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Abstract: We introduce a new two-parameter lifetime model, referred to alpha
power transformed inverted Topp-Leone, derived by combining the alpha power
transformation-G family with the inverted Topp-Leone distribution. Structural
properties of the proposed distribution are implemented like; quantile function,
residual and reversed residual life, Rényi entropy measure, moments and incom-
plete moments. The maximum likelihood, weighted least squares, maximum pro-
duct of spacing, and Bayesian methods of estimation are considered. A simulation
study is worked out to evaluate the restricted sample properties of the proposed
distribution. Numerical results showed that the Bayesian estimates give more
accurate results than the corresponding other estimates in the majority of the situa-
tions. The flexibility of the suggested model is demonstrated given some applica-
tions related to reliability, medicine, and engineering. A real data set is used to
illustrate the potentiality of the alpha power transformed inverted Topp-Leone dis-
tribution compared to inverted Topp-Leone, inverse Weibull, alpha power inverse
Weibull, inverse Lomax, alpha power inverse Lomax, inverse exponential, and
alpha power exponential distributions. Criteria measures and their results showed
that the suggested distribution is the best candidate for the considered data sets.
The alpha power transformed inverted Topp-Leone distribution operates well
for lifetime modeling.

Keywords: Inverted Topp-Leone; moments; maximum likelihood; maximum
product spacing; weighted least squares; Bayesian estimation; MCMC

1 Introduction

In recent times, probability distributions play a significant role in modeling naturally occurring
phenomena. In fact, the statistics literature contains hundreds of continuous univariate distributions and
their successful applications. However, there still remain many real-world phenomena involving data,
which do not follow any of the traditional probability distributions. So, several attempts are introduced by
many researchers to provide more flexibility to a family of distributions. Mahdavi et al. [1] introduced the
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alpha power transformation (AP) technique by adding an extra shape parameter to well- known baseline
distributions. The cumulative distribution function (CDF) of the AP method is defined by:

FAPðxÞ ¼
aG xð Þ � 1

a� 1
; a. 0; a 6¼ 1

G xð Þ; a. 0; a ¼ 1

2
4 : (1)

Relevant works have been provided based on the AP method, for instance; AP Weibull distribution [2],
AP generalized exponential distribution [3], AP extended exponential distribution [4], AP Lindley
distribution [5], AP power Lindley distribution [6], AP inverse Lindley distribution [7], AP exponentiated
Lomax distribution [8] and AP inverse Lomax distribution [9].

The inverted distributions were suggested in the literature using the inverse transformation of probability
distributions. These distributions display different features in the behavior of the density and hazard rate
shapes. They allow applicability to the phenomenon in many fields such as; biological sciences, life
testing problems, survey sampling, and engineering sciences. Inverted distributions and their applications
were discussed by several authors (see [10–18]).

In Hassan et al. [18], the CDF and the probability density function (PDF) of the inverted Topp-Leone
(ITL) distribution with shape parameter � is defined as follows:

Gðx; �Þ ¼ 1� ð1þ 2xÞ�
ð1þ xÞ2�

( )
; x � 0; � > 0; (2)

and,

gðx; �Þ ¼ 2�xð1þ xÞ�2��1ð1þ 2xÞ��1; x; �. 0: (3)

In this paper, we propose a new two-parameter related to the ITL distribution depending on the AP
family. We call it alpha power inverted Topp Leone (APITL) distribution. The basic motivations to
introduce the APITL model are (i) Generalizing a new useful version of the ITL distribution based on the
APT method along with deriving its statistical properties, (ii) Providing flexible PDF with right-skewed
and uni-modal shapes, (iii) Modeling decreasing, increasing, upside-down hazard rate function (HRF),
and (iv) Introducing some real applications in some areas.

This paper is constructed as follows. Section 2 describes the APITL distribution. Section 3 gives some
structural properties of the APITL distribution. Section 4 gives the maximum likelihood (ML), the weighted
least squares (WLS), the maximum product of spacing (MPS), and Bayesian estimators. Section 5 examines
the effectiveness of the proposed estimates through a numerical illustration. Data analyses and some
concluding remarks are employed, consequently, in Sections 6 and 7.

2 Description of the Model

In this section, based on the AP family we introduce a new probability distribution related to the ITL
distribution. We define the PDF, CDF, HRF and cumulative HRF of the APITL distribution.

Definition 2.1

A random variable X is said to have the APITL distribution when we substitute the CDF (Eq. (2)) and
PDF (Eq. (3)) in CDF (Eq. (1)). The CDF of a random variable X has the APITL distribution with parameters
a and � denoted by X ~ APITLða; �Þ; is defined by:
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Fðx; a; �Þ ¼
a
1� ð1þ2xÞ�

ð1þxÞ2�

n o
� 1

ða� 1Þ ; x; a; � > 0; a 6¼ 1

1� ð1þ2xÞ�
ð1þxÞ2�
n o

; x; a; � > 0; a ¼ 1

2
6664 : (4)

The PDF related to Eq. (4) is given by:

f ðx; a; �Þ ¼ 2� logðaÞxð1þ xÞ�2��1ð1þ 2xÞ��1a
1� ð1þ2xÞ�

ð1þxÞ2�

n o
ða� 1Þ ; x; �; a. 0; a 6¼ 1

2�xð1þ xÞ�2��1ð1þ 2xÞ��1; x; �; a. 0; a ¼ 1

2
664 : (5)

Descriptive PDF plots of the APITL distribution for some choices of parameters are represented in
Fig. 1. It can be seen that the PDF of APITL distribution is uni-modal as well as possesses a long tail
right-skewed.

