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Abstract: The last several decades have witnessed an exponential growth in the
means of transport globally, shrinking geographical distances and connecting
the world. The automotive industry has grown by leaps and bounds, with millions
of new vehicles being sold annually, be it for personal commuting or for public or
commodity transport. However, millions of motor vehicles on the roads also mean
an equal number of drivers with varying levels of skill and adherence to safety
regulations. Very little has been done in the way of exploring and profiling driving
patterns and vehicular usage using real world data. This paper focuses on extract-
ing and classifying distinct driving patterns using actual, dynamic vehicular data
collected from the “On Board Diagnostics” port present (by default) in most vehi-
cles. “Machine learning” and “Deep Learning” techniques were thereafter
employed to extract and derive insights from observed patterns in the data. Var-
ious algorithms like hierarchical clustering, k-means clustering, multinomial naive
bays, artificial neural networks and multi-layer perceptron were used to construct
models to extract driving patterns and classify the data and ultimately generate
insights about driver behavior across various parameters. The Inter-Class-ReLU
was used to generate activation functions for the production of logical neurons
and to develop and present a model that can classify incoming data into various
groups and precisely identify distinct driving patterns. The developed model can
be utilized in public as well as personal vehicles for monitoring driving behavior
and driver preferences so that irregular behavior of a certain driver of a particular
vehicle for a specified period can be scrutinized with ease.

Keywords: On board diagnostics; hierarchical clustering; k-means clustering;
multinomial Naive Bayes; artificial neural networks; multilayer perceptron

1 Introduction

With the number of vehicles in our cities multiplying at an alarming rate and a marked increase in road
accidents, pollution levels and traffic related woes, the human component (the driver) involved in the process
of driving can hardly be ignored. A comprehensive understanding of driving patterns and the impact thereof,
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can aid in identifying distinct driving behaviors which are likely to undermine the safety of not only the
vehicle and its passengers, but also pedestrians and other vehicles on the road. Such an analysis can be
instrumental in promoting safety on the roads as well as in identifying fuel-efficient driving and drivers
who might benefit from specific training or restraining.

Such a data driven approach can ensure that all transport vehicles, regardless of their type, are utilized up
to their regulatory thresholds, especially private vehicles which tend to be used to their maximum potential
[1]. Consequently, monitoring of driving behaviors can be made obligatory, in order to promote good
behavior and proficient fuel consumption, in keeping with the current green environment norms and
initiatives [2,3]. Furthermore, with the advent of driver-less vehicles in the near future, analysis of stored
data in automobiles can become a significant factor in continuous monitoring as well as in upcoming
audits. Such data can be especially advantageous for establishments that are accountable for
transportation substructure planning, discipline and care, for insurance specialists and agencies, as well as
for law enforcement agencies [4].

In this research, a model has been developed using data collected from the On-Board Diagnostics (OBD)
device which is fitted inside most contemporary vehicles. This device collects instantaneous data from
various vehicular components and is used to monitor their operational health. This data was first collected
from the OBD device and then cleaned and pre-processed before being fed into the model. The data was
then grouped into different clusters using clustering algorithms in order to discover discernible patterns.
A thorough analysis of these patterns was then undertaken in order to understand their real-life
applications and significance. Subsequently, multiple ML and DL techniques and algorithms were utilized
in order to develop a classifier for classifying testing data into different groups. In this paper artificial
neural networks were used and a weighted mean precision of about 98.68% was achieved.

