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Abstract: It is forecasted that billions of Internet of Things (IoT) and sensor
devices will be installed worldwide by 2020. These devices can provide infra-
structure-based services for various applications such as in smart hospitals, smart
industry, smart grids, and smart industrial towns. Among them, the hospital ser-
vice system needs to authenticate devices, and medical data are recorded for diag-
nostic purposes. In general, digital signatures are employed, but the computational
power and their huge numbers pose many challenges to the digital signature sys-
tem. To solve such problems, we developed a ledger system for authenticating IoT
medical devices. It is a centralized ledger system architecture for particular
authentication purposes only. It uses a very lightweight computational mechanism
to authenticate IoT devices and helps secure medical data. We used two phases to
analyze the proposed security system. First, we utilized a mathematical model to
test its performance. In this phase, we proved that our proposed system cannot
generate valid requests and responses for IoT devices without authentication.
Second, we utilized a hyperledger to run our proposed system within our test
environment to record various performance metrics, particularly the latency
required for the security key operation, and message code updates. The analysis
shows that our proposed system is secure and highly efficient when dealing with
medical data through IoT devices using a centralized ledger system.
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1 Introduction

Internet of Things (IoT) can be defined as an object that communicates with other objects with the help
of the Internet [1]. IoT-based objects such as sensors, smartphones, and wearable devices are connected
together for the purpose of delivering a message or involved in the processing of mission-critical data.
Currently, there are billions of IoT devices serving socioeconomic factors in a manner that brings about
satisfactory outcomes. IoT devices offer services efficiently, resulting in less time and cost when
compared with traditional services [2]. However, there are several areas wherein improvements are
expected from the research community [3], particularly security, because data should be protected by
delivering messages or data between IoT devices, intermediator devices, or to the cloud server. There is
considerable research on the use of blockchain [4], cryptographic methods [5], and security key-based
solutions [6]. However, these solutions for IoT-based architectures are unable to serve owing to their
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features such as heterogeneity [7], connectivity, complexity, and dynamicity [8], which are compromised.
Thus, providing a solution for application-based services is suitable [9]. Therefore, our proposal is to
protect medical data during communication through decentralized ledgers.

Despite the plethora of resources [1–9], only a handful of these studies have achieved privacy concerns
focused on personal data. From a privacy perspective, various research groups have built different techniques
to protect personal data. One such technique is data anonymization [10] that protects personal data and
information. K-anonymity, which is a property of anonymized datasets, involves sensitive knowledge of
each data record indistinguishable from at least K-1 others record. Second, the cardinality of any query
result on the released data should be at least K.

Another technique to maintain data privacy is L diversity [11]. Owing to its ability to handle a variety of
data, it is most likely to be weak with skewness. If records are distributed through various IoT having
different equivalence classes, then identity disclosure often leads to attributing disclosure. However, the
aforementioned techniques prevent identity disclosures, but not attribute disclosures. However, to solve
such problems, they require each equivalence class to have at least one value for each attribute,
particularly the sensitive attribute. Furthermore, t-closeness needs sensitive attributes of any equivalence
class that will have to be close to the distribution of sensitive attributes of the overall table. Other
privacy-preserving schemes use encryption methods; they require computational power and mathematical
queries over unprotected networks to protect and encrypt medical data. Recently, a new concept called
Bitcoin [12] introduced an accountable system that permits end users to securely send currency in the
form of Bitcoin without the presence of a centralized administrator, who verifies it using an open ledger.

An IoT network architecture and its security requirements are derived from the nature of the job it serves;
in fact, security directly depends on the application and its environment. First, authentication is considered as
a basic and crucial requirement of the application. If a single unprotected IoT device can be a gateway to
malicious users, it can eventually cause a complete collapse of the application. Hence, the aforementioned
privacy-preserving method cannot be utilized to secure IoT devices as these privacy-preserving
algorithms require high processing power to produce crypto output to produce results to proceed to the
next course of action with the aim of protecting data. Therefore, lightweight authentication schemes are
built in the context of IoT device communication [13]. It is well known that IoT devices have limited
energy and computation power. Therefore, the proposed decentralized IoT features enable the
immutability of ledgers to secure IoT data. It is already proved that possession of the secret keys will not
tamper with the IoT data. These features enable power and computational-constrained IoT devices to
minimize the burden on them. In this article, we provide a security analysis of the cryptographic methods
and present the implementation and configuration details.

