
Slime Mold Optimizer for Transformer Parameters Identification with
Experimental Validation

Salah K. Elsayed1,*, Ahmed M. Agwa2,3, Mahmoud A. El-Dabbah2 and Ehab E. Elattar1

1Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
2Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, 11651, Egypt

3Electrical Engineering Department, Faculty of Engineering, Northern Border University, Arar, 1321, Saudi Arabia
�Corresponding Author: Salah K. Elsayed. Email: sabdelhamid@tu.edu.sa

Received: 03 January 2021; Accepted: 23 February 2021

Abstract: The problem of parameters identification for transformer equivalent cir-
cuit can be solved by optimizing a nonlinear formula. The objective function
attempts to minimize the sum of squared relative errors amongst the accompany-
ing calculated and actual points of currents, powers, and secondary voltage during
the load test of the transformer subject to a set of parameters constraints. The
authors of this paper propose applying a new and efficient stochastic optimizer
called the slime mold optimization algorithm (SMOA) to identify parameters of
the transformer equivalent circuit. The experimental measurements of load test
of single- and three-phase transformers are entered to MATLAB code for extract-
ing the transformer parameters through minimizing the objective function. Experi-
mental verification of SMOA for parameter estimation of single- and three-phase
transformers shows the capability and accuracy of SMOA in estimating these
parameters. SMOA offers high performance and stability in determining optimal
parameters to yield precise transformer performance. The results of parameters
identification of transformer using SMOA are compared with the results using
three optimization algorithms namely atom search optimizer, interior search algo-
rithm, and sunflower optimizer. The comparisons are fairly performed in terms of
the smallness of objective function. Comparisons shows that SMOA outperforms
other contemporary algorithms at this task.

Keywords: Parameter extraction; transformer; equivalent circuit; slime mold
algorithm

Nomenclature
SMOA: slime mould optimization algorithm
R1: the resistance of the primary winding �ð Þ
X1: the leakage reactance of primary winding �ð Þ
R

0
2: the refereed resistance of the secondary winding �ð Þ

X
0
2: the refereed leakage reactance of secondary winding �ð Þ

Rc: the core loss resistance �ð Þ
Xm: the magnetizing reactance �ð Þ
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V1: the primary voltage (V)
V

0
2: the refereed secondary voltage (V)

Z1: the impedance of the primary winding �ð Þ
Z

0
2: the refereed impedance of the secondary winding �ð Þ

Zm: the magnetizing impedance �ð Þ
Z: the total transformer impedance �ð Þ
I1: the input current (A)
I
0
2: the refereed secondary current Að Þ
Io: the no-load current (A)
P1: the input power (W)
P2: the output power (W)
η: the efficiency (%)
SSRE: the sum of squared relative errors
N: the number of measurements
m: the measured values
e: the estimated values
Fobje: the objective function
X: the location of the slime mould
Xb
�!

kð Þ: the candidate with the highest order concentration in the iteration k
k: iteration number
kmax: the maximum number of iterations
XA and XB: two randomly selected candidates from the slime mould swarm
tb: variable lies in the range [-a, a]
tc: variable that linearly decreased from one to zero
W: the slime mould weight
bF: the best fitness in the current iteration
wF: the worst fitness in the current iteration
S ið Þ: the fitness of candidate X
Bs: the best-obtained fitness throughout all iterations
rand and r: and r random vector in the range of [0,1]
Max and Min: the border limits of search space
popu: population
ASO: atomic search optimizer
ISA: interior search algorithm
SFO: sunflower optimizer

1 Introduction

Transformers are major components in power systems that are important in both transmission and
distribution networks. They are also used in industrial and household devices. Transformer maloperation
significantly affects system performance, reliability, and stability [1,2].

A transformer’s equivalent circuit has parameters for resistance and reactance that should be identified
for accurate analysis of electric power grids. Transformer parameters also have a major effect on the
transformer’s performance in different operating conditions. Accurately estimating transformer parameters
arises from the need to improve transformer performance in both steady-state and transient operating
conditions. Realistic studies in system behavior require a reasonable transformer model, which plays an
important role in the integration between the other components [3].
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A transformer is modeled by considering its nonlinearities [2,4]. Additionally, the presence of saturation,
harmonics, and transient situations affects the estimation parameters of the transformer. Actual real-time
measurements are needed to perform the time-domain [5,6] and frequency response [7,8] analyses when
estimating accurate transformer parameters.

