
be split further. Eventually, the decision tree-based algorithm stops the growth of the tree based on a certain
stopping criterion. We can set two stopping criteria for the algorithm. The criterion I is whether all samples in
the training dataset are labeled as a single class or not. Criterion II is whether the attribute set A is empty (or
all attribute values of S are the same) or not. Accordingly, we propose an improved blockchain-based
ID3 decision tree algorithm as the following steps.

Step 1. Check the stopping Criteria I and II. If Criterion I is true, mark the current node as a class Ỷ leaf
node; if Criterion II is true, mark the Tree as a leaf and set the most common value of �Y in S as the label.
Otherwise, go to step 2.

Step 2. Calculate the information gain Gain ỶjAi

� �
of each condition attribute Ai according to Eq. (7);

and set the parameter sW =0 and pW =0. For attribute value ai 2 Ri, calculate the weight of each
attribute using the training set Si of each value ai.

Step 3. For attribute values in Aj 2 An Aif g, calculate the relationship degree using Eq. (3) and calculate
the weighted relationship degree as Eq. (4). Then the new value of pW is obtained as:

pW  pW �WRD Aj;Ỷ
� �

and the new value of sW is set: sW  sW þ Sij j
Sj j � pW . The value of the

comprehensive information gain can be achieved as: Gain ỶjAi

� � Gain ỶjAi

� � � sW :

Step 4. Determine the best splitting attribute Abest that has the maximum comprehensive information
gain: Abest  argmaxAGain ỶjA� �

, and go to Step 1.

4.2 Enhanced Homomorphic Encryption

To consider both privacy and efficiency, we adopt the vector homomorphic encryption (VHE) method
[39] for the proposed BIDTC framework. Assuming that the data requestor and the data provider are denoted
as R and P, respectively, we present the setup, training, and classification processes of BIDTC as follows.

Phase 1. P:Setup �;Dtð Þ: The data providers identify the security parameter � and the training data
Dt; t ¼ 1; 2 � ��ð Þ, where t represents the sequence number of the transferring data. With the key
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generation algorithm KeyGen �ð Þ, the data providers obtain the VHE public, private keys, and the H matrix.
The data providers will encrypt the Dt Dt ¼ xt1; x

t
2; � � �; xtn

� �� �
to Dt0 Dt0 ¼ ct1; c

t
2; � � �; ctn

� �� �
by using the

encryption algorithm Encrypt pk; xið Þ. Then, the data providers send the Encrypt pk; xið Þ, Dt0and matrix H
to the corresponding storage servers.

Phase 2. R:Training Classifier ID3 D[
0� �
: The data requestors encrypt the local dataset D toD0 by using

the encryption algorithm Encrypt pk; xið Þ, which will be combined with the received dataset Dt0 to generate a
new dataset D[

0
. Then the classification model will be trained by performing the improved ID3 algorithm on

the federated training dataset D[
0
.

Phase 3. R:Testing ID3 VD
0� �
: The data requestors encrypt the local testing dataset

VD ¼ x1; x2; � � �; xmf g to obtain the encrypted testing dataset VD
0 ¼ c1; c2; � � �; cmf g by using the same

encryption operations as mentioned above. The classification accuracy will be calculated by the data
requestors when completing the classification task on the testing dataset VD

0
.

4.3 Stimulation Scheme with Smart Contract

In this section, we develop a stimulation scheme with smart contracts for the proposed BIDTC
framework.

In the blockchain network, the transactions in a smart contract can be executed automatically, and the
corresponding inputs, outputs, and states affected by executing the smart contracts are negotiated and
agreed on by all participating nodes [40,41]. Here, we propose a stimulation scheme to incentivize the
providers to share more valuable data. For each transaction of data sharing, there are two types of
transaction fees: basic transaction fee and additional transaction fee. We assume that the basic transaction
fee the data providers can receive from the data requestors is D ethers. The additional transaction fee
depends on the percentage increase of the classification accuracy due to the data sharing. Let Dacc denote
the percentage increase of the classification accuracy between the original classification model and the
newly constructed one (i.e., after the data sharing). If the Dacc > 0, then the data requestors will pay an
additional transaction fee to the data providers, according to Tab. 1. If the classification accuracy is not
increased when comparing with the original model, the data requestors will not pay an additional
transaction fee to the data providers for the data sharing.

The higher quality of the data shared by the providers, the better classification accuracy, and the more
financial profits the data providers can obtain during the procedure of the sharing of the training data.
Therefore, the data providers in various blockchain networks have incentives to share more valuable datasets.

4.4 The Proposed BIDTC Framework

The proposed Blockchain-based ID3 Decision Tree Classification (BIDTC) framework takes advantage
of three techniques: blockchain-based ID3 decision tree, enhanced homomorphic encryption, and stimulation
smart contract to conduct the classification in the distributed environment while effectively considering the
data privacy and the value of the user data. Fig. 2 shows the overall process of the proposed BIDTC
framework, whose primary operations are listed below.

