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Abstract: Deep convolutional neural network (DCNN) requires a lot of data for
training, but there has always been data vacuum in agriculture, making it difficult
to label all existing data accurately. Therefore, a lightweight tomato leaf disease
identification network supported by Variational auto-Encoder (VAE) is proposed
to improve the accuracy of crop leaf disease identification. In the lightweight net-
work, multi-scale convolution can expand the network width, enrich the extracted
features, and reduce model parameters such as deep separable convolution. VAE
makes full use of a large amount of unlabeled data to achieve unsupervised learn-
ing, and then uses labeled data for supervised disease identification. However, in
the actual model deployment and production environment, VAE doesn’t require
additional calculation and storage consumption, because it is not used in the
calculation of the application phase. Compared with the classification network
that only uses labeled data, the generalization effect and identification accuracy
of this proposed method are enhanced. Especially in the case of fewer labeled
samples, the identification accuracy has increased from 56.13% to 78.03%, and
in the case of many labeled samples, the identification accuracy also shows a rise.
We have fully confirmed the effectiveness of the lightweight network and VAE
enhancement strategy: the correct detection rate of disease category by this
method is 94.17%, and only 0.42% of the diseased leaves are misidentified as
healthy leaves; the correct detection rate of healthy leaves is 98.27%, and only
1.73% of healthy leaves are misidentified as diseased leaves.
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1 Introduction

According to Food and Agriculture Organization of the United Nations (FAO), pests and diseases can
cause $70 to $90 billion annual losses worldwide. China is no exception. In 2018, crop diseases affected an
area of about 100 million mu (13.34 hectares), causing nearly 8% loss in China's agricultural output. Timely
and accurate identification of diseases is the key to right treatment [1], and an important prerequisite for
reducing crop loss and pesticide use.
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Precision agriculture is an effective way to achieve sustainable development of agriculture with high
quality, high yield, low consumption and environmental protection. Disease diagnosis is an important part
of precision agriculture. In recent years, neural network technology has been widely used in classification
and identification [2–6]. Unlike plant classification and identification, disease identification is more
difficult. Plants can generally be identified by the shape of leaves and flowers [7]. However, the
occurrence, development and spread of diseases can cause huge difference in leaf phenotypic
characteristics, which can make disease identification difficult. Since 1950s, scholars have carried out
research on crop disease identification based on image processing technology [8,9]. Brahimi et al. [10]
fine-tuned the network parameters of AlexNet, and classified and identified plant diseased leaves [11].
Such fine-tuning methods enjoy higher accuracy than support vector machine (SVM), and can avoid the
influence of disease spot segmentation on recognition. Wu et al. [12] used weak supervision to segment
tomato leaves, and then applied neural network to classify leaf diseases. Khamparia et al. [13] applied
convolutional neural network (CNN) and auto-encoder to detect crop diseases by using crop leaf images
with the help of convolutional encoder network. Sun et al. [14] used CNN to improve the identification
efficiency of tea diseases through image segmentation and data enhancement.

In view of the above problems, we propose a method to improve the accuracy of tomato leaf disease
identification by applying the lightweight network and VAE to the detection network. Multi-scale
convolution is used to expand the network width, which makes the extracted features more abundant;
deep separable convolution is used to reduce model parameters to meet the needs of low-cost terminals.
In the identification network, VAE makes full use of a large amount of unlabeled data to realize
unsupervised learning, and then uses labeled data to perform supervised disease identification. In the
detection network, the training results of feature extraction of the identification network are used as initial
parameters of the “backbone” network for detection and segmentation training. In the detection and
identification of tomato leaf diseases, both labeled and unlabeled data are fully utilized to improve
identification accuracy. In this paper, tomato leaf disease identification is used as an example, and we
hope the technology can be used in identifying similar crop leaf diseases.

2 Materials and Methods

2.1 Dataset and Preprocessing

2.1.1 Dataset
PlantVillage is an internet image library of plant leaf diseases initiated and established by epidemiologist

David [15] to diagnose plant disease using machine learning technology. The dataset collected more than
50,000 images of visible light leaves from 38 types of 14 plants, including 12 healthy leaves and
26 diseased leaves. Among them, 18,160 tomato leaves, including healthy leaves and 9 diseased leaves,
are used as the crop disease classification dataset for this experiment. Fig. 1 shows an example of
10 tomato leaf images in the dataset. No.1-No.10 are healthy, tomato bacterial spot, early blight, late
blight, leaf mold, mosaic virus, septoria leaf spot, target spot, two-spotted spider mite and yellow leaf
curl virus leaves, respectively.