Generally, transformer parameters can be computed in various ways: standard test executions (no-load
and short circuit tests) [9,10], geometrical dimensions of a transformer’s construction [11], data from product
nameplates [12,13], and various load details [10,14]. Techniques using the geometrical dimensions of the
transformer require data obtained from terminal measurements, external tank dimensions, and nameplates.
Determining the cross-sectional area of both the yokes and the limb as well as the core dimensions
requires solving system equations that are limited by the dimensions of the transformer tank [11]. The
standard no-load and short-circuit tests cannot be utilized when the transformers are in operation in the
circuit. In addition to the defects of methods other than the load data method, estimating parameters using
the measured load data values minimizes the difference between estimated and measured values [10].

Recent optimization techniques have made major strides in solving power problems such as optimal power
flow [15], load frequency control [16,17], energy management [18], and parameter estimation for electrical
instruments such as photovoltaic modules [19,20], and fuel cells [21]. However, all these estimation
methods use optimizers that compare estimated values with measured values to minimize deviations.

Other researchers have implemented numerous optimization techniques for identifying transformer
parameters such as a chaotic optimization algorithm [10], imperialist competitive and gravitational search
algorithms [12], an evolutionary programming algorithm [13], a bacterial foraging algorithm [14], particle
swarm optimization [22], a genetic algorithm [23], an artificial bee colony algorithm [24], a coyote
optimization algorithm [25], and a manta ray foraging optimization (MRFO) method and a chaotic variant
[26]. These algorithms can be implemented using load data or nameplate data for the transformer, while
the transformer is in service (i.e., without disconnecting it). Finally, these algorithms can estimate
transformer parameters in both single- and three-phase systems.

Despite this brief survey, the no-free-lunch theorem demonstrates that the possibility of further
improvement in estimating transformer parameters remains. To this end, the authors of this paper consider
using slime mold optimization algorithm (SMOA), which was created in 2020 to estimate unknown
transformer parameters. SMOA was inspired as a novel meta-heuristic algorithm by slime mold
oscillation modes in nature and applied effectively to the designs of pressure containers and the welded
beams [27]. In this paper, single- and three-phase transformers are investigated using load tests to
demonstrate the effectiveness of SMOA and make essential comparisons. Our performance evaluations
show that our proposed method outperforms existing approaches.

The main contribution of this paper can be summarized as follows:

• Application of SMOA to estimate transformer parameters.

• Experimentation of single- and three-phase transformers for validation of the proposed method.

• Comparison of SMOA with other optimization techniques based on their results.

The paper is organized as follows. In Section 2, introduce the equivalent circuit of a transformer. Section
3 gives a short overview of the SMOA method. Section 4 presents our experiment, the numerical results of
the application of SMOA, and discussion. Finally, Section 5 introduces our conclusions.

2 Problem Formulation

The per-phase equivalent circuit of a three-phase power transformer with respect to its primary side is
shown in Fig. 1. There are six parameters: R1; X1; R

0
2; X

0
2 ; Rc; and Xm.
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Using the fundamental laws of electric circuits, the following equations can be formulated:

V1 ¼ E1 þ Z1I1 (1)

V
0
2 ¼ E1 � Z

0
2 I

0
2 ¼ Z

0
Load I

0
2 (2)

E1 ¼ ZmIo (3)

Z1 ¼ R1 þ jX1 (4)

Z
0
2 ¼ R

0
2 þ jX

0
2 (5)

Zm ¼ jXm :Rc

Rc þ jXm
(6)

Z ¼ Z1 þ
Zm Z

0
2 þ Z

0
Load

� �
Zm þ Z

0
2 þ Z

0
Load

� � (7)

I1 ¼ V1

Z1
¼ Io þ I

0
2 (8)

Io ¼ E1

Zm
¼ E1

Rc
þ E1

jXm
¼ Ic � jIm (9)

I
0
2 ¼ I1 � Zm

Zm þ Z
0
2 þ Z

0
Load

(10)

P1 ¼ < V1I1
�ð Þ (11)