2 Literature Review

IoT devices are widely used owing to the availability of hardware and computational power. However,
their security is of immense concern with the aim of securing their data and IoT networks. Medical data are
transmitted using IoT devices, but not widely implemented; by using cryptographic methods, privacy can be
preserved [14]. Several research papers on IoT are focused on security and privacy. We can conclude from
this research contribution that the application of security with respect to IoT is completely different from the
fact that IoT never uses conventional network security methods. The IoT network is built using the
heterogeneity of the underlying IoT devices and protocols and considering the most dynamic features
such as network scalability. There are several challenges that exist in IoT with respect to security.
Challenges include heterogeneity, resources, privacy, large scale, and reliability. Many research papers
reported [15–18] that IoT is under threat owing to the layers and their countermeasures. However, very
few researchers have suggested and addressed key management, privacy, confidentiality, and
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communication schemes. They have suggested using cryptographic methods, software-defined technologies,
and blockchain for solving the security issues of IoT communication. Network simulation has played a key
role in the fast implementation and testing of IoT security. Many simulators have been used in this research
area [19]. However, the rapid research in IoT has led to increased demand for security-based protocol
evaluators. One such protocol evaluator is the automated validation of Internet security protocols and
applications. To preserve the privacy and confidentiality of data, IoT can only be had by applying
security. These security patches are applied according to the threat vector. A more recent survey paper
concluded that the authentication method is widely used. However, it is observed that lightweight and
low-cost cryptographic methods are also deployed without any problems, knowing that IoT devices run
under low computational power and battery issues.

Authentication is usually used to identify a user and IoT devices in a specified network and grants access
to the secured area of devices to data. However, it can also initiate attacks on IoT devices, such as reply
attacks, man-in-the-middle attacks, Sybil attacks, and impersonation attacks. Secured socket layer and
transport layer security are used to secure communication between IoT devices. For IoT devices, various
combinations of a pre-shared key are available to perform authentication using RSA and DH public key
and cryptographic methods. These schemes enable authentication between IoT devices provided they
prove their legitimacy by means of pre-shared key protocols. Hence, the asymmetric key is being used in
these schemes; it is the most suitable authentication method for IoT devices, particularly sensor networks.

Two-way communication is possible in an IoT environment with respect to users and devices. The
devices usually send and receive data to the server in a mutually agreed authentication system to check
the validity of both the device and the user. Mutual authentication uses lightweight and encryption
methods that have very recently been used to secure security between users and devices [20–24]. In these
studies, authors have proved that to secure communication between IoT devices, lightweight
authentication can play a vital role in access control. To attain an effective end-to-end communication
with IoT device constraints, light encryption on the network layer is the only solution.

However, the encryption of IoT architecture is still in the early stages and does not prevent malicious
attacks. Most devices have a hardcoded authentication system that can easily bypass the authentication
system. Therefore, most recent papers focus on improving the security system of devices and keeping the
privacy of the data.

3 Proposed Method

We used permissioned ledgers because they remove the unnecessary CPU intense calculation required to
reach consensus on the network and improve the overall performance. However, they have their own
predefined computer nodes for validating medical data transactions. In other words, nodes contributing to
ledger/bookkeeping know each node’s messages by verifying digital data along with security parameters
such as a public key. Second, permissioned ledgers have proper governance procedures. This approach
enables administrators to consume very little time to run queries with respect to the rules over the
network. Unlike a public ledger that has the requirement of consensus once the new update
implementation arrives, in our approach, we have three entities, as shown in Fig. 1. End-user systems are
usually IoT devices, ledgers, and cloud edge servers. IoT devices are placed at the medical departments
or any medical device that can be an IoT-enabled device, and clients are prepared with public and private
keys. Their public keys are certified by the Certificate Authority (CA). These approaches are available in
the form of hardware and software technologies. These security services are possible because of the
transport layer security, which is developed after a secure socket layer protocol along with a certificate
issued by the X.509 authority. Hence, the predefined protocol helps secure medical data and patients’
personal information. The collection of IoT devices is scheduled to work together to manage the ledgers
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used in our framework, providing data authenticity protection apart from medical-related data transmission.
It is proved that a single IoT device can be compromised. However, it is not possible for the adversary to
control all nodes because the consensus technique guarantees that all decentralized ledger systems are
completely trusted and retains the reservation of feature execution.

The data generated by IoT devices is considerable, and such huge data are computed through cloud and
edge servers, which are very powerful devices. Hence, adversaries may alter data through IoT devices and
might reach cloud and edge servers. Therefore, it is necessary for the framework to detect such attacks on
data. The present IoT devices have the ability to interoperability, information transformation, and
technical assistance, and decentralized decisions, but efficiency in computation, security, and IoT
management are also important objectives for any IoT-based architecture. Hence, in the next section, we
present these features.