We collected images of real tomato leaves for training and testing to verify the effectiveness of the
method. The images include 186 diseased leaves and 463 healthy leaves. There are 5 diseases in the leaf
images. As shown in the first row of Figs. 2a–2g are healthy, tomato bacterial spot, early blight, early
blight, late blight, leaf mold, septoria leaf spot leaves, respectively. The above images are original, and
the bottom images are the annotation after pre-processed. The photos of these healthy tomato leaves are
taken in a glass greenhouse in the Chongming base of the China National Center for Facilities and
Agricultural Engineering and Technology Research.
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2.1.2 Preprocessing
In order to reduce computation, the size of the 10 tomato images in the PlantVillage dataset is

normalized to 128*128 pixels. Then 10% of the images are randomly divided into verification sets, and
the remaining samples of each category are divided into five groups according to the proportion
respectively, to train the model in different situations and evaluate the performance of the model.
The proportions of the training set-validation set are 10%–90%, 30%–70%, 50%–50%, 70%–30% and
90%–10% respectively, there are five cases of simulated training set with little, less, half, more and many
to verify the effectiveness of the method under different conditions. The sample amount of each set is
shown in Tab. 1.

2.2 Tomato Leaf Disease Identification Model

Convolutional neural network (CNN), a feedforward neural network with deep structure, has become the
first solution of image classification. Common CNNs include AlexNet [11], VggNet [16], ResNet [17] and
Inception [18]. CNN can extract features of different semantic levels of images. As the number of network
layers increases, the extracted features become more and more abundant. However, when the network
reaches a certain depth, it is difficult to find the optimal weight parameters during the training process,

Figure 1: Image of 10 kinds of tomato leaves

Figure 2: Images of tomato leaves in real scene
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resulting in a “degradation” with large errors. To this end, He et al. [17] proposed residual neural network to
achieve higher accuracy. For crop disease identification, the support of high-performance workstation may be
lacking in general practical applications, and too deep network will increase the difficulty of model training.
Moreover, the trained model has a greater demand for memory, and it is difficult to meet the requirements of
low-cost terminals. Accelerate network model design that is mainly to explore the optimal network structure,
can achieve a similar effect while reducing calculation, usually by group convolution, decomposition
convolution [19], Bottleneck structure [17], SqueezeNet structure [20], etc.

Fig. 3a shows an example of using deep neural network to identify tomato leaf diseases. The input is an
image of a tomato leaves, and the output is the corresponding disease category. Deep neural network is a
machine learning model with deep supervised learning based on data. The Class Network in the figure is
composed of CNN, and can be divided into two parts, as shown in Fig. 3b. The former is used to extract
features, and the latter is used to classify features through fully connection.

2.2.1 Leaf Disease Identification Networks
The lightweight neural network is mainly composed of 5 stages and 4 reduction layers, include Stage1-5,

Reduction1-4, Max-pooling, FC, Dropout, FC-10 and Softmax. Stage1 consists of three 3*3 convolution
stages, and the stride of the first convolution is 2. Stage2 and Stage3 are composed of two
module1 connected in series respectively. Stage4 and Stage5 include two module2 connected in series.
Reduction1-4 are reduction modules, which are used to reduce the image size and expand channels in place
of common pooling operations. Reduction module uses group convolution and channel shuffle instead of
standard convolution operations. Finally, through the fully connected layer (FC), the Dropout [21] layer and
Softmax, 10 kinds of recognition results can be obtained. The overall framework of the improved network is
shown in Fig. 4.