Definition 2.2

The reliability function and the HRF of X are given by:

�Fðx; a; �Þ ¼ a� a
1� ð1þ2xÞ�

ð1þxÞ2�

n o
a� 1

; x; �; a > 0; a 6¼ 1

ð1þ 2xÞ�ð1þ xÞ�2�; x; �; a > 0; a ¼ 1

2
664 ; (6)

Figure 1: The PDF plots of the APITL distribution
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and

hðx; a; �Þ ¼
2� logðaÞxð1þ xÞ�2��1ð1þ 2xÞ��1a

1� ð1þ2xÞ�
ð1þxÞ2�

n o

a� a
1� ð1þ2xÞ�

ð1þxÞ2�

n o ; x; �; a > 0; a 6¼ 1

2�x½ð1þ xÞð1þ 2xÞ��1; x; �; a > 0; a ¼ 1

2
6664 : (7)

An illustration of the HRF plots for the APITL distribution, for some choices of a and �; is represented in
Fig. 2. It describes the HRF plots of the APITL distribution which can be decreasing, increasing, and upside
down shaped.

3 Distributional Properties

Here, we give some statistical properties.

3.1 Quantile Function

The APITL distribution is simulated by inverting CDF Eq. (4) as follows:

x ¼ QðxÞ ¼ F�1ðuÞ; 0, u, 1 : (8)

The uth quantile for the APITL random variable is obtained by solving F(x) = u for x as follows:

xu ¼
�2½ð1� KÞ1� � 1� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½ð1� KÞ1� � 1�2 � 4ðð1� KÞ1�Þððð1� KÞ1� � 1Þ

q
2ð1� KÞ1�

; (9)

where, K ¼ log uða� 1Þ þ 1ð Þ log að Þ�1: The 25th, 50th, and 75th percentiles for the random variable X is
obtained by setting u = 0.25, 0.5 and 0.75 in Eq. (9). The Bowley’s skewness, depends on quartiles, is
defined as follows:

Figure 2: The HRF of the APITL distribution
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SKB ¼ Qð3=4Þ � 2Qð1=2Þ þ Qð1=4Þ
Qð3=4Þ � Qð1=2Þ ; (10)

where Q(.) is the APITL quantile function. The Moor’s kurtosis is given as:

KUm ¼ Qð7=8Þ � Qð5=8Þ � Qð3=8Þ þ Qð1=8Þ
Qð6=8Þ � Qð2=8Þ : (11)

Skewness and kurtosis plots of the APITL model, based on the quantiles, are exhibited in Fig. 3.

3.2 Moments

Moments of a probability distribution are crucial to deduce its properties such as measures of central
tendency, dispersion, skewness, and kurtosis. The ordinary rth moment of the APITL distribution is
derived. The rth moment of the APITL distribution is obtained from Eq. (5) as follows:

l0r ¼
2� logðaÞ
ða� 1Þ

Z1
0

xrþ1ð1þ xÞ�2��1ð1þ 2xÞ��1a
1� ð1þ2xÞ�

ð1þxÞ2�

n o
dx: (12)

Since the power series representation is written as:

ax ¼
X1
i¼0

log að Þi
i!

xi: (13)

Using the power series expansion Eq. (13) in Eq. (12), then we get

l0r ¼
2�

a� 1ð Þ
X1
i¼0

log að Þiþ1

i!

Z1
0

xrþ1ð1þ xÞ�2��1ð1þ 2xÞ��1 1� ð1þ 2xÞ�
ð1þ xÞ2�

( )" #i
dx: (14)

Using the binomial expansion in Eq. (14) then l0r takes the form

(a) (b)

Figure 3: 3D Plots of (a) Skewness and (b) Kurtosis of the APITL distribution
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l0r ¼
2�

a� 1ð Þ
X1
i¼0

Xi
j¼0

ð�1Þj i
j

� �
log að Þiþ1

i!

Z1
0

xrþ1ð1þ xÞ�2�ðjþ1Þ�1ð1þ 2xÞ�ðjþ1Þ�1dx: (15)

After using binomial expansion, then the rth moment is given by:

l0r ¼
2�

a� 1ð Þ
X1
i;m¼0

Xi
j¼0

ð�1Þj i

j

� �
�ðjþ 1Þ � 1

m

� �
log að Þiþ1

i!

