
Software Defect Prediction Using Supervised Machine Learning Techniques: A
Systematic Literature Review

Faseeha Matloob1, Shabib Aftab1,2, Munir Ahmad2, Muhammad Adnan Khan3,*, Areej Fatima4,
Muhammad Iqbal2, Wesam Mohsen Alruwaili5 and Nouh Sabri Elmitwally5,6

1Department of Computer Science, Virtual University of Pakistan, Lahore, 54000, Pakistan
2School of Computer Science, National College of Business Administration and Economics, Lahore, 54000, Pakistan

3Riphah School of Computing and Innovation, Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
4Department of Computer Science, Lahore Garrison university, Lahore, 54000, Pakistan

5College of Computer and Information Sciences, Jouf University, Sakaka, 72341, Saudi Arabia
6Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, 12613, Egypt

�Corresponding Author: Muhammad Adnan Khan. Email: madnankhan@ncbae.edu.pk
Received: 03 February 2021; Accepted: 07 April 2021

Abstract: Software defect prediction (SDP) is the process of detecting defect-
prone software modules before the testing stage. The testing stage in the software
development life cycle is expensive and consumes the most resources of all the
stages. SDP can minimize the cost of the testing stage, which can ultimately lead
to the development of higher-quality software at a lower cost. With this approach,
only those modules classified as defective are tested. Over the past two decades,
many researchers have proposed methods and frameworks to improve the perfor-
mance of the SDP process. The main research topics are association, estimation, clus-
tering, classification, and dataset analysis. This study provides a systematic literature
review that highlights the latest research trends in the area of SDP by providing a
critical review of papers published between 2016 and 2019. Initially, 1012 papers
were shortlisted from three online libraries (IEEE Xplore, ACM, and ScienceDirect);
following a systematic research protocol, 22 of these papers were selected for detailed
critical review. This review will serve researchers by providing the most current
picture of the published work on software defect classification.

Keywords: Software defect prediction; systematic literature review; machine
learning

1 Introduction

The development of higher-quality software at lower cost has always been a key objective of the
software industry, as well as an area of focus by many researchers in the software engineering domain
[1–7]. According to a study in 2018, the market for business software was $3.7 trillion [8], 23% of which
was related to quality assurance (QA) and testing [9]. It is important to remove defects from software
before delivery. However, as software grows in size and complexity, it becomes increasingly difficult to
identify all the bugs [10]. A small bug in a critical system can lead to disaster. A notorious example

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2021.017562

Review

echT PressScience

mailto:madnankhan@ncbae.edu.pk
http://dx.doi.org/10.32604/iasc.2021.017562
http://dx.doi.org/10.32604/iasc.2021.017562

highlighting the importance of QA, testing, and removing defects was the 1999 loss of NASA’s $125 million
Mars Climate Orbiter due to a small data conversion issue [11]. Defects in software can be categorized as
syntax errors, spelling errors, wrong program statements, and design or specification errors [12]. Testing
plays a key role in the software development lifecycle (SDLC), and eliminates bugs while maintaining
quality [1–7]. However, it has also been observed that software testing consumes more resources in
SDLC than any other activity [1–7]. The process of software defect prediction (SDP) can be used as a
QA activity to identify those modules that are more likely to be defective so that only those are tested.
With this approach, higher-quality software can be developed at a lower cost [1–7].

Many researchers have focused on the domain of SDP. According to Wahono [13], the five areas
receiving the most focus by researchers are: dataset analysis, association, estimation, clustering, and
classification. Dataset analysis aims to investigate the issues that are used for the prediction of software
defects. Many benchmark datasets are available, such as the NASA, MDP, and other data repositories.
Data analysis also focuses on preprocessing techniques to make the data more suitable for prediction
models, in order to achieve maximum accuracy. Association research uses association rule mining
algorithms to detect the association among software defects in the software system. Estimation research
employs statistical techniques, capture-recapture models, and neural networks to estimate the number of
defects in a software system. Clustering techniques use clustering algorithms to detect groups or clusters
of defects. This unsupervised technique from the machine learning domain is particularly used in
situations where labels are unknown. Classification research is centered on determining whether a
particular software module is defective by using historical data of software metrics. This process uses
supervised classification algorithms [14–20]. Many classification frameworks have been proposed [2–6],
and consist of various additional stages, such as data cleansing, feature selection, and ensemble creation
(integration of multiple classifiers).

To train the prediction models, a defect dataset can be obtained from earlier releases of the same project
[21] or from other projects [22]. After training, the test data is fed into these models for classification. This
process is shown in Fig. 1. By using these prediction models, software engineers can use the data of
previously developed and tested modules to predict whether the newly developed module is defective so
that appropriate testing resources can be allocated to those modules only.

In the past few years, there has been significant progress in defect prediction, with many research papers
being published. Scholars have published excellent literature reviews in the domain of SDP as well [23].
Catal et al. [24] reviewed and classified 74 research studies with respect to methods, metrics, and
datasets. Subsequently, Catal [25] reviewed 90 research papers between 1990 and 2009. He reviewed
both machine learning-based and statistical-based approaches in SDP in software engineering. Wahono
[13] reviewed research trends, datasets, methods, and frameworks from 2000 to 2013. He selected

Figure 1: Software defect prediction process

404 IASC, 2021, vol.29, no.2

71 primary studies for the reviews. Similarly, Li et al. [26] reviewed 70 representative defect prediction
studies between 2014 and 2017. They summarized the research trends in ML algorithms, data
manipulation, effort-aware prediction, and empirical studies.

This systematic literature review aims to reflect the progress made in the latest research on detecting
defect-prone software modules. To extract the relevant research papers, a systematic research process was
followed. Initially, 1012 studies published between 2016 and 2019 were extracted from three well-known
online libraries: IEEE Xplore, ACM, and Science Direct (Tab. 1). Following a thorough systematic
research process, the 22 most relevant research papers were selected for detailed review.