Table 1: Different partitioning of dataset

Serial No. Validation set-10% Others-90% (Numbers:16344)

Numbers Training set Test set

Ratio Numbers Ratio Numbers

1 1816 10% 1635 90% 14709

2 1816 30% 4904 70% 11440

3 1816 50% 8173 50% 8171

4 1816 70% 11441 30% 4903

5 1816 90% 14710 10% 1634

Figure 3: (a) leaf disease identification model, (b) identification model shown separately
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2.2.2 Component Module of Disease Diagnosis Networks
Group convolution is an effective sparse connection method, which can divide the input feature map into

different groups along the channel dimension, and then perform convolution operations on different groups
respectively. MobileNet [22] uses depth separable convolution to build a lightweight depth neural network.
The standard convolution is decomposed into depthwise convolution and pointwise convolution. Depthwise
convolution, as an extreme of group convolution, can be regarded as group convolution with only one
channel in each group. Pointwise convolution uses 1*1 convolution with low overhead to combine the
information of each channel for channel fusion, which can greatly reduce the number of parameters and
computation. At the lower level of the network, the standard convolution of 3*3 in multi-scale residual
module is replaced by the depth separable convolution to obtain the lightweight multi-scale residual
learning module, as shown in Fig. 5a, which is module1 in Fig. 4. Where, conv/dw and conv/pw
respectively represent depthwise convolution and pointwise convolution, which constitute the depth
separable convolution.

As the number of network layers increases, the receptive field becomes larger, the features become
abstract, the number of channels increases, and the number of convolution kernels increases. Therefore,
the use of large convolution kernel will inevitably bring more parameters. So, in the deeper layer of the
network, large convolution kernel is removed to reduce parameters. In addition, factorizing convolution
[19] decomposes the convolution of k*k into 1*k and k*1 to reduce the complexity of the calculation, as
shown in Fig. 5b, which is module2 in Fig. 4.

Group convolution is troubled by “poor information flow”, and thus ShuffleNet [23] adopts channel
shuffle to solve this problem. A novel feature map is constructed by shuffling the channels of the
convolutional feature map. That is, each conv/g is part of the output channel. When the group
convolution is shuffled and recombined, information is exchanged between channels. Therefore, the
reduction module shown in Fig. 6 is adopted to replace the pooling operation that is commonly used to
reduce image size and expand channels. Where, conv/g represents group convolution, divided into
4 groups, and the size of convolution kernel is 1*1.

Figure 4: Tomato leaf disease diagnosis network framework
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2.3 Improve the Identification Accuracy by Variational auto-Encoder

2.3.1 Variational Auto-Encoder
Variational auto-Encoder (VAE) [24] is a generative model based on variational bayes proposed by

Diederik P. Kingma and Max Welling. VAE encodes the mode into the multivariate normal distribution of
the latent space through encoder, and then reconstructs the image from the latent space through decoder.
VAE can map images from pixel space to normal distribution space, and all images will be encoded into
two vectors of size n, where n is the specified hyperparameter of the latent space. In practice, we can use
CNN to implement VAE.
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Base

average 
pooling

(stride = 2)

conv/g, 1*1
(group = 4)

concatenation

Channel shuffle

conv/dw, 3*3
(stride = 2)

BN
relu

BN

BN

relu

conv/g, 1*1
(group = 4)

Figure 6: Reduction module: reduction

566 IASC, 2021, vol.28, no.2



2.3.2 VAE Enhance Identification of Tomato Leaf Diseases
Compared with other commonly used classifications, crop disease identification is more professional

that requires more experience. In actual research, some disease images are accurately labeled whereas
most disease images are not. For this reason, VAE is used to improve the classification accuracy of
tomato leaf disease identification model based on deep neural network. VAE includes two steps. The first
step is to train the VAE Network to obtain the Encoder Network parameters, and the second step is to
train the Classification Network to realize the classification function. The network structure is shown in
Fig. 7 in blue box and red box respectively. The Classification Network is composed of two parts as
shown in Fig. 3b. The first part is used to extract features, and the second part is to combine features to
determine the category. It should be noted that our goal is to strengthen the learning of Classification
Network and improve the identification accuracy. The introduced VAE Network does not participate in
test and application, but only participates in the training. Therefore, no additional calculation and storage
consumption will be introduced in the actual model deployment and production environment. In addition,
Gaussian sampling is used in VAE Network and Classification Network, which not only generates codes,
but also adds noise. Thus, it can enhance the generalization effect of the model and reduce overfitting.

Lightweight tomato leaf disease identification network shown in Fig. 3 is divided into two parts of
“Encoder Network” and “Class Network, with the addition of ”Decoder Network”, form similar to Fig. 7,
specific as follows, “Encoder Network” contains StageX(X=1,2,…,5), ReductionX(X=1,2,…,4), Max-
pooling, FC-m, FC-s structure, the input is a tomato leaf images, the output is a two-dimensional vector
with length of 256, as shown in Fig. 8. Tab. 2 shows the output sizes of each layer in Encoder Network.