Z1
0

xrþmþ1ð1þ xÞ��ðjþ1Þ�m�2dx:

¼
X1
i;m¼0

ni;j;mBðr þ mþ 2; �ðjþ 1Þ � rÞ; �ðjþ 1Þ > r; r ¼ 1; 2;…:

(16)

where, ni;j;m ¼ 2�

a� 1ð Þ
Xi
j¼0

ð�1Þj i
j

� �
�ðjþ 1Þ � 1

m

� �
log að Þiþ1

i!
:

The first four moments, for r = 1, 2, 3 and 4, of the APITL distribution are obtained from Eq. (16). The rth

central moment ðlrÞ of X is given by:

lr ¼ EðX � l01Þr ¼
Xr
i¼0

ð�1Þi r
i

� �
ðl01Þil0r�i: (17)

Values of mean ðl01Þ; variance ðr2Þ; skewness ðc1Þ; and kurtosis ðc2Þ of the APITL distribution for
certain values of parameters are given in Tab. 1.

We concluded from Tab. 1 that, as the value of � increases and for fixed value of a; then values of l01; r
2;

c1; and c2 are decreasing. As the value of a increases and for fixed value of �, then values of l01; and r2 are
increasing, while the values of c1 and c2 decrease. The distribution is positively skewed and leptokurtic.

3.3 The Probability Weighted Moments

The class of probability-weighted moments (PWMs), denoted by �s;q; s and q are positive integers, of a
random variable X is defined as follows:

�s;q ¼ E½X sFðxÞq� ¼
Z1
�1

xsf ðxÞðFðxÞÞqdx: (18)

Table 1: Some moments values of the APITL distribution for specific values of parameters

ða; �Þ l01 r2 c1 c2

(3,4.5) 0.458 0.684 4.339 89.518

(3,6) 0.347 0.335 2.936 21.996

(3,10) 0.226 0.121 2.053 9.306

(10,4.5) 0.564 0.932 3.866 72.824

(10,6) 0.421 0.446 2.588 17.809

(10,10) 0.269 0.157 1.785 7.526
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Substituting Eq. (4), and Eq. (5) in Eq. (18), further using expansion Eq. (13) and binomial expansion in
Eq. (18), then the PWM of the APITL distribution is obtained as follows:

�s;q ¼
X1
i;d¼0

mm;k;i;dBðsþ d þ 2; �ðmþ 1Þ � sÞ: (19)

where, mm;k;i;d ¼
Pi
m¼0

Pq
k¼0

�ðmþ 1Þ � 1
d

� �
i
m

� �
q
k

� � �1ð Þq�kþm2�ðlogðaÞÞiþ1ðqþ 1Þi
ða� 1Þqþ1i!

:

3.4 Residual and Reversed Residual Life

The mth moment of the residual life (RLe), say �mðtÞ ¼ E ðX � tÞm X > tj½ �;m ¼ 1; 2; :: uniquely
determines F(x). The mth moment of the residual life of X is defined by:

�mðtÞ ¼ ð�FðtÞÞ�1
Z1
t

ðx� tÞmdFðxÞ: (20)

Therefore, the mth moment of RLe for APITL distribution is obtained by substituting PDF Eq. (5) in
Eq. (20), then employing binomial expansions and Eq. (13) as follows:

�mðtÞ ¼ ð�FðtÞÞ�1
X1
k;‘¼0

�k;i;‘;dðtÞm�iBðiþ ‘þ 2; �ðd þ 1Þ � i; ð1þ tÞ�1Þ; (21)

where �i;k;‘;d ¼
Pm
i¼0

Pk
d¼0

ð�1Þm�iþd2�ðlog aÞkþ1

k!ða� 1Þ
m
i

� �
k
d

� �
�ðd þ 1Þ � 1

‘

� �
; and Bð:; :; ð1þ tÞ�1Þ is the

incomplete beta function. For m = 1, in Eq. (21) we obtain the mean RLe of the APITL distribution.
Also, mth moment of the reversed RLe (RRLe) for the APITL distribution is given by:

emðtÞ ¼ ðFðtÞÞ�1
X1
k;‘¼0

�i;k;‘;dðtÞm�iBðiþ ‘þ 2; �ðd þ 1Þ � i; t=ð1þ tÞÞ; (22)

where, �i;k;‘;d ¼
Pm
i¼0

Pk
d¼0

ð�1Þm�iþd2�ðlog aÞkþ1

k!ða� 1Þ
m
i

� �
k
d

� �
�ðd þ 1Þ � 1

‘

� �
:

The mean of RRLe serves as the waiting time elapsed since the failure of an item on the condition that
this failure had occurred.

3.5 Rényi Entropy

The entropy of a random variable measures the amounts of information (or uncertainty) contained in a
random observation; i.e., large value of entropy indicates higher uncertainty in the data. Rényi entropy of X,
for t > 0 and t 6¼ 1; is defined by:

ReðxÞ ¼ ð1� tÞ�1 log

Z1
0

f ðxÞð Þtdx
0
@

1
A: (23)

IASC, 2021, vol.29, no.2 359



Substituting PDF Eq. (5) in Eq. (23), we obtain Rényi entropy of the APTIL model as follows:

ReðxÞ ¼ ð1� tÞ�1 log
2� logðaÞ
a� 1ð Þt

� �t Z1
0

xtð1þ xÞ�tð2�þ1Þð1þ 2xÞtð��1Þa
t 1� ð1þ2xÞ�

ð1þxÞ2�

n oh i
dx

2
4

3
5: (24)

From Eq. (24), and after simplification, the Rényi entropy of the APITL distribution will be:

ReðxÞ ¼ ð1� tÞ�1 log
X1
j;k¼0

�j;m;kBðtþ k þ 1; �tþ �mþ t� 1Þ
( )

; (25)

where, �j;m;k ¼
Pj
m¼0

tlogað Þjð�1Þm
j!