2 Systematic Literature Review

A systematic literature review (SLR) is the well-defined process of conducting a review of multiple
articles and studies in order to answer predefined research questions. An SLR begins by defining a
research protocol that involves identifying the research questions to be addressed and defining the
research method to be followed to answer those questions. The research protocol explicitly defines the
search strategy, and inclusion and exclusion criteria for the selection of primary studies (PSs) [27], as
well as providing guidance on how to extract the relevant information from the selected studies. To
conduct this SLR, detailed guidelines were extracted from Refs. [28–32]. The step-by-step and well-
defined systematic research process followed in this review was extracted from Aftab et al. [32] and is
presented in Fig. 2.

2.1 Identification of Research Questions

Research questions reflect the ultimate objective of an SLR and play a key role in the selection of
primary studies. The selected primary studies are then reviewed for the extraction of answers to the
research questions. The purpose of this study is to analyze and summarize the empirical evidence
regarding the use of machine learning techniques for SDP. The following research questions are identified
and addressed in this SLR.

RQ1: Which methods/techniques are used in the proposed/used SDP models/frameworks?

RQ2: Which evaluation criteria are used to measure the performance of proposed/used prediction
models/frameworks?

RQ3: Which tools are used for the implementation of prediction models/frameworks?

RQ4: Which datasets are selected for the experiments?

RQ5: What is the contribution/novelty of the works by researchers in improving the prediction
performance of proposed/used frameworks/models?

RQ6: In the case of comparative analysis, which supervised machine learning algorithms performed
better than others?

Table 1: Data sources and query results

Data source Date searched Total number of results

IEEE Xplore 27/03/2019 463

ACM 27/03/2019 482

ScienceDirect 27/03/2019 67

IASC, 2021, vol.29, no.2 405

2.2 Keyword Selection and Query String

This step deals with the selection of particular keywords/words along with their synonyms while
keeping in mind the research questions (see Tab. 2). A search string is created by combining keywords
and their synonyms using ‘AND’ and ‘OR’ operators as shown below:

Figure 2: Systematic research process [32]

Table 2: Search string

Keyword Alternatives/synonyms

Machine
learning

(‘ML’, ‘machine learner’)

Technique (‘algorithm’OR ‘classifier’OR ‘method’OR ‘model’OR ‘framework’OR ‘approach’)

Software (‘software’ OR ‘program’ OR ‘system’)

Defect (‘fault’ OR ‘SFP’ OR ‘SDP’ OR ‘bug’ OR ‘error’)

Prediction ‘determine’ OR ‘analysis’ OR ‘estimate*’ OR ‘explore’ OR ‘classify’

Evaluation (‘accuracy’ OR ‘efficiency’ OR ‘performance’ OR ‘improvement’)

Dataset (‘data’ OR ‘defect dataset’ OR ‘metric dataset’)

Tool (‘data mining tool’ OR ‘ML tool’ OR ‘machine learning tool’)

406 IASC, 2021, vol.29, no.2

((‘Performance’OR ‘Accuracy’OR ‘Efficiency’OR ‘Improvement’) AND (‘Assessment’OR ‘Evaluation’)
AND (‘Data mining’OR ‘Machine Learning’) AND (‘Technique’OR ‘Algorithm’OR ‘Classifier’OR ‘Method’
OR ‘Model’ OR ‘Framework’ OR ‘Approach’) AND (‘Software’ OR ‘Program’ OR ‘System’) AND (‘Defect’
OR ‘Fault’ OR ‘Bug’ OR ‘Error’) AND (‘Prediction’ OR ‘Determination’ OR ‘Analysis’ OR ‘Estimation’ OR
‘Exploration’ OR ‘Classification’ OR ‘Forecasting’) AND (‘Dataset’ OR ‘Defect Dataset’ OR ‘Metric Dataset’)
AND (‘Tool’ AND ‘Data Mining Tool’ OR ‘Machine Learning Tool’)).

2.3 Selection of Search Space

In this step of the review, online libraries were selected for the extraction of research papers. This SLR
focuses on three well-known online libraries: IEEE Xplore, ACM, and ScienceDirect. Because these three
online libraries contain different options for searching the relevant material, in order to extract the most
appropriate and relevant papers, a query string was searched multiple times in each library with different
combinations of keywords. The total number of results from each library is listed in Tab. 1.

2.4 Outlining the Selection Criteria

This step identifies the scope of the study by explicitly defining the selection criteria for the shortlisting
of extracted research papers. The purpose of this step is to select the most appropriate research papers for
review. This step can be broken down into two steps: defining the inclusion criteria and defining the
exclusion criteria.

2.4.1 Inclusion Criteria
a. Research papers published from 2016 until 2019.

b. Research papers presented/published in journals, conferences, conferences proceedings, workshops,
or published as book chapters.

c. Research papers that performed SDP with binary classification using supervised machine learning
techniques.

d. Research papers with focus on (where training and test data belong to the same project) project defect
prediction.

e. Research papers that presented empirical experiments, case studies, comparative studies, or a novel
method/technique/framework for software defect prediction.

f. Research papers that presented results of a used/proposed/modified machine learning algorithm/
technique/framework on a dataset.

2.4.2 Exclusion Criteria
a. Research papers published before 2016.

b. Research papers that are not in the English language.

c. Research papers that do not perform SDP.

d. Research papers that do not employ a supervised machine learning technique in the method/
technique/framework used for SDP.

e. Research papers that do not evaluate the defect prediction method/technique/framework used on any
dataset.

2.5 Literature Extraction

This step deals with the extraction of the most relevant and appropriate research papers from the selected
research material. The complete process followed in this stage is shown in Fig. 3. The ultimate objective of

IASC, 2021, vol.29, no.2 407

this stage is to select the primary studies (most relevant research papers) for the review so that the answers to
the research questions can be extracted.

The tollgate approach [33] was used to shortlist articles for critical review. The tollgate approach consists
of five phases P-1 to P-5, and leads to the selection of 22 PSs [34–55], as seen in Tab. 3.

Phase 1 (P-1). Basic search using the search terms and year.

Phase 2 (P-2). Title-based inclusion/exclusion, duplicate articles are removed.

Phase 3 (P-3). Abstract-based inclusion/exclusion.