P2 ¼ < V
0
2I

0
2

�� �
(12)

h ¼ P2
P1

(13)

Minimizing the sum of squared relative errors (SSRE) amongst the estimated and measured points is the
objective function (Fobje) for the transformer parameters. It is extracted as,

Fobje ¼min SSREð Þ ¼ min
XN
i¼1

I1�e ið Þ
I1�m ið Þ � 1

� �2

þ
"(

I2�e ið Þ
I2�m ið Þ � 1

� �2

þ P1�e ið Þ
P1�m ið Þ � 1

� �2

þ P2�e ið Þ
P2�m ið Þ � 1

� �2

þ V2�e ið Þ
V2�m ið Þ � 1

� �2
#) (14)

where Fobje is subject to constraints, which are defined by the lower and upper limits of the transformer
parameters.

Figure 1: Per phase equivalent circuit of electric power transformer with respect to its primary side
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3 SMOA

SMOA is inspired by slime mold oscillation modes in nature. The slime mold that inspired this
algorithm is physarum polycephalum, which is classified as a fungus and termed a slime mold by
Howard. It is a eukaryote that lives in humid and cold places. The plasmodium is the main nutritional
stage of slime mold where its organic matter pursues food, borders it, and excretes enzymes to predigest
it. Throughout the migration stage, the front end of the slime mold spreads out like a fan-shaped tailed
from a structured intravenous tie that lets cytoplasm stream inside. A distinctive feature of slime mold, it
can exploit numerous sources of food simultaneously forming a venous network connecting them. They
can even propagate to large areas, if the environment is suitable and food is sufficient [27].

The SMOA method has several features. It is characterized by a unique mathematical model. The
adaptive weights permit the SMOA to maintain a specific perturbation rate and guarantee fast
convergence that prevents the falling into local optima. It also displays exceptional exploratory and
exploitative abilities. To establish the optimal route for obtaining food, SMOA uses adaptive weights to
simulate a slime mold’s generation of positive and negative feedback as it spreads, a bio-oscillator created
by its search for food. SMAO can also make correct decisions based on historical data due to its excellent
utilization of individual fitness values. The description of SMOA model in mathematical terms is in the
following paragraphs.

3.1 Food Approaching

The slime mold uses odors in the air to find food. Eq. (15) emulates this behavior in contraction mode.

~X kþ 1ð Þ ¼ Xb
�!

kð Þ þ nb
�! � W

!� XA
�!

kð Þ � XB
�!

kð Þ
� �

; 8 r, p

nc!� X
�!

kð Þ; 8 r � p

(
(15)

and

p ¼ tanh S ið Þ � BSj j; (16)

where yb 2 �a; a½ � ,

a ¼ tanh�1 � k

kmax

� �
þ 1

� �
(17)

~W SmellIndex ið Þð Þ ¼
1þ r � log bF � S ið Þ

bF � wF
þ 1

� �
; condition

1� r � log bF � S ið Þ
bF � wF

þ 1

� �
; others

8>><
>>: : (18)

In these equations, the condition referring to S ið Þ is arranged in the first half of the population, and
SmellIndex is the individual fitness ranked in descending order as stated in Eq. (19).

SmellIndex ¼ sort Sð Þ (19)

3.2 Food Wrapping

The location of the slime mold ðX�Þ��!
is updated according to Eq. (20).

X��! ¼
rand � Max�Minð Þ þMin; 8 rand, z

Xb
�!

kð Þ þ nb
�! � W

!
:XA
�!

kð Þ � XB
�!

kð Þ
� �

; 8 r, p

nc!� X
�!

kð Þ;8 r � p

8><
>: (20)
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3.3 Oscillation

The value of vb changes randomly between [−a, a], and it steadily approaches zero as the iterations
increase, while vc oscillates between [1,0] and approaches zero. Tab. 1 presents the SMOA.

4 Results with Discussion

The experiments were conducted with two test cases: a single-phase transformer rated at 300 VA, 230/
2·115 V, and a three-phase transformer rated at 300 VA, 400/2·200 V. One primary winding and two
secondary windings were in the single-phase transformer and in each phase of the three-phase
transformer. The load test was carried out on the two transformers and used the measurements to
calculate SSRE as Fobje to be minimized by SMOA for estimating transformers parameters. SMOA’s
results are compared to those from ASO [28], ISA [29], and SFO [30]. Our results were obtained using
MATLAB-R2016b under Windows 10 running on a laptop with an Intel Core i7−4702MQ CPU at
2.2 GHz with 8 GB of RAM.