2 Literature Review

Several works of literature have been identified that have sought to analyze driving behavior using
various approaches like multi-sensor fusion, image processing, computer vision, etc. In Kishimoto et al.
[5] the authors have proposed a model using HMM (Hidden Markov Model) on historic driving data in
order to calculate the probability of a driver applying brakes. In Osgouei et al. [6] the writers presented a
driving behavior analysis model for multiple drivers that was based on objective principles that were
finalized by the HMM model arbitrarily. The authors in Vaitkus et al. [7] proposed a model for the
automatic classification of driving styles using pattern recognition which uses data from a 3- axis
accelerometer installed in the test vehicle. In Fazeen et al. [8] the authors used a 3-dimensional
accelerometer along with an android phone’s GPS or “Global Positioning System”. The phone was used
to capture and analyze driver behavior as well as road conditions. In Dai et al. [9] the authors used
mobile phones secured in the vehicles for detecting drunken driving patterns. This was undertaken using
accelerometers in the mobile phones and by measuring the vehicle’s longitudinal and lateral acceleration
and then comparing and correlating these patterns with driving test data. In Othman et al. [10] and
Murphey et al. [11] the authors used the first derivative of acceleration (rate of change in acceleration
-jerks) to analyze and classify driving styles. In Lotan et al. [12] an In-Vehicle Data Recorder was used
by the author to understand the driving moves and to arrange them into various categories, viz.,
dangerous, unsafe and safe. The paper did not offer any information on the methodology of resolution of
the driving patterns; the creators contrasted new age drivers and guardians. In particular, the correlation
uncovered contrasts, if any, present in the number of hazardous and unsafe moves on a day-to-day basis.
Accident coverage organizations are especially concerned about the safety of drivers, crash potential,
crash rates and driving profiles. A few insurance agencies in fact, have recommended that their clients
deliberately utilize IVDRs to record their day to day driving [13]. In Zhang et al. [14] the authors
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proposed an end-to-end deep learning framework using CNN and RNN neural networks by utilizing data
captured with an in-vehicle Controller Area Network-BUS (CAN-BUS). In Bernardi et al. [15] the authors
projected a bunch of behavioral features mined using a car monitoring system which could culminate in a
driver identification system to appraise the driver’s knowledge and know-how regarding a particular
vehicle. The proposed feature model was used with a time-series classification approach based on a MLP
“multilayer preceptor” on technique. In Choi et al. [16] the authors used HMMs “Hidden Markov Models”
to obtain a pattern of driving characteristics gathered from the vehicle’s CAN-Bus (Controller Area
Network) information. The paper describes and models driver behavior using the data from parameters like
brake status, steering wheel angle, vehicle speed and acceleration status. These models served three
different tasks such as action classification, distraction detection, and driver identification. In Miyajima et al.
[17] the authors modeled driving behaviors. An on linear function with statistical method of a Gaussian
mixture model was utilized to model the connection between vehicle velocity and the subsequent distance
which was mapped into a two-dimensional space. GMMs were also used to model pedal operation patterns.

This paper [18] undertook a study with dissimilar sensors of Android smartphone, and classification
algorithms so as to evaluate which sensor assembly or technique could allow for classifications with
advanced performance. The outcomes demonstrated that smart approaches and exact arrangements of
sensors led to enhanced classification performances. Further wide-ranging approaches related to
connected and smart communities were perceived and realized in an endeavor by Sun and colleagues
[19]. The work by Engel Brecht and colleagues [20] also yielded excellent results during a detailed
evaluation of smartphone-based sensing in vehicles.

An OBD-II reader is intended to measure air flow mass and speed from which fuel consumption and
distance are also calculated. Afterwards this data is transmitted to a remote server through Wi-Fi. GPS
tracking is also tooled by this system so as to determine the location of vehicle. A DMS “database
management system” is applied at the remote server for the management and storage of transmitted data
and a GUI “Graphical User Interface” is established for transmitted data evaluation. The authors adopted
a relaxed method for car data stimulation and also demonstrated the availability of current platforms
along with guidance for utilizing the same. The fundamental target of this system was behavior
monitoring of the driver during the driving time. Using this the owner can not only monitor the fuel
consumption but also the driving pattern and driver behavior. Probability of accidents utilizing ANN
“Artificial Neural Network” approaches has also been endeavored. Traffic accident data has been used in
this system with the OBD “On Board Diagnostic” as mode testing and training samples. [21–24]. MiJin
Kim proposed a system which obeyed standards of OBD II and could observe and administer multiple
kinds of vehicle faults and flaws [25]. Participation of large organizations such as owners of
transportation fleet, insurance corporations of government, authorities of transport, etc. were made
possible by a web interface for the calculation of results of an anticipated set of vehicles or people
through an extensive use of big data, block chain technology and analytics [26,27]. Driver monitoring
and vehicle diagnostics experiments at the headquarters of Android CarLab were undertaken. OBD-II
connectors were implemented and integrated with Wi-Fi, Bluetooth and WCDMA modules for data
extraction. An intelligent RDD management technique was utilized so that capability and efficiency of the
spark could be increased. CNN “Convolution neural network” based techniques studied the traffic as
digital images and forecast large-scale, network-wide traffic speed with great accuracy, with an accuracy
of 42.91% within a satisfactory performance time limit [28–31].