Phase 4 (P-4). Introduction and conclusion-based inclusion/exclusion.

Phase 5 (P-5). Full text-based inclusion/exclusion.

IEEE ACM ScienceDirect

Search term & year

Title-based incl ./excl.

Abstract-based incl/excl.

Full-text-based incl./excl

Intro-/conclusion -based incl/excl.

22 Primary Studies

1012

81

57

40

Figure 3: Extraction of primary studies

Table 3: Tollgate approach

Selected Sources P-1 P-2 P-3 P-4 P-5

IEEE Xplore 463 45 35 27 15

ACM 482 22 13 6 4

ScienceDirect 67 14 9 7 3

Total 1012 81 57 40 22

408 IASC, 2021, vol.29, no.2

2.6 Quality Criteria for Study Selection

The purpose of establishing QA criteria is to make sure that selected primary studies provide enough
details to answer the identified research questions. The QA and data extraction processes are carried out
concurrently. A QA checklist was devised to evaluate the eminence of selected primary studies, as shown
in Tab. 4.

Each selected PS is assessed against QA criteria (Tab. 4) and assigned a score of 0 to 1. If the article
explicitly answers each of the QA questions, the study is given score of 1; and if it partially answers the
question, the study is given a score of 0.5. A score of 0 is assigned to studies that fail to answer the QA
question. The final score is calculated by adding up the scores for all the QA questions.

After assessing the quality of a selected PS, it was found that each PS score ≥ 80% against QA criteria.
This means the selected PS provides adequate information to address this SLR.

2.7 Literature Analysis

After going through the complete systematic process of relevant literature extraction, 22 primary studies
were selected to answer the defined research questions after a detailed critical review. The step of literature
analysis includes reviewing the primary studies by keeping in mind the research questions so that succinct
answers to those questions can be extracted.

3 Results and Discussion

This is the last and most important step of the SLR process, and yields answers to the research questions
identified in the first step of SLR.

RQ1: Which methods/techniques are used in the proposed/used SDP models/frameworks?

More than 30 techniques and algorithms were used by the researchers in the selected primary studies.
The researchers used these techniques in order to compare and improve the prediction performance.
These techniques included classification algorithms as well as feature selection, re-sampling, and
ensemble learning techniques. All of the techniques used are shown in Fig. 4, grouped into 10 classes.
During the review, it was observed that Naïve Bayes (NB), K-nearest neighbors (KNN), multilayer
perceptron (MLP), logistic regression (LR), decision tree (DT), random forest (RF), and support vector
machine (SVM) are the most widely used classifiers in SDP. It can be seen from Fig. 5 that the DT,
Bayesian, neural network, kernel, and ensemble classifiers make up 73% of the techniques used.
Researchers have also proposed techniques and methods to improve the performance of ML classifiers on
software defect predictions. Researchers in Refs. [40,43,44,52] compared the performance of individual
ML classifiers on selected datasets, and identified the best performing classifiers. Data preprocessing

Table 4: QA criteria for PSs

S.no. QA checklist

QA1 Does the study provide enough details of an ML classifier or framework to answer RQ1?

QA2 Are suitable performance measures reported to answer RQ2?

QA3 Does the study include details of the tool used to answer RQ3?

QA4 Does the study include details of the dataset used to answer RQ4?

QA5 Does the study propose a technique to improve the performance of anML classifier to answer RQ5?

QA6 Does the study provide a suitable analysis on performance improvements to answer RQ6?

IASC, 2021, vol.29, no.2 409

techniques, such as feature selection (FS) [34,37,39,45,55] and data balancing [38,42,47,51], are also used to
improve the efficiency of models. Researchers have also proposed hybrid, meta learning, and network-based
frameworks to detect defects with higher accuracy and precision [35,36,41,45,47–50,53,54].

Figure 4: Techniques used in primary studies

Figure 5: Distribution of studies over techniques used

410 IASC, 2021, vol.29, no.2

RQ2: Which evaluation criteria are used to measure the performance of proposed/used prediction
models/frameworks?

Researchers have used various performance measures (Tab. 5) to evaluate the performance of used/
proposed defect prediction methods. However, most performance measures are calculated from the
parameters of a confusion matrix [24,56,57]. The F-measure, area under ROC curve (AUC), recall,
precision, and accuracy are frequently used metrics to determine the performance of defect prediction
models. These measures are adopted by 79% of the selected primary studies, as shown in Fig. 6.
Researchers have also used the Matthews correlation coefficient (MCC), specificity, decision cost, G-
mean, precision–recall curve (PR curve), kappa statistic, and standard deviation error to evaluate the
performance of prediction models.

Table 5: Performance measures

Measure Mathematical model

Recall/TPR/ Pd TP= TP þ FNð Þ
Pf/ FPR FP= FP þ TNð Þ
Precision TP= TP þ FPð Þ
Accuracy TP þ TNð Þ= TP þ FP þ TN þ FNð Þ
F-measure 2 � recall � precisionð Þ= recall þ precisionð Þ
MCC TP � TN � FP � FNð Þ=p TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þð Þ
AUC Area under ROC curve is the trade-off between TRP and FPR

G-mean
p

pd � 1� pfð Þð Þ
Specificity TN(TN + FP)

PR curve Trade-off between recall (TPR) and precision (positive predicted value)

Kappa statistic Compares observed accuracy with expected accuracy

Standard
deviation error

Reveals error rate of the model

Figure 6: Distribution of studies over performance measure

IASC, 2021, vol.29, no.2 411

To further compare and analyze results generated from defect prediction models, researchers
applied comparison and difference measurement techniques such as the Scott-Knott ESD test [42],
Friedman test [44,46], Nimenyi test [44], paired t-test [34,38,45,47] box-plot diagram [45], and Wilcoxon
signed-rank test [36].

Many tools are available to perform data mining tasks [58–60]. Most of the selected primary studies
have executed prediction models using the WEKA tool [34,35,38–40,42–44,46,47]. As shown in Fig. 7,
WEKA is used by 36% of studies. MATLAB is another tool implemented by many researchers
[38,43,45,49]. Some of the selected PSs have not specified the tool used, while some researchers have
chosen KEEL [38,40], IBM SPSS [38,52], and LibSVM [49] as their tools.