3.1 Connection

There are numerous medical devices divided into different groups depending on the nature of service
they render to hospitals and their various departments. These different groups of various IoTs are
managed by the edge server, and they also manage edge ledgers, and these edge ledgers are handled by
the cloud global servers. Each edge ledger is connected directly to the cloud server. Each of the hospitals
hosting IoT medical devices are denoted by Hi, and these hospital IoT devices are served by the edge
ledger Lei, which is reliant on edge servers Eis. Each IoT device is in close proximity to the edge ledger.
Each of these ledgers is connected to a server called a global ledger GL. However, IoT devices are
connected to each other, but Lei are not connected to each other for reducing computational complexity
[]. In edge computing, some of the IoT devices within Hi may be unreliable and might not discover at
any moment. This situation brings the complete system into disjoint parts; eventually, reliability is lost.
However, IoT devices can overcome this condition by indulging in a technique for IoT device failure
when new IoT nodes join Hi at the IoT node discovery phase. Therefore, by default, each IoT stores
extra neighbor nodes that do not happen to be neighbors in tier in their close proximity, this setting
maintains the connectivity in case the neighbor fails. Moreover, both edge and global ledgers are
connected to each hospital, and Hi can also share node information.

3.2 Certification

Each hospital edge ledger detects a request from an IoT device within hospital proximity. The request
carries information regarding its detailed device, signature by the device private key, and certificate chain
containing the model certificate and owner or manufacturer certificate attached. In the decentralized

Figure 1: Performance of transaction submission of the proposed system
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architecture, the edge ledger has no connection with the device, and it does not carry root CA certificate. The
edge ledger Lei connects to the blockchain, looks for the IoT device model, and checks IoT device
certificate, test device compliance, and interoperability. If the edge ledger Lei obtains the certificate and
policies are matched, then the connection request and a secured communication channel is opened for the
device. Each IoT device Hi has its own certificate in our proposed decentralized ledger communication.
In our approach, certificates of IoT devices are stored in an Hi edge ledger. The revocation of
certificates is decided by the ledger. The revocation of the IoT device within the hospital is handled by
the immediate edge, and the broadcast of the ledger node certificate for the whole system. On the
contrary, when a device is unable to provide a certificate, it will be known to edge ledger via a global
ledger. This will not be a revocation of certificate; however, it lowers the trust associated with the device.

3.3 Device Authentication

Device authentication is the fundamental step to secure IoT devices, and the security process starts from
the verification of the IoT device to access control. Identity attacks have been spoofing devices to deny
services. Hence, traditional security shields for IoT devices have been constantly challenged for their
inefficiency in providing security. Therefore, communication between IoT devices and global devices is
covered with highly sophisticated hardware protocols. In our proposal, we propose a two-step
authentication method. In Step one, the Hi device stores its digital signature in the edge ledger; Lei hence,
nodes of the edge ledger Lei can be verified for further processing. Second, the Hi device can change its
place and a new edge can access its certificate from a global edge. The information exchange between
them is the RSA-based accumulator. An accumulator collects a large set of input data into a small set of
accumulators. Hence, computational efficiency is witnessed for the input data and accumulator [25]. The
following steps are applied for device authentication as shown in the Tab. 1.

Table 1: Steps for device authentications

Steps Process Description

Setup When both edge ledger communicate for the accumulator value is considered as
transaction.

1. Yield two prime numbers, p and q, perform N = pq.
2. Pick a value u from quadratic residue, QR and u 6¼ 1
A public parameter is (N, u)

Accumulation Update the global ledge by performing following steps

1. For each transaction on public parameter, update global ledger via edge ledger
2. Output accumulator value by using public parameter (N, u) and prime numbers

R = r1; r2; r3 . . . rn to generate accumulator A ¼ ur1;r2;r3... rn mod N. Edge ledger sends
accumulator value to the global ledger. To reach the consensus on the accumulator
value, a pair is created by device id and accumulator (Lei; A) only when it succeeds.