Table 1: Stimulation Mechanism for Data Providers

Increment of
accuracy

Basic transaction
fee

Additional transaction fee

Dacc � threshold D ether 0 ether

Dacc > threshold D ether [Dacc] ether
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(i) The distributed blockchain network is set up, and the Ethereum-based consortium chains are
constructed. The distributed blockchain network consists of a large number of data providers, the
ledgering nodes, and the data requestors.

(ii) The data providers encrypt their local training data by using the vector homomorphic encryption,
then upload the encrypted data to a storage server in the blockchain network. The ledgering nodes with
the consensus algorithm can validate the transactions involved with sharing data. All the transactions will
be stored in the consortium chain.

(iii) The data requestors train the local training dataset with the ID3-based algorithm and obtain a
classification model. This model is then validated on the testing dataset, and the accuracy (say acc0) is
obtained. The data requestors can then issue requests to the blockchain network for more shared training
data. With the authentication by the ledgering nodes, the data requestors can receive the encrypted
training data shared by the providers. At the same time, a smart contract is bounded between the data
providers and the corresponding data requestors. Once receiving the encrypted training data, the data

Start

Performing encryption and submitting 
data by data providers

Recording data address and access policy, 
completing validation and achieving 
consensus throughout the network

Requesting the sharing data by data 
requestors

Access is allowed by                 
pre-defined policy

Access failure

Requesting again to seek other available 
data by data requestors

Y N

Obtaining the encrypted data from data 
servers, obtaining encryption scheme from 

provider and formulating smart contract

Encrypting local data with the same 
scheme by data requestors

Federating two parts of the encrypted data 
as new training data and training the 

classification model on it

Training local classification model and calculate 
current accuracy acc_R by data requestors

Testing and calculating the accuracy of 
the new classification model acc_R&S

Comparing acc_R with acc_R&S and 
performing monetary Transactions 

according to smart contracts

End

Data requestors send money to data 
providers

Recording federating data classification involved 
transactions to blockchain and achieving 

consensus throughout the network

Figure 2: The flow diagram of the proposed blockchain-based scheme
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requestors encrypt the local training data by using the same encryption scheme from the data providers,
federate it with the received encrypted training dataset and perform the improved ID3 algorithm to obtain
a new classification model and accuracy (say acc1).

(iv) The smart contracts and the stimulation scheme will be triggered when the accuracy difference:
Dacc ¼ acc1 � acc0 is above a certain threshold.

5 Performance Evaluation

In this section, we conduct simulations to validate the proposed blockchain-based BIDTC framework
and analyze the performance.

5.1 Experiment Settings

We simulated the blockchain-based BIDTC network with Python 3.7. The simulation platform is built
on a machine with Ubuntu 16.04 LTS, Intel Core 3.40 GHz i5-8250U CPU, and 8.0 GB of RAM. In the
consortium blockchain network, each node is deployed based on the Geth 1.7.2 (Go Ethereum). The
configuration file genesis. json includes the identifier of the chain id, the random number nounce, and the
timestamp. The Remix-based coding and testing for smart contracts are implemented in a browser-based
IDE environment. The account address, the balance, and the indexes of datasets are defined in the structs,
as shown in Fig. 3.

We carry out the experiments using the MNIST dataset [42]. We set 60000 samples as the training
dataset and 10000 samples as the testing dataset. The training dataset is further divided into four equal
parts and stored in four random nodes, namely, Node A, Node B, Node C, and Node D.

5.2 Experimental Results

As the data privacy is built-in encrypted data sharing, here, we focus on evaluating the accuracy and
speed of the proposed BIDTC. The confusion matrix includes True Positives (TP), True Negatives (TN ),
False Positives (FP), and False Negatives (FN ). The TP represents the sample that is actually positive

Figure 3: The illustration of the deployment for blockchain-based smart contracts
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and predicted to be positive; the TN represents the sample that is actually negative and predicted to be
negative; the FP represents the sample that is actually negative and predicted to be positive; and the FN
represents the sample that is actually positive and predicted to be negative. If there are M classes, we can
calculate the classification accuracy according to the following formula.

AC ¼
PM

i¼1
TPi þ TNi

TPi þ FNi þ TNi þ FPi

M
(8)

As Eq. (8) shows, the classification accuracy AC equals the rate between all the true classified samples
and all the classified samples in the corresponding testing dataset. The speed of the classification can be
measured based on the time consumed in training the model and classifying the testing samples.