The majority of researchers in our selected primary studies used publicly available datasets for the
implementation of proposed/used classification models. A dataset is a collection of features also known as
software metrics collected from previously developed software in order to check the accuracy of a
proposed model. It has been observed that different classification algorithms perform differently on
different datasets [61,62]. Therefore, most studies have used multiple datasets for their experiments. For
instance, 73% of the selected studies have used different datasets from the PROMISE and tera-PROMISE
repositories (see Fig. 8).

Figure 7: Distribution of studies over machine learning tools

Figure 8: Distribution of studies over dataset repository

412 IASC, 2021, vol.29, no.2

RQ3: Which tools are used for the implementation of prediction models/frameworks?

RQ4: Which datasets are selected for the experiments?

Kaur et al. [44] used open-source Java projects PMD, Find Bugs, EMMA, Trove, and Dr Java from
SourceForge. Malhotra et al. [46], nine popular open-source projects were collected from a Github
repository: caffeine, fast adapter, fresco, freezer, glide, design pattern, jedis, mem-cached, and
MPAndroidChart. Phan et al. [50] collected bug data from the programming contest site CodeChef from
the solution of four problems, i.e., SUMTRIAN, FLOW016, MNMX, and SUBINC, submitted in the C
and C++ programming languages. In Malhotra et al. [55], data were collected from Android software
repositories containing Bluetooth, contacts, email, gallery, and telephony data. In Refs. [37,48], the
researchers used bug data from three versions of the Eclipse bug prediction dataset.

RQ5: What is the contribution/novelty of the works by researchers in improving the prediction
performance of proposed/used frameworks/models?

Of 22 selected primary studies, 12 performed comparative analysis of various classification algorithms
on SDP. Researchers compared the prediction performance of different machine learning classifiers and
models [34,37–40,42–44,46,51,52,55]. Ten research papers proposed novel frameworks to improve the
accuracy of defect prediction [35,36,41,45,47–50,53,54]. In these studies, researchers have proposed
hybrid, layered, adaptive learning, and network-based frameworks using baseline ML classifiers.

The answer to this research question focuses on the particular techniques used to improve the
performance of SDP models/frameworks/algorithms.

3.1 Data Preprocessing

Data preprocessing sanitizes data to remove inappropriate, irrelevant, redundant, and noisy data [63].
The presence of noisy and redundant data can lead to inaccurate result as shown in Tab. 6.

Table 6: Data preprocessing techniques

Technique Problem PS Method

Feature selection
(FS)

High
dimensionality

34, 37, 38, 39, 42,
45, 46, 47, 51, 53,
55

CFS, PSO, GA. IG, CS. GR, RF, RFW,
SU, Chi-Square, OneR, LR, RSA, NPE

Feature extraction High
dimensionality

39, 49, 51, 54 PCA, KPCA, AE

Feature scaling Standardization/
normalization

54 Maximum minimization

Data sampling (DS) Class imbalance 38, 42, 47, 51 RUS, SMOTE, ASMO

Noise filtering Unclean,
meaningless data

38, 42 IPE

Propositionalization Relational
representation to
propositional

51 RELAGGS

IASC, 2021, vol.29, no.2 413

3.2 K-fold Cross-Validation

In the k-fold cross-validation method, data is divided into k sub-samples. Each sample is used as test
data for the validation of models built using k-1 sub-samples [64]. This process is repeated k times.
Numerous researchers have used 10-fold cross-validation to predict performance of a model [40–
42,46,48,53–55]. In Qu et al. [36], 3-fold cross-validation was used to increase the prediction accuracy of
the model.

3.3 Meta-Learning

Dôres et al. [35] proposed a meta-learning framework SPF-MLP to find the best ML learner from a set of
learners for a particular project. They used seven algorithms as an input set: NB, RF, C4.5, k-NN, SVM,
MLP, and AB. An experiment was conducted on 71 PROMISE datasets, and it was shown through
standard deviation and average rank metrics that SPF-MLP recommended the best algorithm for each
dataset. To recommend a single algorithm, researchers used RF and an ensemble of seven input
algorithms as meta-learners to generate a predictive model from a meta-database. SFP-MLF-EN-
7 achieved an average rank of 2.556 while SFP-MLF-RF achieved an average rank of 2.472. These two
techniques outperformed the seven input algorithms.

Nucci et al. [41] presented an approach called ASCI (adaptive selection of classifiers in bug prediction)
to dynamically select from a set of ML classifiers the one providing the best prediction performance for a
class. They used five algorithms, LR, NB, RBFN, MLP, and DT, to compare the prediction performance
of the proposed ASCI and a validation-based voting ensemble technique. Results were compared using
the F-measure and AUC. The comparative analysis showed that, in 77% of cases, ASCI outperformed
MLP, with its F-measure, accuracy, and AUC 7%, 2%, and 1% higher, respectively. ASCI also
outperformed the ensemble method in 83% of cases.

Nucci et al. [42] compared the role of different meta-learners in the ASCI method proposed in Nucci
et al. [41]. They conducted experiments on 21 open-source projects with DT, C4.5, LR, MLP, NB, and
SVM as meta-learners. Their results showed that the choice of meta-learner did not have a significant
impact on the performance improvement of the model, and as a result, lightweight classifiers were
recommended for meta-learning purposes.

3.4 Network Embedding Technique

Qu et al. [36] developed a model called node2defect using a network embedding technique. This model
first created a class dependency network (CDN) of the program. Subsequently, node2ver was used to learn a
vector to encode structural features of the CDN. Node2defect then concatenated the vectors with metrics, and
used them in ML classifiers. RF was used as the ML classifier in this model. The proposed model was
evaluated on 15 open-source Java programs, and compared with traditional ML classifiers using 3-fold
cross-validation. With cross-validation, the F-measure was improved by 9.2% on average, and the AUC
was improved by 3.86% on average. When compared to ASCI, the defect prediction model with
node2defect showed improvements in F-measure of 9.1% and in AUC of 5.6%.