Witness
checking

Edge ledger checks the Accumulator value

1. Edge ledger receives latest accumulator from the global communicator ledger.
2. Receiver edge requires proof for the received accumulator value
Proof is generated using public parameter w ¼ N ; u;Rð Þ

Verify To verify the received data, the following steps are concluded
If wr ¼ A mod N ; outputs 1 when it is successful, then only receives and stores the
transaction data.
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3.4 Device Data Authentication

Robust device authentication will satisfy IoT-intended communication and trusted they purported to be.
Whenever IoT devices initiate communication with other devices through a ledger or global ledger, it must be
authenticated. If they are unable to behave in a controlled manner, then IoT network administrators can
revoke their privileges. This section comprise an introduction to the primitives of our proposed cryptosystem.

3.4.1 Bilinear Maps
By using bilinear maps, one can construct a pairing-based crypto system and establish a relation between

cryptographic groups. LetG1, G2, andGT be the cyclic order of multiplicative group of order p. Let g1 and g2
be the generators of G1 and G2, respectively. A bilinear map is defined as follows.

e : G1 � G2�!GT (1)

Such that u є G1, v є G2 and a, b є Zp, e(u
a, vb) = e(u,v)ab Hence it implies that u1 and u2 є G1 and v є G2.

Non-Degeneracy:- e(g1, g2) ≠1.

Computability:- e is efficiently computable.

For the proposed scheme, we used ring signatures to cover the identity of the IoT devices; therefore, all
information carried by each device of the hospital is not disclosed to the edge ledger. Traditional ring
signatures are used without block-less verification; therefore, we have modified traditional ring signatures
[4,5], to support block-less verification. Without block-less verification, the edge ledger has to download
the whole private information to check for correctness of the shared data; hence, it will consume more
time for huge data. In the proposed scheme, we have only three algorithms: KeyGen, RingSign, and
ChekRing. In KeyGen, devices generate private and public keys. In RingSign, devices under the hospital
are eligible to sign data with their private keys and all IoT public keys. Edge ledger has the advantage of
checking the correctness of the sign. A hospital wishing to join a global ledger has to generate public and
private keys with the help of a random key xiє Zp as well as compute the private and public keys.
wi ¼ gxi2 is the public key, and the private key is Ski = xi. Edge ledger signs the password by looking at
its database for the requested user. Hence, it uses its private key and the user’s public key to sign on the
password. For the WLAN user L, a password denoted as m, as m є Zp and private key of the registrar is
Sks. edge ledger randomly chooses ai є Zp for i ≠ s, and σi = g1

ai then computes the following.

b ¼ H1g
m EG1 (2)

The edge ledger of the hospital has the ability to sign a password with its private key and all the group
members’ public keys. Hence, the following equation is the group signature for the password m is σ =
{r1; r2 . . . rd} and belongs to Gd

1 the group of WLAN users.

rs ¼ b

w pi6¼swa
� �

 !1

xs
(3)

Group signature on the user’s password is rs EGd
1

Edge ledger first computes Eq. (1) β for the WLAN L user with its public key pk1, password, and then
checks the sign of user L.

b; g2ð Þ ¼
Yd
i¼1

e ri;wið Þ (4)
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If Eq. (4) holds, then user L is authenticated and is otherwise rejected. Our proposed scheme used for
device data authentication is the storage of signatures. According to the generation of signatures in
Homomorphic Authenticable Ring Structures (HARS), to audit an m-sized block of data, which has a
huge number of ring signatures; therefore, it needs a large number space for storing signatures.
Furthermore, HARS will consume more space owing to its underlying design of the ring signature, and
the cloud service provider will also charge more on the storage space occupied by the HARS client.
Therefore, we need to send a block of data from all devices so that we can reduce the computational
complexity.

3.4.2 Support for Batch Data Transmission
We have used batch data transmission using a privacy-preserving technique; the IoT may concurrently

send and receive data to the global edge via an edge ledger. Individual data transmission can be a burden on
the edge ledger and is very inefficient. There exist many IoTs, and it is more useful for our proposed method
to schedule these data transfer batch-wise at a time. During the setup phase, each IoT independently executes
the setup phase. Suppose we have N number of IoTs, and each IoT has data to transfer to the edge ledger.

DIoT ¼ mk;1;mk;2;mk;3; . . . mk;n

� �
, each data file has the same size. Further, each IoT has its own secret

key and a public key, and it generates a data tag using data and sign (public and private key) and computes a
file tag. The following steps are executed to achieve batch-based data transmission.

� Key generation for each input along with security parameters.