2� logðaÞ
a� 1ð Þt

� �t
j
m

� �
tð�� 1Þ þ �m

k

� �
:

4 Parameter Estimation of the APITL Model

In this section, we deal with parameter estimators of the APITL distribution based on ML, WLS, MPS,
and Bayesian estimation methods.

4.1 ML Estimators

Let X1,…, Xn e the observed values from the APITL distribution with parameters a and �: The likelihood
function, say L xja; �ð Þ of the APITL distribution is expressed as:

L xja; �ð Þ ¼ 2n�n logðaÞð Þnða� 1Þ�na
n�
Pn
i¼1

ð1þ2xiÞ�
ð1þxiÞ2�

Yn
i¼1

xið1þ 2xiÞ��1

ð1þ xiÞ2�þ1 : (26)

Then the log-likelihood function, say ‘; of the APITL distribution is given as:

‘ ¼ n log 2�ð Þ þ n log log að Þð Þ � n log a� 1ð Þ þ n log að Þ � log að Þ
Xn
i¼1

ð1þ 2xiÞ�
ð1þ xiÞ2�

þ
Xn
i¼1

log xið Þ þ �� 1ð Þ
Xn
i¼1

log 1þ 2xið Þ � 2�þ 1ð Þ
Xn
i¼1

log 1þ xið Þ:
(27)

Therefore, the ML equations are given by:

@‘

@a
¼ 1

a
nþ n

log að Þ �
Xn
i¼1

ð1þ 2xiÞ�
ð1þ xiÞ2�

" #
� n

a� 1
; (28)

and,

@‘

@�
¼ n

�
� log að Þ

Xn
i¼1

ð1þ 2xiÞ�
ð1þ xiÞ2�

log
ð1þ 2xiÞ
ð1þ xiÞ2

 !
þ
Xn
i¼1

log 1þ 2xið Þ � 2
Xn
i¼1

log 1þ xið Þ : (29)

Solving the non-linear equations ð@‘=@aÞ ¼ 0 and ð@‘=@�Þ ¼ 0 numerically using optimization
algorism as conjugate-gradient optimization, we get the ML estimators of a and �:

4.2 WLS Estimators

Let X1,…, Xn be a simple random sample from the APITL distribution and let X(1)< X(2)<…<X(n) be the
associated order statistics. The WLS estimators of a and � are attained by minimizing the following:
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W xja; �ð Þ ¼
Xn
i¼1

nþ 1ð Þ2 nþ 2ð Þ
i n� iþ 1ð Þ � xðiÞ

� �� i

nþ 1

� �2

; (30)

� xðiÞ
� � ¼ ða� 1Þ�1 a

1� ð1þ2xðiÞÞ�

ð1þxðiÞÞ2�

� �
� 1

0
B@

1
CA: Furthermore, the WLS estimators followed by solving the

following nonlinear equations:

2
Xn
i¼1

nþ 1ð Þ2 nþ 2ð Þ
i n� iþ 1ð Þ � xðiÞ

� �� i

nþ 1

� �
�s xðiÞ
� �

; s ¼ a; �: (31)

where �a xðiÞ
� � ¼

a
� ð1þ2xðiÞÞ�

ð1þxðiÞÞ2�

� �
ð1þ 2xðiÞÞ�
ð1þ xðiÞÞ2�

1� að Þ � 1

" #
þ 1

ða� 1Þ2 and

�� xðiÞ
� � ¼ a

1� ð1þ2xðiÞÞ�

ð1þxðiÞÞ2�

� �

ða� 1Þ
ð1þ 2xðiÞÞ
ð1þ xðiÞÞ2

 !�

ln að Þ ln ð1þ 2xðiÞÞ
ð1þ xðiÞÞ2

 !
:

4.3 MPS Estimators

The MPS method is an alternative procedure of the ML method which provides a parameter estimate of
continuous distribution. The MPS estimators of a and � are attained by maximizing the following:

‘ðgÞ ¼ 1

nþ 1
ln � xð1Þ

� �� �þXn
i¼2

ln � xðiÞ
� �� � xði�1Þ

� �� �þ ln 1� � xðnÞ
� �� �( )

: (32)

Solving the non-linear equations ð@‘ðgÞ=@aÞ ¼ 0 andð@‘ðgÞ=@aÞ ¼ 0 via numerical technique, we
obtain the MPS estimators of a and �: To obtain the MPS estimators, we differentiate natural logarithm
of the product spacing function of APITL distribution partially for a and �:

@‘ðgÞ
@a

¼ 1

nþ 1

�a xð1Þ
� �

� xð1Þ
� � þ

Xn
i¼2

�a xðiÞ
� �� �a xði�1Þ

� �� �
� xðiÞ
� �� � xði�1Þ

� � � �a xðnÞ
� �

1� � xðnÞ
� �

" #
; (33)

and,

@‘ðgÞ
@�

¼ 1

nþ 1

�� xð1Þ
� �

� xð1Þ
� � þ

Xn
i¼2

�� xðiÞ
� �� �� xði�1Þ

� �� �
� xðiÞ
� �� � xði�1Þ

� � � �� xðnÞ
� �

1� � xðnÞ
� �

" #
: (34)

Equating Eqs. (33) and (34) with zero and using optimization algorism (conjugate-gradient or Newton-
Raphson optimization) we get the solution.