3 Research Method

In this research, unsupervised machine learning algorithms were used to extract driving patterns from the
data which was collected using the On-Board Diagnostics (OBD) device of a car. The OBD or On-Board
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Diagnostics was originally developed and designed to continuously monitor the major components of the
engine of a vehicle. It is a self-diagnostic device of the vehicle. It adopts a uniform technique for
diagnostic trouble codes, accessing data and a lot of additional information from different types of
vehicles including cars as well as medium and heavy-duty vehicles. The original purpose of using OBD
was to obtain live data in addition to standardized diagnostic trouble codes which could assist repair
technicians in identifying and fixing glitches within the vehicle. It was initially introduced for the
purposes of monitoring the function of emission control components of a vehicle. The OBD II, which is
the next generation of the original OBD, comes with an even wider range of diagnostics. In this research,
an external hardware compatible with the OBD-II port was used for data collection. The data was
collected and stored on an SD card attached to the external board. Fig. 1 shows the methodology used in
this research in a flowchart pattern.

3.1 Data Pre-processing

Data pre-processing is a vital step in the development of a machine learning model, where data is
encoded and transformed to a machine-level language, enabling a machine to easily parse it. The data
which is obtained from the OBD of the vehicle consists of multiple parameters. The values of these
parameters are used to interpret the instantaneous performance of the different components of the engine.
The emphasis of the paper is to derive and uncover dissimilar driving patterns through data of underlying
features that are directly prejudiced by the driving style of the driver. These include parameters like
engine power, engine rpm, load on engine, vehicle speed, position of throttle and coolant temperature.

Fig. 2 shows the OBD port in the car which was used to collect the data and Fig. 3 illustrates the different
pins and their positions in the OBD port. Figs. 4 to 7 demonstrate the distribution of data points in the dataset
chosen for this study, with speed on the y-axis and features like engine RPM, engine load, throttle position,
and coolant temperature on the x-axis. Fig. 8 demonstrates how the engine load varies with the throttle
position in the dataset.

Data Collected 
from ODB Port

Data Pre-
processing Pattern Mining Clustered Data Analysis of 

Clusters Classifications
MLR

MNB

MLP

ANN

Figure 1: The methodology

Figure 2: OBD-II port in car
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Fig. 4 illustrates a scatter plot of instantaneous speed vs. instantaneous engine rpm and it is evident that
the distribution of the data points is similar to that of a straight line indicating that the two features have
significant correlation between them. The other scatter plots illustrated in Figs. 5 to 8 demonstrate that
different features do not show any apparent pattern or correlation between them. Fig. 9 shows a
correlation map constituting of different features used in the dataset. As can be observed in the map,
engine rpm and speed have a significant positive correlation. Other features do not point to any
significant correlation amongst each other. A correlation plot between the features in Fig. 9 further
emphasizes it by demonstrating that a correlation of 0.83 exists between these two features.

Figure 3: Pins in OBD-II port

Figure 4: Instantaneous speed vs. instantaneous engine RPM
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Figure 5: Instantaneous speed vs. instantaneous engine load

Figure 6: Instantaneous speed vs. instantaneous throttle position

Figure 7: Instantaneous speed vs. instantaneous coolant temperature
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3.2 Unsupervised Techniques

After data pre-processing and cleaning, un-supervised machine learning techniques were used (further
explained in the subsequent sections) in order to cluster the data points of the dataset into different groups.
During unsupervised learning, the system is provided with data which is not labeled or categorized. The
system is provided no prior training, therefore allowing the system to act on the data by itself. Thus, the
algorithms used in this technique:

� Act on the data without any external guidance

� Attempt to understand the data and find patterns in it

� Act as a sponge on the data

Prevalent unsupervised segmentation techniques comprise of clustering (e.g., k-means, density based or
hierarchical clustering), hidden Markov models [32] and feature extraction techniques like principal

Figure 8: Instantaneous engine load vs. instantaneous throttle position

Figure 9: Correlation map of different features
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component analysis. Out of these techniques, the one most frequently utilized for segmentation is clustering
[33]. Clustering methods are commonly used to identify groups of similar objects from a multivariate dataset.
This is the most widely used technique in pattern recognition. Cluster analysis traces its roots back to the
early 1960’s and was the topic of numerous studies and courses. The target of clustering is to expose
subgroups within heterogeneous data such that each individual cluster has greater homogeneity than the
whole [34–36].