� Out puts a file tag for each key and data block

� Verifying process accepts and rejects the block of data using security parameters, name of the file, and
block of data

File tag ¼ Bd k Sign Security paramertð Þ (5)

Signing process for each IoT = HðFile � public key) 2 G
Where H is a cryptographic hash function and G is a multiplicative cyclic group. In any given situation,

an IoT device is responsible for generating information about the medical reports. This produced information
is signed by the device itself and sent to the edge ledger. After the reception of the information, the edge
ledger signs the information to satisfy security requirements and to keep track of information for future
operations. Only, it is being circulated among all hospital IoT devices so as to keep them updated. In our
proposal, we have a number of IoT devices connected to each hospital and they are mapped to the edge
ledger; hence, each ledger contains many IoT devices connected to the decentralized architecture. The
edge ledger has limited storage and processing power; hence, each of its connected IoT devices defines
the amount of data stored in the hospital ledger, which is also called the edge ledger. There might be a
demand for older updates; hence, it can be fed to the external storage in the application process.

4 Evaluation

This section describes the implementation of our proposed method and discusses the experimental
results. The implementation details comprise two parts: the IoT device part and the security analysis of
the proposed system. Now, we discuss some important properties of our proposed scheme, including the
correctness and correctness of the equation. Hence, we need to prove that Eq. 4 is correct.

Qd
i¼d

e rs;wið Þ = e rs;wsð Þ. Qd
i6¼s

e rs;wið Þ
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Fig. 1 shows the performance of our proposed method. It also shows that the load on the system by

means of various operations does not affect its performance. IoT implementation comprises a digital
signature on data protection technique, calculation of hash function for the handling of key functions
such as key commitment and key updating, and authentication of data generated by the IoT. A private
key and its corresponding public key are used to encrypt and decrypt messages over the network.
However, this is not recommended for sensitive data; hence, digitally signing data is a concrete step
toward securing the information. For digital signing, we used a one-way hash function for the data and then
used a private key to encrypt the hash. We have also used a digital signature to validate data integrity for
the data transferred between the edge ledger and IoT data. It comprise a one-way hash function, and data is
encrypted using its private key. Hence, to validate data integrity, the recipient edge ledger uses the public
key to decrypt the hash. This hash algorithm provides the original hash to create a one-way hash for the
same data. Therefore, the edge ledger has the ability to compare the newly created hash against the original
hash function. If these two hashes are similar in nature, the data is intact; otherwise, the data is tampered.

To obtain medical data to be verified, it must be a trusted authority. In a hyperledger, the membership
service provider (MSP) is the trusted authority. MSP also recognizes each device of any given hospital in a
given chain of hospitals. It also defines rules that govern the legal medical data from a trusted party. MSP uses
the certification-based service and is implemented using the X.509 certificate as identities and is built using
the Public Key Infrastructure model and uses secure communication in any given network. Our proposed
hyper ledger uses a three-layer architecture, namely the application layer, API layer, and transaction layer.
Once the medical report is generated by the pathology department, it requests to pass it to the consultant
peers; these peers can be from a chain of hospitals. Hence, this transaction is endorsed, and it reaches all
peers. To construct this transaction, we used a hyperledger fabric to create a chain code function, so that
it can be read and written to the ledger when medical data are shared between two clients irrespective of
the type of hospital as shown in the Fig. 2.

The request is between peers who are consultants of different hospitals. The endorsement policy states
that both communicating devices must endorse any transaction; hence, the transaction must proceed to both
peers. This transaction is created using a software development kit supplied with the hyperledger; then, the
request to invoke a chain code process is processed so that it writes or reads to the central ledger. However,
the endorsing consultants must verify the formation of the transaction, the transaction should never have been
submitted before, the sign on the transaction should be valid, the sender or consultant should have the
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privilege to make transactions, and these inputs are wrapped around as arguments to the process of the chain
code. Subsequently, the process of chain code is executed, and its resultant outputs are updated in the
database. The updated data will also include the response bit, read, and write datasets.

5 Conclusion

Our proposed framework checks the endorsing consultant’s signature and compares it with the proposed
responses. If it is the same, then the process will be executed; otherwise, it will be discarded. If the chain
code process queries the ledger, then the proposal checks the query response. In our proposal, the
application’s resultant value will be updated in the ledger. Before the update, the application will check that
the endorsement is initiated by the consultants from any hospital. We performed transactions of the proposed
security mechanism and measured latency. This shows that our proposed mechanism is able to perform faster.
The performance measure also includes a number of features such as authentication, security key operation,
and message authentication code updates. The processing mechanism also includes ledgers who are servicing
various consultants within any given hospital governing the idea of IoT transactions. Of course, the
performance of the proposal is as direct as the physical location of the edge ledgers and global edge ledgers.
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