Decoder Network includes FC-4096, UpsampleX(X=1,2,…,6), ScaleX(X=1,2,…,6) and Conv3-
3 structures, the input is a latent vector of length 256, and the output is the reconstructed image with size
of 128*128*3, as shown in Fig. 9. Tab. 3 shows the output size of each layer in Decoder Network.

In Decoder Network, FC-4096 changes the length of latent vector from 256 to 4096 through the fully
connected layer, and then changes the shape to 2*2*1024. UpsampleX uses a 3*3 convolution kernel to
perform the expansion convolution, so as to realize the expansion of the input size and the transformation
of channel number. ScaleX is a “building block” in Resnet structure consisting of two 3*3 convolution

Figure 7: VAE enhance identification of tomato leaf diseases
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and shortcut, with the same input and output dimensions. Conv3-3 uses a 3*3 convolution kernel to extract
the features, reducing the channel from 32 to 3.

Classification Network is divided into Encoder Network and Class Network. Encoder network is part of
the VAE network. Class Network mainly maps the features learned by Encoder Network to class labels,
which are composed of Dropout, FC-10 and Softmax. During the training, Dropout randomly eliminates
some neurons with a certain probability, so that the corresponding parameters are not updated in the

Figure 8: Encoder Network

Table 2: Input and output dimensions of each layer of the Encoder Network

Layer Stage1 Max-Pooling Reduction1 Stage2 Reduction2 Stage3

Input Size 256*256*3 128*128*64 64*64*64 32*32*128 32*32*128 16*16*256

Output Size 128*128*64 64*64*64 32*32*128 32*32*128 16*16*256 16*16*256

Layer Reduction3 Stage4 Reduction4 Stage5 FC-m FC-s

Input Size 16*16*256 8*8*512 8*8*512 4*4*1024 4*4*1024 4*4*1024

Output Size 8*8*512 8*8*512 4*4*1024 4*4*1024 256 256

Figure 9: Decoder network

568 IASC, 2021, vol.28, no.2



process of back propagation. The FC-10 layer changes the size of the output feature vector to 10 through fully
connection, which corresponds to the category of tomato leaf disease identification task. The Softmax layer
maps the output of multiple neurons to the (0,1) interval which can be understood as a probability for
multiple classification.

In this paper, we propose four methods for comparison, namely “Class”, “AE-Class”, “Class-z” and
“VAE-Class-z”. “Class” represents “Classification Network” in red box shown in Fig. 10. In the
implementation, the lightweight tomato leaf disease identification network is shown in Fig. 3. “AE-Class”
includes the structure of “AE Network” in blue box and “Classification Network” in red box shown in
Fig. 10. That is, the Decoder network shown in Fig. 9 is added to the classification network shown in
Fig. 3. The reconstruction model auto-encoder (AE) network [24] is first trained with all data (including
labeled data and unlabeled data), and then Classification Network is trained with labeled data only.
“Class-z” only includes the “Classification Network” shown in Fig. 7. Compared with “Class”, the latent
vector z of “Class-z”, being sampled from Gaussian distribution, can increase uncertainty, rather than
directly classify the features extracted from the input data. “VAE-Class-z” stands for the structure shown
in Fig. 7, including the VAE Network and Classification Network. It first trains the model VAE Network
with all data, and then the Classification Network with labeled samples. Compared with “VAE-Class-z”,
“AE-Class” uses directly generated features instead of sampled features for training and classification.

Table 3: Input and output dimensions of each layer of the Decoder Network

Layer FC-4096 Upsample1 Scale1 Upsample2 Scale2 Upsample3

Input Size 256 2*2*1024 4*4*1024 4*4*1024 8*8*512 8*8*512

Output Size 2*2*1024 4*4*1024 4*4*1024 8*8*512 8*8*512 16*16*256

Layer Scale4 Upsample5 Scale5 Upsample6 Scale6 Conv3-3

Input Size 32*32*128 32*32*128 64*64*64 64*64*64 128*128*32 128*128*32

Output Size 32*32*128 64*64*64 64*64*64 128*128*32 128*128*32 128*128*3

Figure 10: AE enhanced identification of tomato leaf diseases
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2.4 Tomato Leaf Disease Detection Model