In this research, hierarchical clustering and a centroid-based clustering technique commonly known as
Lloyd’s algorithm or k-means algorithm have been used.

3.3 Hierarchical Clustering

In data mining and statistics, hierarchical cluster [37] analysis is a clustering method used to build and
analyze clusters based on hierarchy. This clustering technique involves creating groups that have a pre-
determined order from top to bottom. There are two kinds of hierarchical clustering [38], Divisive and
Agglomerative. The divisive clustering [39] technique involves assigning all of the observations to a
single group and then dividing the group into two least similar groups. In some conditions, divisive
algorithms are conceptually more complex but evidently produce hierarchies that are usually more
accurate than agglomerative algorithms.

In an agglomerative clustering technique [40], each observation is assigned to its own group. Thereafter,
the similarity between each of the groups is computed and similar groups are coalesced together to form a
single group. This step is repeated recursively until a single group can be arrived at. Fig. 10 illustrates a
dendrogram obtained as a result of running the hierarchical clustering algorithm on our dataset. The
dendrogram shows that by using hierarchical clustering, the data in question can be optimally divided
into two groups or clusters (green and red).

3.4 K-means Technique

Classification of the data into sets of categories or clusters is the most significant operation with respect
to the data [41]. One of several clustering methods is the technique of K-means algorithm that is run
repeatedly for optimum results. The K-means technique is a modest and fundamental clustering technique
which has the capability of clustering great quantities of data with rapid and effective calculation time

Figure 10: Dendrogram plot for hierarchical clustering
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compared to other techniques [42]. However, K-means has a drawback in that it is reliant upon the
preliminary cluster center determination. K-Means cluster tests result in outcomes that are locally
optimum for a given data set [43].

The K-means algorithm is an iterative algorithm that partitions the data into K predefined, distinct and
non-overlapping groups. Each data point in the dataset belongs to only one of these groups. The algorithm is
designed to works on making the data points within a group as similar as possible while keeping the groups
as different as possible. It uses Euclidean distance to prepare clusters and group data points together.
K-means follows the approach of Expectation Maximization to solve this problem. The K-means
algorithm aims to minimize the square of the error function [44,45].

d ¼
Xk

k¼1

Xn

i¼1
k xi � ukð Þk2 (1)

k signifies K cluster centers, uk signifies the k
th center, and xi denotes the i

th point in the data set.

In cluster analysis, in order to determine the optimal number of groups into which the data should be
divided, different heuristics are used. One of the commonly deployed heuristics is the Elbow method. In
this case, Within Cluster Sum of Squares (WCSS) approach is used. WCSS is a measure of the average
distance of all the points within a cluster to the cluster centroid. It is a measure of how closely related the
data points in a particular cluster are to the other points in the same cluster.

Fig. 11 illustrates the elbow plot, with the WCSS value on the y-axis and the number of clusters on the
x-axis. As is evident from the graph, as the number of clusters created by the k-means technique increases,
the WCSS value decreases exponentially. The reduction is noteworthy up until a point is touched where five
clusters have been created by the algorithm. Beyond this point, the decrease in WCSS is quite negligible.
This is the elbow of the curve and hence, the condition where the dataset is divided into five clusters is
considered as the optimal output of the k-means algorithm.

Figure 11: The Elbow plot
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In order to compare the above two clustering algorithms and their respective outputs, the Davies-
Bouldin Index is used. This index is an evaluation scheme which reflects and validates how well the
clustering has been done and how the clusters have been formed using attributes and quantities with
respect to the data. The Davies-Bouldin score is explained as the degree of similarity of each group with
its most similar group. Similarity, in this case, is the ratio of within-group distances between data points
to between-group distances. Thus, the farther the groups and the less dispersed they are, the better the
score. On this index, lower values indicate better clustering. The lowest possible score on this index is zero.

In this research, by using the Davies-Bouldin Index, a score of 0.57 was obtained using the hierarchical
clustering technique and a score of 0.52 was obtained with the k-means algorithm. Hence, the clusters created
using the k-means technique were considered for further analysis. In this model, as is evident from the elbow
plot, the instance is considered when the data is divided into five clusters. Subsequently, further analysis of
these clusters is performed in order to understand their practical significance.