Yang et al. [54] proposed a dynamic predictive threshold filtering algorithm to propose the best
prediction model for a dataset. They used a complex network technology to create a set of multilayer
structural feature metrics that showed the overall characteristics of a feature. The proposed model was
tested using multilayer structural feature metrics, a single version of the defect cross-validation, and CK
metrics on 154 versions of the software called BaseRecyclerViewAdapterHelper. The model obtained
through multilayer metrics showed better performance on average among all models.

414 IASC, 2021, vol.29, no.2

3.5 Other Proposed Techniques

Kumar et al. [45] built a model using LSSVM with linear, polynomial, and RBF kernel functions. The
model was developed using object-oriented (OO) source code metrics. FS was performed to demonstrate that
a small subset of OO metrics improved performance. Moreover, it was observed that the LSSVMmodel built
with the RBF kernel performed better than models with other kernels.

Miholca et al. [47] developed HyGRAR, a non-linear hybrid model that integrated gradual relational
association rule mining and an ANN to predict defects. They tested this model on 10 open-source
software projects from PROMISE, and then compared it with other machine learning methods using the
AUC metric. HyGRAR outperformed the other methods in 98% of cases.

Maheshwari et al. [48] proposed a three-way decision-based model for defect prediction. In the first step,
modules were divided into three classes based on threshold value, using an NB classifier: defected, non-
defected, and deferred. Deferred modules were classified in the second step using an RF ensemble
learning technique. Their model was compared with NB baseline classifiers, and showed improved
accuracy, F-measures, and decision costs in three versions of the Eclipse dataset.

Kareshk et al. [49] proposed a pretraining technique for a shallow ANN. Pretraining was performed
using DAE. The proposed method was compared with four versions of SVMs (SVM, PCA-SVM, KPCA-
SVM, and AE-SVM) and an ANN without pretraining on seven datasets. The proposed model performed
best on four datasets and second best on the remaining three datasets.

Phan et al. [50] formulated an approach convolution on assembly instruction sequences called
Application-specific convolutional neural network (ASCNN). In this approach, the source code was
converted into assembly code, and a multi-view convolutional neural network was used to learn defective
features from the assembly instruction sequences. Results showed the improved performance of ASCNN,
suggesting that learning from assembly code might be beneficial to detect semantic bugs.

Wei et al. [53] proposed an improved NPE-SVM approach in which a manifold learning algorithm was
used to reduce dimensions, and an SVM was used as a baseline defect predicting classifier. The performance
of the proposed model was compared with that of SVM, LLE-SVM, and NPE-SVM and it showed superior
performance on 13 datasets.

RQ6: In the case of comparative analysis, which supervised machine learning algorithms performed
better than others?

From the selected primary studies, 12 out of 22 conducted a comparative analysis of classification
techniques on SDP by using various datasets. Brief descriptions of their comparisons are presented in Tab. 7.

It can be inferred that the decision tree-based algorithm showed better overall prediction performance in
most of the reviewed studies. Moreover, RF also performed well in most of the cases in these studies.

Table 7: Comparative studies and performance improvements

PS ML Classifier Comparative results

[34] NB, LR, DT, RF, MLP No specific pattern was observed in performance
before FS; higher performance was observed for
LR 23.07%, RF 46.15%, and MLP 15.38%. FS
improved performance of all classifiers. However,
in 69.2% cases, NB performed better than DT.

(Continued)

IASC, 2021, vol.29, no.2 415

Table 7 (continued).

PS ML Classifier Comparative results

[37] LR, NB, J48 J48 performed better than NB and LR for change
metrics. For most of the cases, J48 performed
better for the complete set of change metrics and
source code metrics, and for the combination of
both.

[38] NB, RF, KNN, MLP, SVM, J48 All showed improvements in performance as more
data processing was done. On average, RF
performed better than other classifiers.
J48 achieved the second-best performance among
the classifiers. The data balancing technique
SMOTE outperformed RUS in improving
prediction performance.

[39] DT, RF, NB, SVM, ANN, Adaboost CFS performed well in feature reduction, followed
by PCA. Because PCA showed decreased
performance in most of the cases, it is not
recommended for FS. Comparative analysis
showed that RF had higher accuracy than all other
classifiers, and ANN had the second-best accuracy
on 8 out of 12 cases.

[40] PSO, NB, DT, NN, Linear classifier The linear classifier showed the highest prediction
accuracy in 4 of 7 datasets, and proved to be the
most efficient classifier. Results were also
compared using standard deviation error, and
showed that NN had the lowest error rate,
followed by DT.

[43] LWL, SMO, NB, J48, RF, bagging, BBN, MF RF, Bagging+RF, and BBN performed best in
terms of AUC and PRC curves. In terms of F-
measure bagging and BBN showed slightly better
performance than RF on JM1. For the
KC3 dataset, J48, NB, and BBN performed well in
terms of ROC, recall, and PRC curves. For the
MC1 dataset, bagging, BBN, and SMO had high
recall rates; in terms of AUC, bagging, RF, and
BBN performed well. On average, bagging and
BBN showed good performance in terms of recall
on all datasets.

[44] LR, NB, J48, RF, bagging, IB1 In this paper, RF performed best on all datasets,
while bagging achieved the second-best rank in all
cases. NB showed lower performance in most
cases, and is not recommended for defect
prediction.

416 IASC, 2021, vol.29, no.2

4 Conclusion

The process of software defect prediction (SDP) can be used as a quality assurance activity in the
software development life cycle to detect defective modules before the testing stage. This prediction can
be used for the development of a quality product with lower cost, since in testing stage, only those
modules detected as defective will be tested. Over the last decade, many researchers have been working
to improve the performance of SDP. Although researchers have also conducted reviews and provided
survey papers in this domain, there remains a lack of a current picture of research trends. This study filled
the gap by providing a systematic literature review of the research papers published from 2016 to 2019.

Table 7 (continued).

PS ML Classifier Comparative results

[46] single layer perceptron, MLP, AIRS, LVQ,
SOM, CLONAL, Immune

The single-layer perceptron outperformed in terms
of AUC for OO metrics. In nine projects, the AUC
value for the single-layer perceptron was between
0.852 and 0.997. Results were also confirmed
using Friedman’s test.