There are two common solutions for target detection tasks. One is two-stage target detection, and the
other is one-stage target detection. In two-stage target detection, the target is recognized through a neural
network before classification, whereas in one-stage target detection, the network is used directly to detect
the target. Two-stage target detection is easy to implement, but the downstream classification depends on
the performance of the upstream identification and positioning. However, although one-stage target
detection does not need to identify the target first, it makes end-to-end target detection more difficult to
achieve. In summary, the two-stage method has higher accuracy but lower speed compared to the one-
stage method. When detecting tomato diseases, the speed of the two-stage method can meet the
requirements of higher precision, such as Faster R-CNN [25]. We propose to use Mask R-CNN [26] to
enhance the performance of Faster R-CNN on bounding box recognition by adding object mask branch in
parallel to existing branches, as shown in Fig. 11. Mask R-CNN is used for object instance segmentation.
Instance segmentation algorithms usually require an accurate pixel-level segmentation mask to monitor
labels to be assigned to all the training samples. However, collecting labels is difficult, and labeling a
new category takes time and effort. Therefore, weakly supervised method [12] is adopted to mark the leaf
pixels and disease types in the training stage.

The identification accuracy of the detection model is improved based on deep neural network. It is
implemented by following two steps. Firstly, lightweight tomato leaf disease identification network based
on VAE (VAE-Class-z) is trained and parameters of Encoder Network are obtained. Secondly, the trained
Encoder Network is used as the “backbone” network of Mask R-CNN to train the model with the
segmentation data of diseased leaves. In actual use, only the Mask R-CNN network is involved in the test
phase. Therefore, no additional calculation and storage consumption is introduced in the actual model
deployment and production environment.

3 Results and Discussion

3.1 Experimental Environment

The experimental configuration environment of this paper is as follows: Ubuntu16.04 LST 64-bit
system, processor Intel Core i5-8400(2.80 GHz), memory is 8 GB, graphics card is GeForce GTX1060
(6G), using Tensorflow-GPU1.4 deep learning framework, using Python programming language. The
same training parameters are used in the experiment. For example, the size of the generated latent vector
is 256, the epoch is 20, and the Adam optimizer is used to solve the minimum loss.

Figure 11: Mask R-CNN
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3.2 Comparison of Different Depth Model Identification Indicators

The improved convolutional neural network is compared with several advanced convolutional neural
networks, including VGG16/19, ResNet-34/50, Inception-ResNet-V2, MobileNet-V1/V2 in diagnosing
and identifying tomato diseased leaves. Tab. 4 lists the classification accuracy and the model size after
training under different neural network models. In this part, Serial No.5 in Tab. 1 is used to test the
improved model.

It can be seen from Tab. 4 that the improved neural network model can achieve 98.42% accuracy.
Compared with the traditional convolutional network model, the proposed network model has higher
accuracy, which shows the effectiveness of using multi-scale convolution in the residual module to improve
network performance. In addition, the number of parameters in the model is also significantly reduced.

3.3 Analysis of Classification Results

Fig. 12 shows the framework of classification network. It includes two stages: train classification
network and apply classification network. For training, firstly, we use labeled and unlabeled data to train
“VAE Network”, and then only use labeled data to train “Classification Network”. In application, we only
use the trained “Classification Network” to identify the labels of the input images.

Table 4: Comparison of different depth model recognition indexes

Models Accuracy(%) Fps(Images/sec) Model loading time(s)

VGG16 [16] 94.65 73 1.81

VGG19 [16] 95.19 64 2.15

ResNet-34 [17] 97.43 233 0.48

ResNet-50 [17] 96.95 119 0.85

Inception-ResNet V2 [27] 98.24 115 1.64

MobileNet-V1 [22] 96.52 291 0.59

MobileNet-V2 [28] 95.14 229 0.74

Proposed 98.42 278 1.05

Figure 12: Framework of classification network by VAE enhancement strategy

IASC, 2021, vol.28, no.2 571



In order to verify the usability of the identification model in different senarios, according to the
proportion of training sets and validation sets, the dataset is divided into 5 groups. As shown in Tab. 1,
the proportion of training set-verification set of Serial No.1-5 corresponding to 5 samples, respectively.

In Fig. 13a–13e correspond to the classification loss of four methods in 5 different samples, and (f)
corresponds to the classification accuracy of four methods in 5 samples. As mentioned above, these four
methods are Class, AE-Class, Class-z, VAE-Class-z respectively. It can be seen from Fig. 13, the loss of
Class and Class-z is larger than the two enhancement methods, and the loss decreases slowly, indicating
that the unlabeled data enhancement method makes the loss smaller and decreases rapidly.