4.4 Bayesian Estimators

Here, we get the Bayesian estimator of the APITL parameters. The Bayesian estimator is regarded

under symmetric (squared error loss function (SELF)) which is defined as Lð~a; aÞ ¼ Eð~a� aÞ2;
Lð~�; �Þ ¼ Eð~�� �Þ2: Also, the Bayesian estimator is considered under asymmetric (Linear exponential
(LINEX) loss function) which is expressed as Lð^a; aÞ ¼ ehð

^
a�aÞ � hð^a� aÞ � 1;
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Lð^�; �Þ ¼ ehð
^
�;�Þ � hð^�; �Þ � 1; h 6¼ 0; ^a ¼ �1

h
lnEðe�haÞ; ^

� ¼ �1

h
lnEðe�h�Þ;where h reflects the direction

and degree of asymmetry. Assuming that the prior distribution of a and �, denoted by pðaÞ; pð�Þ; has an
independent gamma distribution. The joint gamma prior density of a and � can be written as:

p a; �ð Þ / aa1�1e�b1a�a2�1e�b2�; a1; b1; a2; b2 > 0: (35)

To elicit the hyper-parameters of the informative priors, the ML estimator for a and � is obtained by
equating the estimates and their variances by the inverse of Fisher information matrix of â and �̂:

@2‘

@a2
¼ n

a� 1ð Þ2 �
n

a2 log að Þð Þ2 � 1

a2
1þ n

log að Þ �
Xn
i¼1

ð1þ 2xiÞ�
ð1þ xiÞ2�

" #
; (36)

@2‘

@�2
¼ �n

�2
� log að Þ

Xn
i¼1

ð1þ 2xiÞ�
ð1þ xiÞ2�

log
ð1þ 2xiÞ
ð1þ xiÞ2

 !" #2
; (37)

@2‘

@�@a
¼ � 1

a

Xn
i¼1

ð1þ 2xiÞ�
ð1þ xiÞ2�

log
ð1þ 2xiÞ
ð1þ xiÞ2

 !
; (38)

where, V a; �ð Þ ¼
@2‘

@a2
@2‘

@�@a
@2‘

@�@a
@2‘

@�2

2
664

3
775
�1

a¼â;�¼�̂

:

From Eqs. (26) and (35), the joint posterior of the APITL distribution with parameters a and � is

p a; � xjð Þ / e�b1a�nþa2�1e�b2� logðaÞð Þnða� 1Þ�na
n�
Pn
i¼1

ð1þ2xiÞ�
ð1þxiÞ2�

þa1�1Yn
i¼1

ð1þ 2xiÞ��1

ð1þ xiÞ2�þ1 : (39)

To obtain the Bayesian estimators, we can use the Markov Chain Monte Carlo (MCMC) approach. A
useful sub-class of the MCMC techniques is the Gibbs sampling and more general Metropolis within
Gibbs samplers. The Metropolis-Hastings (MH) algorithm along with the Gibbs sampling are the two
most popular examples of the MCMC method. We use the MH within Gibbs sampling steps to generate
random samples from conditional posterior densities of α and λ as follows:

p a �; xjð Þ / e�b1a logðaÞð Þnða� 1Þ�na
n�
Pn
i¼1

ð1þ2xiÞ�
ð1þxiÞ2�

þa1�1

; (40)

and

p � a; xjð Þ ¼ �nþa2�1e�b2�a
�
Pn
i¼1

ð1þ2xiÞ�
ð1þxiÞ2�

Yn
i¼1

ð1þ 2xiÞ��1

ð1þ xiÞ2�þ1 : (41)

The Bayesian estimators are obtained via SELF and LINEX loss function (for more information
see [19–23]).
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5 Simulation Study

A Monte-Carlo simulation study was conducted to evaluate and compare the behavior of the different
estimates based on mean square errors (MSEs) and biases. Generate 10000 random samples of sizes n = 50,
100, 150 and 200 from APITL distribution. Different actual parameter values were considered.

We calculated the ML estimate (MLE), WLS estimate (WLSE), MPS estimate (MPSE), and Bayesian
estimate (BE) of a and �. Then, the biases and MSEs of the different estimates were determined. Simulated
results were scheduled in Tabs. 2 and 3 and we noticed the following:

1. The bias and MSE for all estimates decrease as n increases (see Tabs. 2 and 3).

2. As values of � near to one and for fixed a values, the biases and MSEs of a and � estimates increase.

3. For a fixed value of a as well as the value of � increases, the biases and MSEs of � estimates are
increasing, in approximately most of the cases.

4. For a fixed value of � as well as the value of a increases, the biases, and MSEs for all estimates
increase, in approximately most of the situations.