Figs. 12a to 12f represent box plots of different features and a ratio of relative rpm and relative throttle
position with respect to the clusters that were created using the k-means technique. The figures show the
variation of the values of the different features that were used, within the five clusters. Ignoring the
outliers, it is clear that the data points in cluster 2 have a lower average and median speed while the data
points that fall within cluster 3 have the highest median speed among all the clusters. Clusters 0, 1 and
4 falls between these two extremes, having median speeds that are close to each other. A similar trend is
noticed across most of the features, as illustrated in Figs. 12b–12e. Fig. 12b demonstrates the distribution
of engine rpm values within different clusters. As is evident from the figure, each of the clusters have
distinct values for engine rpm with cluster 3 having the data points with the highest engine rpm values
and cluster 2 with data points with the least engine rpm values. A ratio of relative rpm to relative throttle
position is a feature that is usually used to distinguish between different driving styles and it shows a
similar trend as observed in Fig. 12e.

A detailed analysis of these clusters reveal that they represent different driving styles, where cluster
2 contains the data points with the lowest speed, engine RPM and throttle and represents under-confident
or timid driving as it consists of data points where the vehicle speed, throttle position value etc. are much
lower than the average values. Cluster 3 contains the data points with the highest average speed, engine
RPM and throttle, and represents dangerous or rash driving as most of the data points in these clusters
have values that are much higher than the average values of the parameters considered. Clusters 0, 1 and
4 represent driving styles that lie within these two extremes and can be considered as proper or good
driving. Tab. 1 shows the driving styles represented by different clusters.

4 Data Labeling and Supervised Techniques

The clustering technique helps in extracting driving styles and in grouping similar data points together.
Upon performing a detailed analysis of the clustered data, it was concluded that that these clusters indeed
represented different driving styles. These clusters were then considered as labels for the data points.
Subsequently, different classification algorithms were used to train and develop a model in order to
classify the data points using the cluster as the target variable.

4.1 Supervised Techniques

Supervised learning techniques include a process of learning and developing a function which can map
inputs to outputs on the basis of similar input/output pairs. The function is inferred using training data which
is labeled or has an assigned target variable. In supervised machine learning, every data point is a pair
consisting of an input value and a related output object. Supervised learning algorithms [46] produce an
inferred function after analyzing training data points, and once the function has been trained, it can be
used to predict the output vectors of different inputs.
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Figure 12: (a) Variation of vehicle speed within different clusters (b) Variation of engine RPM within
different clusters (c) Variation of throttle position within different clusters (d) Variation of engine load
within different clusters (e) Variation of the ratio of relative speed and relative RPM within different
clusters (f) Variation of the ratio of relative RPM and throttle position within different clusters
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4.2 Multinomial Naïve Bayes Classifier

Naïve Bayes classifiers are a type of probabilistic classifiers which are based on using the Bayes
theorem, with an assumption that the features used to train the model have no correlation amongst
themselves. Naïve Bayes classifiers are a generative model of supervised learning algorithms. These
classifiers are fast in the way that the length of training time for these classifiers is much shorter as
opposed to alternative techniques such as maximum entropy classifiers and SVMs [47,48]. Naïve Bayes
classifiers fare much better in terms of consumption of computational power and memory, as
demonstrated in Huang et al. [49]. Their performance is very similar to that of maximum entropy and
SVM classifiers. They are typically appropriate for classifications with distinct features, as the
multinomial distribution ordinarily requires integer feature counts. The Naïve Bayes algorithm forms the
basis of the Multinomial Naive Bayes classifier.

A model was developed using multinomial Naïve Bayes. Fig. 13 illustrates the learning curves of the
model with respect to training and test datasets. In this case, the model achieved a weighted average
precision of 69% on the test dataset. This metric informs us of the overall accuracy of the trained
classifier in classifying unseen data from the test dataset.

4.3 Multinomial Logistic Regression Classifier

Logistic regression [50,51] is a statistical technique which uses a function with the same name.
The logistic function lies at the core of this model. A logistic regression model is used to solve
problems which can only have a finite and fixed number of outcomes. A logistic regression model
assumes that there are no outliers in the data and that the features of the input data have no multi-co
linearity amongst themselves. In the multinomial logistic regression technique, logistic regression in
generalized to a multi-class problem, or in other words, a problem which can have more two or more
distinct possible results or outcomes.