[51] BN, NB, logistic function, simple logistic
function, SMO, AdaBoostM1, Lazy IBK,
bagging, regression, J48, RF, random tree

Before data preprocessing, J48, Lazy IBK, BN,
and random tree performed best out of
13 classifiers. Performance accuracy was
improved after applying data preprocessing
techniques. Results showed that
propositionalizing was better than PCA and FS;
moreover, a 50% improvement in performance
was observed for the BN classifier. The class
imbalance problem was addressed using SMOTE
and ASMO, and results showed that ASMO
brought higher performance of classifiers than
SMOTE.

[52] MLP, RBF, CART,
KNN

MLP and RBF performed better than CART and
KNN in most of the cases. For MLP, AUC values
for seven datasets ranged from 0.57 to 0.99, and
for RBF, they ranged from 0.56 to 0.94. KNN
showed poor performance across datasets. MLP
performed best on five of seven datasets. Results
were confirmed using Friedman’s test, and
confirm MLP as the best performer.

[55] RF, LR, DT, NB, SVM Use of FS gave a better result for RF, DT, and
SVM but did not improve performance for
statistical classifiers LR and NB. In terms of
precision, RF performed best on all datasets
except the contacts dataset, for which NB
performed best. After FS with PSO and GA, RF
performed best on Bluetooth, email, and gallery
datasets while the SVM performed best on
contacts and telephony datasets.

IASC, 2021, vol.29, no.2 417

For literature extraction, three well-known online libraries were used: IEEE Xplore, ACM, and
ScienceDirect. This research was initiated with the identification and formulation of six research
questions that targeted almost all of the important aspects of SDP. A comprehensive systematic research
process was followed to answer the identified research questions. Initially, 1012 studies were extracted
from the online libraries; a step-by-step literature extraction process was followed to shortlist the most
relevant studies, which resulted in 22 papers. It has been concluded that researchers have tried to improve
the prediction performance by introducing novel techniques in data preprocessing as well as integrating
multiple classifiers using meta-learners. Some researchers have proposed novel frameworks by integrating
multiple techniques for multiple processes. Furthermore, many researchers have performed comparative
analysis of supervised machine learning classifiers on multiple datasets in order to identify the few
techniques that performed best on all of the datasets. This approach can lead us to only focus on those
well-performing classifiers while designing novel models and frameworks for SDP. It has been observed
by analyzing these comparative studies that decision tree-based techniques performed well on most
datasets, along with random forest. This SLR will guide researchers’ future works by providing the
present picture of research trends in the SDP domain.

Acknowledgement: Thanks to our families and colleagues, who provided moral support.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana et al., “Performance analysis of machine learning techniques on

software defect prediction using NASA Datasets,” International Journal of Advanced Computer Science and
Applications, vol. 10, no. 5, pp. 1–9, 2019.

[2] C. Jin, “Software defect prediction model based on distance metric learning,” Soft Computing, vol. 25, no. 1, pp.
447–461, 2021.

[3] A. Iqbal, S. Aftab and F. Matloob, “Performance analysis of resampling techniques on class imbalance issue in
software defect prediction,” International Journal of Information Technology and Computer Science, vol. 11,
no. 11, pp. 44–53, 2019.

[4] F. Matloob, S. Aftab and A. Iqbal, “A framework for software defect prediction using feature selection and
ensemble learning techniques,” International Journal of Modern Education and Computer Science, vol. 11,
no. 12, pp. 14–20, 2019.

[5] M. A. Khan, S. Abbas, A. Atta, A. Ditta, H. Alquhayz et al., “Intelligent cloud-based heart disease prediction
system empowered with supervised machine learning,” Computers Materials & Continua, vol. 65, no. 1, pp.
139–151, 2020.

[6] A. Iqbal and S. Aftab, “A classification framework for software defect prediction using multi-filter feature
selection technique and MLP,” International Journal of Modern Education and Computer Science, vol. 12, no.
1, pp. 18–25, 2020.

[7] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang et al., “Defect prediction from static code features: Current
results, limitations, new approaches,” Automated Software Engineering, vol. 17, no. 4, pp. 375–407, 2010.

[8] F. Orlando, “Gartner says global IT spending to grow 3.2 percent in 2019” [Online]. Available: https://www.
gartner.com/en/newsroom/press-releases/2018-10-17-gartner-says-global-it-spending-to-grow-3-2-percent-in-
2019/ (Accessed: 24 Apr 2019).

[9] O. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive neural network,” Applied Soft
Computing, vol. 33, no. 1, pp. 263–277, 2015.

418 IASC, 2021, vol.29, no.2

https://www.gartner.com/en/newsroom/press-releases/2018-10-17-gartner-says-global-it-spending-to-grow-3-2-percent-in-2019/
https://www.gartner.com/en/newsroom/press-releases/2018-10-17-gartner-says-global-it-spending-to-grow-3-2-percent-in-2019/
https://www.gartner.com/en/newsroom/press-releases/2018-10-17-gartner-says-global-it-spending-to-grow-3-2-percent-in-2019/

[10] S. Mohapatra and B. Mohanty, “Defect prevention through defect prediction: A case study at Infosys,” IEEE Int.
Conf. on Software Maintenance, Florence, Italy, pp. 260–268, 2001.

[11] P. Michaels, “Faulty software can lead to astronomic costs, 2008,” (Accessed: 24 Apr 2019). [Online]. Available:
http://www.computerweekly.com/opinion/Faulty-software-can-lead-to-astronomic-costs, ComputerWeekly.com

[12] D. R. Ibrahim, R. Ghnemat and A. Hudaib, “Software defect prediction using feature selection and random forest
algorithm,” in Int. Conf. on New Trends in Computer Science. Amman, Jordan, pp. 252–257, 2018.

[13] R. S. Wahono, “A systematic literature review of software defect prediction: Research trends, datasets, methods
and frameworks,” Journal of Software Engineering, vol. 1, no. 1, pp. 1–16, 2015.