5. The measures of WLSEs are better than MLEs and MPSEs with decreasing sample size.

6. The measures of MPSEs are preferable to MLEs and WLSEs with sample sizes.

7. The BEs under the LINEX loss function is preferable to the other estimates.

Table 2: Biases and MSEs of the APITL distribution under different methods

ML WLS MPS SELF LINEX (0.5) LINEX (1.5)

n a � Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.75 0.5 a −0.0548 0.9675 −0.0215 0.1834 −0.0550 0.3838 0.12695 0.08138 0.09019 0.06391 0.02555 0.04295

� −0.0716 0.0227 −0.0282 0.0148 −0.0718 0.0295 0.00794 0.00117 0.00648 0.00113 0.00358 0.00108

1.2 a 0.9620 1.0917 1.1126 0.7401 0.9194 1.0035 0.13249 0.08978 0.09817 0.07064 0.03771 0.04739

� 0.0192 0.0634 −0.0667 0.0547 −0.1264 0.0797 0.00529 0.00043 0.00317 0.00041 −0.00103 0.00039

3 a −0.0465 0.8156 0.2324 0.7940 −0.0467 0.3477 0.12012 0.09971 0.09288 0.08479 0.04281 0.06343

� −0.3475 0.7940 −0.0114 0.6331 −0.3481 0.7195 0.00191 0.00012 −0.00039 0.00011 −0.00498 0.00014

2 0.5 a −0.2319 0.6502 −0.1322 0.2170 −0.2317 0.4993 0.06612 0.02823 0.00341 0.02121 −0.10808 0.02961

� −0.0332 0.0072 −0.0134 0.0053 −0.0333 0.0074 0.00422 0.00034 0.00360 0.00034 0.00236 0.00033

1.2 a 0.4612 1.0682 −0.1374 0.7401 −0.3306 1.0032 0.24996 0.29895 0.06710 0.17261 −0.20445 0.15091

� 0.0192 0.0634 −0.0667 0.0547 −0.1279 0.0799 0.01179 0.00326 0.00667 0.00310 −0.00341 0.00296

3 a −0.0302 0.9561 0.0334 0.9424 −0.3011 0.9032 0.36851 0.63164 0.12254 0.35078 −0.21574 0.24823

� −0.2719 0.4773 −0.1700 0.4296 −0.2723 0.3900 0.03683 0.02339 0.00285 0.02093 −0.06248 0.02296

100 0.75 0.5 a −0.0825 0.3758 −0.0312 0.1116 −0.0826 0.2327 0.12948 0.06681 0.09599 0.05252 0.03725 0.03545

� −0.0550 0.0124 −0.0214 0.0081 −0.0551 0.0179 0.00833 0.00116 0.00712 0.00113 0.00471 0.00108

1.2 a 1.1799 0.6729 1.1556 0.6264 0.9860 0.6087 0.11617 0.06892 0.09008 0.05684 0.04303 0.04026

� 0.0055 0.0371 −0.0456 0.0322 −0.0798 0.0367 0.00533 0.00058 0.00334 0.00056 −0.00064 0.00054

3 a −0.0781 0.6382 0.1700 0.5510 −0.0782 0.2098 0.08784 0.06171 0.06821 0.05404 0.03166 0.04277

� −0.2766 0.4818 −0.0039 0.4971 −0.2771 0.4474 0.00182 0.00017 −0.00044 0.00017 −0.00496 0.00019

2 0.5 a −0.1630 0.6384 −0.0451 0.0974 −0.1629 0.2653 0.07283 0.03301 0.01439 0.02512 −0.08987 0.02942

� −0.0201 0.0044 −0.0023 0.0027 −0.0202 0.0036 0.00229 0.00037 0.00179 0.00036 0.00080 0.00036

1.2 a −0.0701 0.7286 −0.0944 0.6264 −0.2640 0.6087 0.22919 0.26288 0.07037 0.15881 −0.16927 0.13156

� 0.0055 0.0371 −0.0456 0.0322 −0.0798 0.0371 0.00925 0.00343 0.00511 0.00333 −0.00309 0.00322

3 a −0.2413 0.7090 0.0892 0.6865 −0.2411 0.5432 0.35177 0.45415 0.14393 0.31028 −0.15169 0.20198

� −0.1764 0.2568 −0.0968 0.2831 −0.1767 0.1923 0.02796 0.02341 0.00021 0.02178 −0.05398 0.02321
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6 Real Data Illustration

Here, we fit the APITL distribution under three real data taken from fields of survival times of medicine,
engineering, and reliability. The APITL model is compared to other competitive models as, ITL, inverse
Weibull (IW), alpha power IW (APIW), inverse Lomax (ILo), alpha power ILo (APILo), inverse
exponential (IEx), and alpha power inverse exponential (APIEx) distributions.

Tabs. 4–6 provide values of Akaike information criterion (AIC), corrected AIC (CAIC), Hannan-Quinn
information criterion (HQIC), and Kolmogorov- Smirnov (KS) statistic along with its P-value for all fitted
models for three real data. In addition, these tables contain the MLEs and standard errors (SEs) (appear in
parentheses) of the parameters for the considered models. We compared the fits of the APITL model with
the ITL, IW, APIW, ILo, APILo, IEx, and APIEx models (see Tabs. 4–6). The fitted APITL PDF, CDF,
PP-plot and QQ-plot of the three real data were displayed in Figs. 4–6, respectively. These figures
indicated that the APITL distribution has the smallest values of AIC, CAIC, HQIC, KS and the largest
P-value among all fitted models.