Table 1: The driving style represented by different clusters

Clusters 2 0 1 4 3

Driving Style Under-Confident Good Good Good Over-Confident

Figure 13: Learning curve of a multinomial Naïve Bayes classifier

898 IASC, 2021, vol.28, no.3



It is a statistical method for predicting a class variable and is used as a transformation technique to
convert a continuous value to probabilities using a logit function (hence the name Logistic). For
estimating this probability value, logistic regression uses a mathematical function known as the sigmoid
function.

y ¼ 1

1þ e�x
(2)

It has the derivative

dy

dx
¼ 1� y xð Þ½ �y xð Þ ¼ e�x

1þ e�xð Þ2 ¼
ex

1þ exð Þ2 (3)

and the indefinite integralZ
ydx ¼ xþ ln 1þ e�xð Þ ¼ ln 1þ exð Þ (4)

There may be instances where the predictions are wrong. These are errors. Just like in case of a line
regression, where the least square method to get the coefficients is used such that the error is minimum,
here a method called maximum likelihood is used. As in the case of linear regression, there is a cost
function for logistic regression. The best separator line is the one that can generalize well on the unseen
data for the purpose of label classification.

The model developed using multinomial logistic regression algorithm was trained using the training
dataset and its performance was tested using the test dataset. Fig. 14 illustrates the learning curves of the
mode on training and test datasets. The model was observed to achieve a weighted average precision of 85%.

5 Neural Networks and Deep Learning

A neural network is a circuit or network of neurons or an artificial network of neurons, composed of
nodes or artificial neurons. These artificial neural networks are primarily used to understand and solve
complex problems that are usually tough to solve using traditional machine learning techniques. In neural
network algorithms, the neural connections in an animal’s body are modeled as weights, where a weight
with a positive value reflects an excitatory connection, while a weight with a negative value represents an
inhibitory connection.

Figure 14: Learning curve of a MLR classifier
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Deep learning (DL) [52], ML’s subdivision, has witnessed a historic resurrection in recent years, mostly
compelled by an upsurge in the intensity of calculation and enormity of novel datasets. This area has recorded
conspicuous improvements in the capabilities of machines in controlling and acknowledging information
alongside consideration of speech [53], language [54], images [55], medication and social insurance all
together, and has enormous advantage over DL due to the supreme volume of information being
delivered (1018 bytes or 150 exabytes in US only, expanding 48% every year [56]). Furthermore, the
growing propagation of computerized record frameworks and gadgets in clinical fields has accorded it
even more currency.

Fig. 15 illustrates the mathematical representation of an artificial neuron. The values, x1, x2…xn represent
the inputs coming into the neuron. The values w1, w2, ..wn represent the weights of the neuron that are
multiplied with the incoming inputs. The value b represents the bias and the function g(x) is the
activation function of the neuron. This activation function decides the final output of the neuron
depending upon the inputs, weights and the bias. These artificial neural networks are usually utilized for
predictive modeling, adaptive control and in applications where they can be trained using data.

5.1 Multilayer Perceptron (Feed Forward Neural Network)

A multilayer perceptron network usually has two or more linear layers. In case of a three-layer network,
the input layer is the first layer, the middle layer is the hidden layer and the final layer is what is called the
output layer. Data from different features is passed to the input layer and the final output is received from the
output layer. While addressing complex problems, usually more hidden layers are taken into consideration in
order to get more accurate results.

In this research, MLP classifiers with hidden layer sizes 20, 40, 60 and 80 were used. The best
performance was observed when the classifier had a hidden layer size of 60. Therefore, a hidden layer
size of 60 was considered, first with a batch size of 16 and then with a batch size of 32. Figs. 17 and 18
represent the learning curve with accuracy, as the performance metric of two different multilayer
perceptron (MLP) classifiers with batch sizes 32 and 16, respectively. As can be observed from the figure,
the learning of the classifiers is seen to overall increase, as the size of the training set increases from 10%
of data points in the training dataset to 100%. An accuracy of 94% and 92% was achieved on the test
dataset using the MLP classifier with a batch size of 32 and 16 respectively.

Figure 15: A neuron showing the input, corresponding weights, a bias and an activation function applied to
the weighted sum of inputs
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The output of a neural network is defined using mathematical equations which are known as activation
functions. In this particular case, the Rectified Linear Unit activation function (commonly known as ReLU)
has been used. Fig. 16 demonstrates a graphical representation of the ReLU function. ReLU is
mathematically defined as y = max (0, x). This clearly indicates that the output value of the function is
equal to the input for all values greater than zero and the output of the function is zero for all non-
positive values of the input.