5.2.1 Classification Accuracy versus Data Volume
Fig. 4 shows the classification accuracy for the four random nodes. From Fig. 4, we can see that the

classification accuracy of all four nodes is improved significantly when increasing their training data
volume. The initial values of the classification accuracy of the four nodes are different in Fig. 4.
Specifically, Fig. 4a has the maximum accuracy of 0.84, and Fig. 4b has the minimum accuracy of 0.8.
This is because the quality of the training dataset in Node A is the highest among the four nodes, while
Node B has the worst data quality. We use Qi to denote the dataset quality of Node i. The quality
relationship among the four nodes: QA > QD > QC > QB is further verified in Fig. 5, where each node
works as a data requestor and federates more training data from the other three data providers. From
Fig. 5, we can see that the classification accuracy improves as the amount of the data federation
increases, and the nodes with high-quality datasets can achieve a greater gain of the classification accuracy.

5.2.2 Classification Accuracy versus Data Quality
Eq. (9) is defined to measure the quality of the training dataset, where NS ið Þ is the total number of

samples in the training dataset of Node i, and NSe ið Þ is the number of low-quality samples in the training
dataset of Node i. The sample with the blurry picture or an incorrect class label in the training dataset can
be marked as a low-quality sample.

Qi ¼ 1� NSe ið Þ
NS ið Þ (9)

In this experiment, we uniformly select 10% of the original MNIST training dataset from each class and
replace their class with random integer numbers in the range of 0~9. As a result, we obtain 6000 low-quality
training samples, denoted by LQ. For each network node, when the volume of training data reaches a
threshold Θ, we add some low-quality training samples into the corresponding nodes. For example, when
the volume of the federated training data in Node A reaches 20000, we gradually add 0%~20% of low-
quality training samples from LQ into its training dataset. Fig. 6 shows the experiment results when
setting Θ as 104, 2*104, and 3*104. We can see that Fig. 6a has the maximum initial accuracy of
0.79 when the data volume amounts to 30000. Fig. 6b has the minimum initial accuracy of 0.66 when the
data volume amounts to 10000. This is due to the fact that the initial data quality of the training dataset
in Node A is highest while the one in Node B is the lowest. Again, we can see that for a given node, the
classification accuracy improves significantly when increasing the training dataset volume. In addition,
the better training data quality will result in higher classification accuracy from BIDTC.
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(a) (b)

(c) (d)

Figure 4: The classification accuracy of BIDTC when varying the data volume

Figure 5: The trends of classification accuracy by BIDTC with multiple nodes
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5.2.3 Comparing BIDTC with Traditional Classification Algorithms
In this experiment, we compare the proposed BIDTC algorithm with the existing algorithms, including

the original ID3 algorithm (OIDA), the Neural Networks algorithm (NNA) [43], and the Random Forest
algorithm (RFA) [44]. Without loss of generality, we generate a dataset based on the MNIST and
argument it with low-quality samples from LQ such that the average quality level is 0.9. The volume of
the initial training dataset is 10000 in each node, while the volume of the testing dataset is 2000. Tab. 2
shows the running time and accuracy of all algorithms in the same distributed network environment.

From Tab. 2, we can see that the running time of both the OIDA and the BIDTC is smaller than that of
NNA and RFA, at the cost of slight accuracy loss. Here we define the average classification efficiency for K
nodes in Eq. (10), where the CE is the average value of classification efficiency; the ACi is the classification
accuracy of the node i and the CTi is the corresponding classification running time of node i.

(a) (b)

(c) (d)

Figure 6: The classification accuracy versus training data quality
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CE ¼ 100�
PK

i¼1
ACi

CTi
K

(10)

Fig. 7 shows how the classification efficiency CE varies when increasing the volume of the training
datasets from 104 to 3*104. From Fig. 7, we can see that the average classification efficiency of the BIDTC
is significantly higher than the other three algorithms. This is because the proposed BIDTC can take
advantage of the three techniques: blockchain-based ID3 decision tree, enhanced homomorphic encryption,
and stimulation smart contract to effectively conduct classification in the distributed environment.

6 Conclusion and Future Direction

In this work, we have proposed a Blockchain-based improved ID3 Decision Tree Classification
(BIDTC) algorithm for the distributed environment. The proposed BIDTC takes advantage of three
techniques: blockchain-based ID3 decision tree, enhanced homomorphic encryption, and stimulation
smart contract to conduct classification while effectively considering the data privacy and the value of the
user data. The proposed BIDTC employs the proposed blockchain-based data sharing architecture to
enlarge the volume of the training datasets, which is coupled with a smart contract-based stimulation
scheme to enhance the quality of the training data. Our extensive experiments have shown that our
algorithm significantly outperformed the existing techniques in terms of classification efficiency. In the
future, we will explore how to improve the performances of the proposed algorithm for online data with
high dimensions.

Table 2: The running time and accuracy from different algorithms

Algorithm Classification time (s) Classification accuracy

NNA
RFA
OIDA
BIDTC

38.5
30.0
25.2
27.0

0.92
0.86
0.76
0.85

Figure 7: The classification efficiency from different algorithms
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