Fig. 2 shows the experimental setup of the transformers in the laboratory at Taif University. The
potentiometers were employed to load the transformers from 10% to 100%. The digital multimeters were
used to measure currents and voltages and wattmeters for measuring electrical power.

Tabs. 2 and 3 show the transformer load test measurements. Eleven and eight measurements were
obtained for the single- and three-phase transformers, respectively. The population, maximum number of
iterations, and control parameters used by all the optimization algorithms (SMOA, ASO, ISA, and SFO)
are listed in Tab. 4. The population and maximum number of iterations were identical for all optimizers
to guarantee fairness in comparison. The control parameters of SMOA and ISA are not included because
they are changed dynamically throughout the iterations. The best (fittest) values of the transformer
parameters are obtained after many independent runs of SMOA, generating a minimum Fobje as these
optimizers are stochastic.

Table 1: SMOA

Algorithm 1

Initialize the parameters, population (popu), kmax;

Initialize the slime mold positions X;

While (k � kmaxÞ
Determine the fitness of all slime mold;

Update the bestFitness, Xb;

Determine W using Eq. (18);

For each search

Update p, vb, vc;

Update the positions using Eq. (20);

End For

k ¼ kþ 1;

End While

Return bestFitness, Xb;
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Figure 2: Experimental transformer setups (a) Single-phase transformer (b) Three-phase transformer

Table 2: Load test of the single-phase transformer

RL (Ω) V1 (V) V2 (V) I1 (A) I2 (A) P1 (W) P2 (W) η (%)

492.0 230 114.5 0.24 0.19 36.40 23.2 63.7

445.0 230 114.5 0.24 0.20 37.00 24.4 65.9

398.0 230 114.4 0.25 0.23 40.30 28.1 69.7

351.0 230 114.4 0.26 0.27 43.10 32.7 75.9

304.0 230 114.4 0.28 0.34 50.90 41.1 80.7

257.0 230 114.3 0.34 0.47 65.79 56.9 86.5

210.0 230 114.1 0.41 0.63 83.00 76.2 91.8

163.0 230 113.9 0.44 0.72 95.50 90.4 94.7

116.0 230 113.4 0.58 1.00 125.40 120.0 95.7

92.5 230 113.0 0.70 1.22 153.00 146.4 95.7

69.0 230 112.5 0.94 1.66 209.70 197.5 94.2

Table 3: Load test of the three-phase transformer

RL (Ω) V1ph(V) V2ph(V) I1 (A) I2 (A) P11�ph(W) P21�ph(W) η (%)

4920 242 241 0.10 0.05 16.0 11.5 71.9

3980 242 240 0.11 0.06 18.5 14.5 78.4

3040 242 239 0.12 0.08 22.6 19.0 84.1

2100 242 238 0.15 0.11 30.0 26.5 88.3

1160 242 235 0.23 0.20 52.0 47.0 90.4

690 242 230 0.36 0.34 86.0 79.0 91.9

502 242 226 0.47 0.45 110.0 100.0 90.9

361 242 220 0.63 0.60 150.0 132.0 88.0
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After applying SMOA, the estimated transformer parameters are utilized to calculate the currents,
powers, and secondary voltages via the fundamental laws of electric circuits. The smallest values of the
resultant SSRE were 0.601768 and 1.16306 for the single- and three-phase transformers, respectively.

The parameters of single- and three-phase transformers are extracted using SMOA and calculated the
percentage error as shown in Tabs. 5 and 6, respectively. The low error percentages demonstrate the
precision of the parameters optimized via SMOA. Comparing the results from SMOA, ASO, ISA, and
SFO show that the SSRE obtained using SMOA was the smallest for single- and three-phase
transformers, as shown in Tabs. 7 and 8, respectively. Tab. 7 shows that the SSREs of the other methods
exceed the SSRE obtained from SMOA by 0.566% for ASO, 0.006% for ISA, and 2.4085% for SFO.
Tab. 8 shows the SSRE values for the other techniques were higher by 2.5536% for ASO, 0.1994% for
ISA, and 5.8999% for SFO. With reference to the SSRE convergence curves in Fig. 3, SMOA had a fast
and smooth convergence curve without oscillations until it obtained the optimal SSRE when compared
with other techniques. Tabs. 7 and 8 show the computation time, with SMOA achieving the fastest
performance for the single-phase transformer and a close second place behind ISA for the three-phase
transformer. There were more measurements for the load test with the single-phase transformer, which
explains the longer computation time of all the optimizers in that case.