5.2 Artificial Neural Networks

ANN was first proposed in 1943 by a neurophysiologist, Warren McCulloch and a mathematician,
Walter Pitts. Perceptrons and artificial neural networks are different and one major point of difference is
that, in a common perceptron, the function that spits out the output, is usually a step function. Neural
networks have evolved from MLPs which can use different kinds of activation functions. The activation
function used in particular cases depends upon the kind of output expected from the network. Fig. 19
represents the change in the value of loss function with the increase in the number epochs. The loss
function that was used in this study is the categorical cross entropy function. This function is used when

Figure 16: The ReLU activation function

Figure 17: Learning curve of a MLP classifier with batch size 32
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the output is in categorical form and only one result can be correct. Categorical cross entropy function
compares the distribution of the predictions with the true distribution, where the probability of the correct
group or cluster is set to 1 and 0 for the other groups.

The blue curve in the figure represents the change in the loss function for the training dataset against the
number of epochs and the orange curve represents the change in the value of the loss function for the test
dataset in question. As can be observed from the graph, the value of the loss function falls steeply as the
number of epochs increases, both in the case of the training as well as the test datasets.

Fig. 20 demonstrates the accuracy of the ANN classifier against the number of epochs. The blue curve
represents the accuracy for the training dataset and the orange curve represents the accuracy for the test
dataset. As can be seen from the figure, the accuracy achieved by the classifier increases with the number
of epochs and reaches almost 99% at about 200 epochs.

Figure 18: Learning curve of a MLP classifier with batch size 16

Figure 19: Loss vs. Epochs curve using ANN
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In this case, an ANN with four layers was used with one input and one output layer and two hidden
layers. As is evident from Figs. 19 and 20, the accuracy of the classifier increased with the number of
epochs and at 200 epochs, an accuracy of 99% was achieved. Different classifiers and the respective
precisions achieved are compared in Tab. 2.

6 Conclusions

This research proposes a model which can be used to understand driving data and extract driving
patterns in order to classify the data into different groups, to ultimately enable insightful and relevant
action. The data for this purpose was collected from the OBD port of a vehicle. The data was at first pre-
processed and then pattern mining techniques were used to extract patterns from this data. Upon further
studying and analyzing the clusters that were created, it was confirmed that they represented distinct
driving patterns. These clusters were then used as labels and different advanced techniques and
algorithms were used to develop a classifier which could accurately classify the data points into the
corresponding groups or clusters. Using deep learning techniques, an accuracy of 99% was achieved in
the classification undertaken, thus demonstrating that this model can be used in real-life products and
implementations. The primary aim of this research was to develop and present a model which can be
used to identify different driving patterns from the data and classify the incoming data into different
groups accurately. This model can also be used in fleet management systems to monitor driving styles.

Figure 20: Accuracy vs. Epochs curve using ANN

Table 2: Comparison of accuracy rates using different classifiers

Classification techniques MNB MLR MLP(16) MLP(32) ANN

Train macro avg. accuracy 0.66 0.85 0.91 0.94 0.99

Train weighted avg. accuracy 0.69 0.84 0.93 0.94 0.99

Test macro avg. accuracy 0.65 0.86 0.90 0.94 0.99

Test weighted avg. accuracy 0.69 0.85 0.92 0.94 0.99
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7 Future Work

In this research, work was limited to the data obtained from the on-board diagnostics of the vehicles. In
future work, external sensors like 3-axis accelerometers and gyroscopes can also be used in inclusion with the
data coming from the OBD board. This data could help in providing more insights about the driving patterns
of a driver on a particular route. Data from accelerometers and gyroscopes can be used to understand the
condition of the routes (good/damaged roads with potholes and speed breakers).

This could help in further understanding real life conditions on the roads, like the movement of traffic
during traffic jams, working hours, holidays, weekends etc. This would ultimately help in tuning the
presented model for better predictions. This could also help in making a profile of a particular driver and
in understanding his/her driving style in a better way in order to institute or reinforce any relevant
training or action. This data can also be used in the development of a model to predict the fuel efficiency
of a vehicle with respect to the driving style.
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