As shown in Fig. 13f, the diagram of VAE-Class-z corresponding classification accuracy is the highest in
the five sets of data. It shows that VAE enhancement method can significantly improve the classification
accuracy of the network, especially in the case of fewer samples (such as Serial No.1), where the
identification accuracy increased to 78.03% in VAE-Class-z from 56.13% in Class. And in the case of

Figure 13: (a)-(e) classification loss corresponding to 5 samples, (f) classification accuracy of the four
methods in 5 samples
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more labeled samples (such as Serial No. 5), the identification accuracy increased to 98.87% in VAE-Class-z
from 98.42% in Class, showing an increase of 0.45%. By comparing Class and Class-z, when the amount of
labeled samples is small (Serial No.1), the increase in model uncertainty can reduce the accuracy; when the
number of labeled samples is large (Serial No.4-5), the increase of uncertainty in the model can slightly
improve accuracy. Both AE-Class and VAE-Class-z can significantly increase the classification accuracy,
and the VAE-Class-z method is better. This is because although Gaussian sampling increases the
uncertainty, the model can learn this uncertainty with VAE-Class-z enhancement, thus enhancing the
generalization effect of the model.

3.4 Analysis of Detection Results

After expansion, 558 disease images and 463 healthy images are obtained and divided into training set
and test set according to the proportion of 7:3. 167 diseased leaf images and 139 healthy leaf images are
detected using the Mask R-CNN framework. A total of 818 tomato leaves are detected in 306 images
totally, including 240 diseased leaves and 578 healthy leaves. There are 14 identification errors in
240 diseased leaves, and the error identification rate is 5.83%. Only one leaf is identified as healthy leaf,
and another 13 diseased leaves are identified as other diseases. Only 0.42% of the diseases are
misidentified as healthy leaves, 5.42% of the diseases are mistakenly identified as other diseases. Among
578 healthy leaves, 10 are identified as diseased leaves with an error rate of 1.73%. In conclusion, the
correct identification rate of diseased leaves is 94.17%, and only 0.42% of diseased leaves are incorrectly
identified as healthy leaves. The correct identification rate of healthy leaves is 98.27%, and only 1.73% of
healthy leaves are misidentified as diseased leaves.

Figs. 14 and 15 show the correct and incorrect results of detection. The first line in the figure is the
original image, and the second line is the detection result. The diseases in the figures are indicated by
abbreviations. The actual categories of (a)-(e) in Fig. 15 are TBS, TEB, TEB, TLB, TSLS leaves,
respectively. But the identification results are TEB, TBS, healthy, TEB, TEB leaves respectively. The
number after the disease category is the confidence of the detection category. For example, “TEB 0.72”
means that the confidence of TEB is 0.72.

Figure 14: Example of correct detection and identification
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4 Conclusions

We find that the dataset is large, but the amount of annotation is relatively small, and thus how to use
these unlabeled disease data is a question worth of research. To this end, we propose a lightweight tomato leaf
disease identification network supported by VAE enhancement method to improve the identification and
detection accuracy of crop leaf diseases. Multi-scale convolution is used to expand the width of the
network to make the extracted features more abundant, and deep separable convolution is used to reduce
the model parameters, and the lightweight model is applied to the identification network and detection
network. We hope our study can be extended to similar application scenarios for crop disease identification.

In the case of fewer labeled samples, the identification accuracy is improved from 56.13% to 78.03%, in
the case of more labeled, the identification accuracy has also been improved. The detection results show that
the correct identification rate of the disease species is 94.17%, and only 0.42% of the diseased leaves are
misidentified as healthy leaves. The correct identification rate of healthy leaves is 98.27%, and only
1.73% of healthy leaves are misidentified as diseased leaves. According to the analysis, the subsequent
detection errors can be screened through the confidence threshold and the proportion of the error leaves,
thereby further increasing the accuracy of disease identification. The results also show that VAE can
enhance the identification and detection of tomato leaf diseases based on proposed lightweight network
by making full use of the unlabeled data to overcome the difficulty of labeling. In the future, we will
continue to collect more sample images of crop diseases, and use deep convolutional neural network to
develop a complete crop disease identification system for agricultural.
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