The plots of I1-RL, I2-RL, V2-RL, P1-RL, P2-RL, and η-RL of the transformers extracted by SMOA and
their measured values are displayed in Figs. 4–11. The closeness between the measured and calculated
currents, voltages, and powers using SMOA shows the precision of our estimation method.

Table 4: Optimizer control parameters

SMOA popu = 30, kmax = 50

ASO popu = 30, kmax = 50, α = 50, β = 0.2

ISA popu = 30, kmax = 50

SFO popu = 30, kmax = 50, p = 0.05, m = 0.05

Table 5: Optimized parameters obtained from SMOA for the single-phase transformer

R1 (Ω) R
0
2 (Ω) X1 (Ω) X

0
2 (Ω) Rc (Ω) Xm (Ω)

SMOA 3.0024 0.750 0.0375 0.0070 4000 1453

Datasheet 3.1000 0.775 0.0382 0.0067 3933 1437

Error 3.1% −3.2% −1.8% 4.5% 1.7% 1.1%

Table 6: Optimized parameters obtained from SMOA for the three-phase transformer

R1 (Ω) R
0
2 (Ω) X1 (Ω) X

0
2 (Ω) Rc (Ω) Xm (Ω)

SMOA 21.4 20.6 4.10 3.90 13054 4081

Datasheet 20.9 20.9 3.97 3.97 12778 4169

Error 2.3% 1.4% 3.3% −1.8% 2.2% −2.1%
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Tab. 9 lists the statistical results obtained when using SMOA to obtain parameters of the two
transformers. The best and worst results and the standard deviation (SD) of Fobje are written. Smaller SD
values emphasize the effectiveness of SMOA in identifying the unknown parameters of the two transformers.

Table 7: SSRE results for the single-phase transformer

Algorithm SMOA ASO ISA SFO

SSRE 0.601768 0.605171 0.601805 0.616262

Average processing time per run (s) 4.498597 5.963200 4.920652 5.983119

Table 8: SSRE results for the three-phase transformer

Algorithm SMOA ASO ISA SFO

SSRE 1.16306 1.19276 1.16538 1.23168

Average processing time per run (s) 3.460343 4.551267 3.176482 4.338592
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Figure 3: SSRE convergence curves (a) Single-phase transformer (b) Three-phase transformer
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Figure 5: The secondary voltage of the single-phase transformer versus load resistance
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Figure 7: Efficiency of the three-phase transformer versus load resistance
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Figure 9: The secondary voltage of the three-phase transformer versus load resistance
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Figure 11: Efficiency of the three-phase transformer versus load resistance

Table 9: The statistical results of SMOA for two transformers

Indicator Single-phase transformer Three-phase transformer

Best 0.601768 1.16306

Worst 0.638345 1.22699

SD 0.010234 0.01718
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5 Conclusions

Obtaining unknown parameters of the transformer equivalent circuit by load tests, is preferred because it
requires less data than other methods. The use of optimization algorithms minimizes the deviations between
the estimated and measured values of load test data. The authors of this paper propose using SMOA as a
precise, quick, and reliable means for generating the best values of the unknown transformer parameters.
Our proposed objective function seeks to minimize the sum of squared relative errors (SSREs) between
the computed and measured currents, powers, and secondary voltages in a load test of the transformer.
Our investigation into a test implementation of SMOA for transformer parameter estimation reveals its
improved speed and accuracy compared to existing optimizers. The results show that our proposed
SMOA is efficient and dependable, outperforms other approaches in terms of quicker convergence, and
has superior accuracy. The authors of this paper conclude that SMOA is a precise algorithm that can be
used to optimize a broad variety of parameters in the field of electrical engineering.
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