[14] M. Ahmad, S. Aftab, S. S. Muhammad and S. Ahmad, “Machine learning techniques for sentiment analysis: A
review,” International Journal of Multidisciplinary Sciences and Engineering, vol. 8, no. 3, pp. 27–39, 2017.

[15] M. Ahmad and S. Aftab, “Analyzing the performance of SVM for polarity detection with different datasets,”
International Journal of Modern Education and Computer Science, vol. 9, no. 10, pp. 29–36, 2017.

[16] M. Ahmad, S. Aftab and I. Ali, “Sentiment analysis of tweets using SVM,” International Journal of Computer
Applications, vol. 177, no. 5, pp. 25–29, 2017.

[17] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali et al., “Rainfall prediction in Lahore city using data mining
techniques,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 4, pp. 4–9, 2018.

[18] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali et al., “SVM optimization for sentiment analysis,”
International Journal of Advanced Computer Science and Applications, vol. 9, no. 4, pp. 45–49, 2018.

[19] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed and A. Husen, “A classification framework to detect DoS attacks,”
International Journal of Computer Network and Information Security, vol. 11, no. 9, pp. 40–47, 2019.

[20] A. Iqbal and S. Aftab, “A feed-forward and pattern recognition ANN model for network intrusion detection,”
International Journal of Computer Network and Information Security, vol. 11, no. 4, pp. 19–25, 2019.

[21] K. E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden et al., “Empirical evaluation of cross-release effort-aware
defect prediction Models, ” in IEEE Int. Conf. on Software Quality, Reliability and Security. Vienna, Austria, pp.
214–221, 2016.

[22] L. Goel, D. Damodaran, S. K. Khatri and M. Sharma, “A literature review on cross project defect prediction,”
in 4th IEEE Uttar Pradesh Section Int. Conf. on Electrical, Computer and Electronics. Mathura, India,
pp. 680–685, 2017.

[23] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell, “A systematic literature review on fault prediction
performance in software engineering,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–
1304, 2012.

[24] C. Catal and B. Diri, “A systematic review of software fault prediction studies,” Expert Systems with Applications,
vol. 36, no. 4, pp. 7346–7354, 2009.

[25] C. Catal, “Software fault prediction: A literature review and current trends,” Expert Systems with Applications,
vol. 38, no. 4, pp. 4626–4636, 2011.

[26] Z. Li, X. Y. Jing and X. Zhu, “Progress on approaches to software defect prediction,” IET Software, vol. 12, no. 3,
pp. 161–175, 2018.

[27] P. V. T. Carrión, C. S. G. González, S. Aciar and G. R. Morales, “Methodology for systematic literature review
applied to engineering and education,” in IEEE Global Engineering Education Conf., Tenerife, Spain, pp. 1364–
1373, 2018.

[28] S. Ashraf and S. Aftab, “Scrum with the spices of agile family: A systematic mapping,” International Journal of
Modern Education and Computer Science, vol. 9, no. 11, pp. 58–72, 2017.

[29] S. Ashraf and S. Aftab, “Latest transformations in scrum: A state of the art review,” International Journal of
Modern Education and Computer Science, vol. 9, no. 7, pp. 12–22, 2017.

[30] M. Ahmad, S. Aftab, M. S. Bashir and N. Hameed, “Sentiment analysis using SVM: A systematic literature
review,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 2, pp. 182–188, 2018.

[31] F. Anwer and S. Aftab, “Latest customizations of XP: A systematic literature review,” International Journal of
Modern Education and Computer Science, vol. 9, no. 12, pp. 26–37, 2017.

IASC, 2021, vol.29, no.2 419

http://www.computerweekly.com/opinion/Faulty-software-can-lead-to-astronomic-costs,ComputerWeekly.com

[32] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali et al., “Rainfall prediction using data mining techniques: A
systematic literature review,” International Journal of Advanced Computer Science and Applications, vol. 9, no.
5, pp. 38–43, 2018.

[33] W. Afzal, R. Torkar and R. Feldt, “A systematic review of search-based testing for non-functional system
properties,” Information and Software Technology, vol. 51, no. 6, pp. 957–976, 2009.

[34] K. K. Ganguly and B. M. M. Hossain, “Evaluating the effectiveness of conventional machine learning techniques
for defect prediction: A comparative study,” in Joint 7th Int. Conf. on Informatics, Electronics & Vision CIEV.
Kitakyushu, Japan, pp. 481–485, 2018.

[35] S. N. D. Dôres, L. Alves, D. D. Ruiz and R. C. Barros, “A meta-learning framework for algorithm
recommendation in software fault prediction,” in 31st Annual ACM Sym. on Applied Computing. Pisa, Italy,
pp. 1486–1491, 2016.

[36] Y. Qu, T. Liu, J. Chi, Y. Jin, D. Cui et al., “Node2defect: Using network embedding to improve software
defect prediction,” in 33rd IEEE/ACM Int. Conf. on Automated Software Engineering. Montpellier, France,
pp. 844–849, 2018.

[37] Y. A. Alshehri, K. G. Popstojanova, D. G. Dzielski and T. Devine, “Applying machine learning to predict software
fault proneness using change metrics, static code metrics, and a combination of them,” in IEEE South East Conf.
St. Petersburg, FL, USA, pp. 1–7, 2018.

[38] K. Bashir, T. Li, C. W. Yohannese and Y. Mahama, “Enhancing software defect prediction using supervised-
learning based framework,” in 12th Int. Conf. on Intelligent Systems and Knowledge Engineering. Nanjing,
China, pp. 1–6, 2018.

[39] G. P. Bhandari and R. Gupta, “Machine learning based software fault prediction utilizing source code metrics,” in
IEEE 3rd Int. Conf. on Computing, Communication and Security. Kathmandu, Nepal, pp. 40–45, 2018.

[40] P. D. Singh and A. Chug, “Software defect prediction analysis using machine learning algorithms,” in 7th Int.
Conf. on Cloud Computing, Data Science & Engineering - Confluence, Noida, India, pp. 775–781, 2017.