The first (I) set of data was studied in Bjerkedal [24]. It represents the rth survival times (in days) of
72 guinea pigs infected with virulent tubercle bacilli. These data were analyzed in Refs. [25,26]. Tab. 4
listed values of MLEs and statistic measures for data I. Fig. 4 provided estimated PDF, CDF, PP-plot, and
QQ-plot of APITL distribution for data I.

Table 3: Biases and MSEs of the APITL distribution under different methods

ML WLS MPS SELF LINEX (0.5) LINEX(1.5)

n a � Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

150 0.75 0.5 a −0.0499 0.24593 0.0021 0.10933 −0.0495 0.15739 0.11137 0.06125 0.08280 0.04947 0.03186 0.03468

� −0.0337 0.00768 −0.0123 0.00590 −0.0337 0.00955 0.00761 0.00109 0.00658 0.00106 0.00451 0.00103

1.2 a 0.1631 0.32274 0.0962 0.27620 −0.0499 0.17235 0.07791 0.04444 0.05725 0.03753 0.01968 0.02845

� 0.0257 0.02466 −0.0102 0.06043 −0.0844 0.05781 0.00754 0.00074 0.00562 0.00071 0.00179 0.00067

3 a −0.0498 0.32287 0.1404 0.38843 −0.0494 0.13954 0.07904 0.04635 0.06217 0.04073 0.03098 0.03273

� −0.1777 0.28429 0.0135 0.38771 −0.1773 0.25787 0.00289 0.00021 0.00065 0.00020 −0.00382 0.00022

2 0.5 a −0.0958 0.38265 0.0116 0.27172 −0.0953 0.15978 0.06533 0.03428 0.01100 0.02764 −0.08656 0.03170

� −0.0118 0.00240 −0.0008 0.00189 −0.0117 0.00183 0.00173 0.00037 0.00130 0.00037 0.00045 0.00037

1.2 a 0.2403 0.62056 0.0029 0.61890 −0.1635 0.37899 0.23018 0.24647 0.08626 0.15308 −0.13520 0.11692

� 0.0124 0.02279 −0.0250 0.02251 −0.0472 0.01905 0.00947 0.00338 0.00591 0.00328 −0.00116 0.00317

3 a −0.1492 0.59608 0.1421 0.55189 −0.1485 0.33969 0.29826 0.24158 0.11988 0.24502 −0.14413 0.16560

� −0.1057 0.15444 −0.0431 0.14067 −0.1055 0.10120 0.03659 0.02650 0.01246 0.02303 −0.03511 0.02274

200 0.75 0.5 a −0.0541 0.15230 0.0255 0.10660 −0.0544 0.12684 0.10701 0.06040 0.08064 0.04936 0.03347 0.03510

� −0.0324 0.00575 −0.0070 0.00484 −0.0325 0.00758 0.00738 0.00103 0.00646 0.00102 0.00462 0.00101

1.2 a 0.1065 0.22339 0.0826 0.23848 −0.0547 0.13868 0.07764 0.03694 0.05978 0.03163 0.02700 0.02435

� 0.0044 0.01361 −0.0151 0.05126 −0.0808 0.04575 0.00711 0.00081 0.00528 0.00078 0.00164 0.00074

3 a −0.0525 0.22652 0.0986 0.27801 −0.0528 0.11287 0.07426 0.03685 0.06035 0.03287 0.03426 0.02684

� −0.1730 0.21711 −0.0140 0.28686 −0.1737 0.20680 0.00385 0.00024 0.00163 0.00023 −0.00279 0.00023

2 0.5 a −0.0900 0.16462 −0.0461 0.14601 −0.0902 0.13328 0.07360 0.03368 0.02149 0.02634 −0.07237 0.02793

� −0.0124 0.00144 −0.0061 0.00165 −0.0125 0.00136 0.00231 0.00035 0.00194 0.00035 0.00118 0.00034

1.2 a −0.0190 0.46434 −0.0108 0.41257 −0.1521 0.31712 0.20131 0.23086 0.07490 0.15318 −0.12522 0.11925

� −0.0050 0.01542 −0.0215 0.01560 −0.0463 0.01419 0.00809 0.00329 0.00496 0.00321 −0.00128 0.00312

3 a −0.1362 0.40894 0.1118 0.39202 −0.1365 0.28282 0.29218 0.39220 0.13049 0.24178 −0.11010 0.16256

� −0.1035 0.11330 −0.0447 0.10584 −0.1039 0.07466 0.03851 0.02562 0.01718 0.02244 −0.02495 0.02136
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Table 4: MLEs, SEs, and statistic measures for data I

Model a � b KS P-Value AIC CAIC HQIC

APITL 204.3711 4.5486 – 0.082 0.7179 191.1228 191.2967 192.9355

(186.05) (0.4218)