[41] D. D. Nucci, F. Palomba, R. Oliveto and A. D. Lucia, “Dynamic selection of classifiers in bug prediction: An
adaptive method,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 1, no. 3, pp.
202–212, 2017.

[42] D. D. Nucci and A. D. Lucia, “The role of meta-learners in the adaptive selection of classifiers,” in IEEEWorkshop
on Machine Learning Techniques for Software Quality Evaluation. Campobasso, Italy, pp. 7–12, 2018.

[43] J. Ge, J. Liu and W. Liu, “Comparative study on defect prediction algorithms of supervised learning software
based on imbalanced classification data sets, ” in 19th IEEE/ACIS Int. Conf. on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing. Busan, South Korea, pp. 399–406, 2018.

[44] A. Kaur and I. Kaur, “An empirical evaluation of classification algorithms for fault prediction in open-source
projects,” Journal of King Saud University-Computer and Information Sciences, vol. 30, no. 1, pp. 2–17, 2018.

[45] L. Kumar, S. K. Sripada, A. Sureka and S. K. Rath, “Effective fault prediction model developed using Least
Square Support Vector Machine (LSSVM),” Journal of Systems and Software, vol. 137, pp. 686–712, 2018.

[46] R. Malhotra, L. Bahl, S. Sehgal and P. Priya, “Empirical comparison of machine learning algorithms for bug
prediction in open-source software, ” in Int. Conf. on Big Data Analytics and Computational Intelligence.
Chirala, India, pp. 40–45, 2017.

[47] D. L. Miholca, G. Czibula and I. G. Czibula, “A novel approach for software defect prediction through
hybridizing gradual relational association rules with artificial neural networks,” Information Sciences, vol. 441,
no. 2, pp. 152–170, 2018.

[48] S. Maheshwari and S. Agarwal, “Three-way decision-based defect prediction for object-oriented software, ” in Int.
Conf. on Advances in Information Communication Technology & Computing. Bikaner, India, pp. 1–6, 2016.

[49] M. O. Kareshk, Y. Sedaghat and M. R. T. Akbarzadeh, “Pre-training of an artificial neural network for software
fault prediction,” in 7th Int. Conf. on Computer and Knowledge Engineering, Mashhad, Iran, pp. 223–228, 2017.

[50] A. V. Phan and M. L. Nguyen, “Convolutional neural networks on assembly code for predicting software defects,”
in 21st Asia Pacific Sym. on Intelligent and Evolutionary Systems, Hanoi, Vietnam, pp. 37–42, 2017.

420 IASC, 2021, vol.29, no.2

[51] S. Rizwan, W. Tiantian, S. Xiaohong and U. Salahuddin, “Empirical study on software bug prediction,” in Int.
Conf. on Software and e-Business. New York, NY, United States, pp. 55–59, 2018.

[52] P. Singh and R. Malhotra, “Assessment of machine learning algorithms for determining defective classes in an
object-oriented software,” in 6th Int. Conf. on Reliability, Infocom Technologies and Optimization. Noida,
India, 204–209, 2018.

[53] H. Wei, C. Shan, C. Hu, H. Sun and M. Lei, “Software defect distribution prediction model based on NPE-SVM,”
China Communications, vol. 15, no. 5, pp. 173–182, 2018.

[54] Y. Yang, J. Ai and F. Wang, “Defect prediction based on the characteristics of multilayer structure of software
network,” in IEEE Int. Conf. on Software Quality, Reliability and Security Companion. Lisbon, Portugal, pp.
27–34, 2018.

[55] R. Malhotra and A. Khurana, “Analysis of evolutionary algorithms to improve software defect prediction,” in 6th
Int. Conf. on Reliability, Infocom Technologies and Optimization. Noida, India, pp. 301–305, 2018.

[56] “Precision and recall” [Online]. Available: https://en.wikipedia.org/wiki/Precision_and_recall. (Accessed:
24 Apr 2019).

[57] Y. Jiao and P. Du, “Performance measures in evaluating machine learning based bioinformatics predictors for
classifications,” Quantitative Biology, vol. 4, no. 4, pp. 320–330, 2016.

[58] V. Gupta and P. Devanand, “A survey on data mining: Tools, techniques, applications, trends and issues,”
International Journal of Scientific & Engineering Research, vol. 4, no. 3, pp. 1–14, 2013.

[59] K. Rangra and K. L. Bansal, “Comparative study of data mining tools,” International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 4, no. 6, pp. 2277, 2014.

[60] “Weka 3: Data Mining Software in Java” [Online]. Available: https://www.cs.waikato.ac.nz/ml/weka/ (Accessed:
24 Apr 2019).

[61] Z. Xu, J. Xuan, J. Liu and X. Cui, “MICHAC: Defect prediction via feature selection based on maximal
information coefficient with hierarchical agglomerative clustering,” in IEEE 23rd Int. Conf. on Software
Analysis, Evolution, and Reengineering. Suita, Japan, pp. 370–381, 2016.

[62] Z. Xu, J. Liu, Z. Yang, G. Anand and X. Jia, “The impact of feature selection on defect prediction performance: An
empirical comparison,” in IEEE 27th Int. Sym. on Software Reliability Engineering. Ottawa, Canada, pp. 309–
320, 2016.

[63] A. Saleem, K. H. Asif, A. Ali, S. M. Awan and M. A. Alghamdi, “Pre-processing methods of data mining,” in
IEEE/ACM 7th Int. Conf. on Utility and Cloud Computing. London, UK, pp. 451–456, 2014.

[64] K. S. Raju, M. R. Murty and M. V. Rao, “Support vector machine with k-fold cross validation model for software
fault prediction,” International Journal of Pure and Applied Mathematics, vol. 118, no. 20, pp. 321–334, 2018.

IASC, 2021, vol.29, no.2 421

https://en.wikipedia.org/wiki/Precision_and_recall
https://www.cs.waikato.ac.nz/ml/weka/

	Software Defect Prediction Using Supervised Machine Learning Techniques: A Systematic Literature Review
	Introduction
	Systematic Literature Review
	Results and Discussion
	Conclusion
	flink5
	References