APIW 416.1724 1.5890 0.2231 0.1449 0.09728 217.6459 217.9988 220.3649

(377.35) (0.1117) (0.0431)

APILo 0.0026 12.3172 0.2714 0.1141 0.3056 209.0081 209.361 211.7271

(0.0018) (3.5600) (0.0906)

APIEx 0.0199 2.3775 – 0.1582 0.05434 229.4396 229.6135 231.2523

(0.0195) (0.3039)

Table 5: MLEs, SEs, and statistic measures for data II

Model a � b KS P-Value AIC CAIC HQIC

ITL 1.2533 0.14799 0.3450 188.9506 189.0559 189.5613

(0.1982)

APITL 6.9168 1.8963 0.10909 0.7278 187.4425 187.7668 188.6638

(6.6745) (0.3783)

ILo 3.7381 0.4900 0.11064 0.7092 189.0165 189.3408 190.2378

(2.1288) (0.3351)

APILo 10.9198 23.9997 0.0293 0.1123 0.6945 191.5962 192.2629 193.4282

(9.0519) (5.6358) (0.0444)

Table 6: MLEs, SEs, and statistic measures for data III

Model a � b KS P-Value AIC CAIC HQIC

APITL 301.696 0.8271 0.150 0.5082 311.0474 311.4918 311.9439

(339.011) (0.1006)

IW 0.7238 6.9663 0.159 0.4304 314.2288 314.6733 315.1253

(0.0927) (1.8023)

APIW 42.7187 0.8576 3.1712 0.158 0.4906 312.3953 313.3184 313.7401

(70.859) (0.1391) (1.8568)

IE 11.1799 0.233 0.07706 320.1239 320.2668 320.5722

(2.0412)

APIE 23.767 5.1597 0.1591 0.4598 311.4365 311.8809 312.333

(23.4501) (1.6219)
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The second (II) set of data represents the active repair times (hr) for an airborne communication
transceiver [27]. The data are as follows: 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00,
1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50,
4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00 and 24.50. The MLEs and statistic measures
for data II listed in Tab. 5. Fig. 5 provided estimated PDF, CDF, PP-plot, and QQ-plot of the APITL
model for data II.

The third (III) set of data was studied in Aarset [28]. It refers to 30 failure times of air-conditioning
system of an airplane. Tab. 6 listed values of MLEs and statistic measures for data III. Fig. 6 provided
estimated PDF, CDF, PP-plot and QQ-plot of the APITL for data III.

According to tables and Figs. 4–6, we observed that the APITL distribution provides well overall the
fitted model and consequently could be selected as the more suitable model than other models.

Furthermore, the suggested methods of estimation (see Section 4) for the APITL parameters were
considered based on the three data. Tab. 7 displayed different estimates of the APITL parameters for the
three data sets. In these data, we cannot use the MPS method because there are equal observations in the
data and consequently the spacing followed by the product will be zeros. For more information about this
method see [29,30].

The convergence of the MCMC estimation of a and � are shown in Figs. 7–9 for all datasets,
respectively.

Figure 4: Estimated PDF, CDF, PP-plot and QQ-plot of the APITL model for data I
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Figure 5: Estimated PDF, CDF, PP-plot, and QQ-plot of the APITL model for data II

Figure 6: Estimated PDF, CDF, PP-plot, and QQ-plot of the APITL model for data III
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Table 7: Different estimates of the APITL parameters for real datasets

Data ML WLS SELF LINEX (1.5) LINEX( -1.5)

I a Estimate 204.3711 230.2754 319.536 321.5280 303.5203

SE 86.0516 49.2177 83.123 82.9465 82.9622

� Estimate 4.5486 4.5407 4.6113 4.5071 4.7201

SE 0.4218 0.0895 0.3089 0.3092 0.2081

II a Estimate 6.9168 5.7518 7.1372 2.6879 16.9063

SE 6.6745 1.2317 4.2794 2.8905 2.2560

� Estimate 1.8963 1.7875 1.8793 1.8011 1.9589

SE 0.3783 0.0953 0.3248 0.2595 0.1925

III a Estimate 301.6959 364.1921 555.4224 517.0317 519.0317

SE 33. 9011 34.264 33. 7555 24. 9852 26. 3894

� Estimate 0.8271 0.8195 0.8457 0.8386 0.8504

SE 0.1006 0.1248 0.0973 0.0935 0.0897

Figure 7: Convergence of the MCMC estimation of α and λ for data I
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7 Concluding Remarks

We proposed and studied the alpha power transformed inverted Topp-Leone distribution. Some
structural properties of the APITL distribution were provided. Bayesian and non-Bayesian methods of
estimation were considered. We obtained the ML, WLS, and MPS estimators of the population
parameters. The Bayesian estimator was deduced under LINEX and SELF. The Monte Carlo simulation
study was worked out to assess the behavior of estimates. Generally, we concluded that the Bayes
estimates are preferable to the corresponding other estimates in approximately most of the situations. We
proved empirically that the APITL model reveals its superiority over other competitive models for
different real data.

Figure 8: Convergence of the MCMC estimation of α and λ for data II

Figure 9: Convergence of the MCMC estimation of α and λ for data III
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