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ABSTRACT

The unsteady stagnation-point flow of a hybrid nanofluid over a stretching/shrinking sheet embedded in a porous med-
ium with mass transpiration and chemical reactions is considered. The momentum and mass transfer problems are
combined to form a system of partial differential equations, which is converted into a set of ordinary differential equa-
tions via similarity transformation. These ordinary differential equations are solved analytically to obtain the solution
for velocity and concentration profiles in exponential and hypergeometric forms, respectively. The concentration profile
is obtained for four different cases namely constant wall concentration, uniform mass flux, general power law wall con-
centration and general power law mass flux. The effect of different physical parameters such as Darcy number Da�1ð Þ,
mass transpiration parameter VCð Þ, stretching/shrinking parameter dð Þ, chemical reaction parameter �ð Þ and Schmidt
number Scð Þ on velocity and concentration profile is examined. Results show that, the axial velocity will decreases as
the shrinking sheet parameter increases, regardless of whether the suction or injection case is examined. The concen-
tration decreases with an increase in the shrinking sheet parameter and the chemical reaction rate parameter.
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Nomenclature
b Constants �ð Þ
C Concentration field mol=m3ð Þ
DB Molecular diffusivity m2s�1ð Þ
Da�1 Inverse Darcy number �ð Þ
kC Chemical reaction parameter �ð Þ
K Permeability of porous medium m2ð Þ
P Pressure Nm�2ð Þ
Sc Schmidt number �ð Þ
VC Suction/injection parameter �ð Þ
Vw Mass transfer velocity ms�1ð Þ
u; vð Þ Velocities along x; yð Þ direction ms�1ð Þ
x; yð Þ Cartesian coordinates mð Þ
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Greek symbols
b Chemical reaction parameter �ð Þ
g Similarity variable �ð Þ
l Dynamic viscosity kgm�1S�1ð Þ
m Kinematic viscosity m2s�1ð Þ
q Density kgm�3ð Þ

Subscripts
hnf Hybrid nanofluid parameter �ð Þ
w Wall condition �ð Þ
1 Ambient condition �ð Þ

Abbreviations
HNF Hybrid nanofluid �ð Þ
MHD Magneto hydrodynamics �ð Þ
ODEs Ordinary differential equations �ð Þ
PDEs Partial differential equations �ð Þ
PST Prescribed surface temperature �ð Þ
PHF Prescribed heat flux �ð Þ

Highlights

� This work investigates the unsteady stagnation point flow and mass transfer with chemical reaction.

� The system of partial differential equations is converted into system of ordinary differential equations
via similarity transformations.

� The concentration profile is obtained for cases such as constant wall concentration, uniform mass flux,
general power law wall concentration and general power law mass flux.

� The axial velocity decreases as the shrinking sheet parameter increases.

1 Introduction

The mass transfer and momentum boundary layer flow have practical interest in the field of polymer
process and electrochemistry. Also, the hybrid nanofluid (HNF) flow is a significant field in industry and
become an interest field for researchers due to its wide applications. There are many significances of heat
transfer over stretching sheet, due to its advantages mentioned by many researchers [1,2]. Aly et al. [3,4]
made a comparison between the significances of HNF over NF for the magneto-hydrodynamic (MHD)
flow and heat transfer by considering the effect of partial slip. Turkyilmazoglu [5] found the multiple
solutions for MHD slip flow of viscoelastic fluid and Anusha et al. [6,7] investigated the unsteady
inclined MHD flow for Casson fluid with hybrid nanoparticles in a porous media. Also, Mahabaleshwar
et al. [8] investigated the MHD flow behaviour and mass transfer due to porous media. Fang et al. [9]
examined the unsteady stagnation point flow and heat transfer to obtain the closed form solutions for
prescribed wall temperature and wall heat flux. Mahabaleshwar et al. [10,11] made a research on the
MHD flow with carbon nanotubes by considering the effect of mass transpiration and radiation on it.
Suresh et al. [12,13] investigated the effect of hybrid nanofluid on heat transfer characteristics and
observed that a hybrid nanofluid of (Al2O3-Cu/H2O) had significant heat transfer. Momin [14]
investigated the laminar flow in an elevated funnel using mixed convection with a (Al2O3-Cu/H2O)
hybrid nanofluid. Recently, the mixed convective flow with radiation is studied by Patil et al. [15]
considering the couple stress fluid flow for first order chemical reaction. Furthermore, Mahabaleshwar
et al. [16] examined the MHD non-Newtonian fluid flow and heat transfer due to porous surface with
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heat source/sink by different solution methods. Mahabaleshwar et al. [17] investigated the steady flow with
HNF with mass suction, mathematically, and found the solution in algebraic decaying form. Nakhchi et al.
[18,19] studied the effect of CuO-water nanofluid on the improvement of entropy production for a double
pipe heat exchanger and a double V-cut twisted tapes, respectively. Recently many works are done on
HNF flow by researchers such as Zainal et al. [20] on MHD flow due to quadratic stretching/shrinking
sheet, Umair et al. [21] on radiative mixed convective flow, more recent developments and applications
of HNF are investigated by Sarkar et al. [22], Vishalakshi et al. [23] studied the effect of slips and mass
transpiration on the flow over porous sheet and Sneha et al. [24] on dusty HNF. The effect of
nanoparticles on the flow is also investigated by Jalali et al. [25] and Bhandari [26].

Motivated by these investigations, the current work investigates the unsteady stagnation point flow of
Cu‐Al2O3=H2O HNF over stretching/shrinking sheet embedded in porous media considering mass
transpiration and mass transfer with chemical reaction. The present work has many applications related to
heating and cooling processes at high temperature ranges. So, HNF has wide applications in heating and
cooling systems, refrigeration, space, machining, manufacturing, and etc. Also, the porous media is used
to achieve the applications in thermal energy storage, geothermal recovery, grain storage, electrochemical
process, flow through filtering device and chemical catalytic reactors. So, the momentum and mass
transfer problems were solved analytically to find a solution of velocity and concentration profiles in
exponential and hypergeometric forms, respectively. The concentration profile is obtained for four
different cases such as constant wall concentration, uniform mass flux, general power law wall
concentration and general power law mass flux. These solutions give a rare case of closed form solutions
which can be adapted to some other standard problems. The results have well agreement with the work of
Fang et al. [9]. The effects of different physical parameters like Darcy number, mass transpiration
parameter, stretching/shrinking parameter, and chemical reaction parameter, Schmidt number on velocity
and concentration profiles are examined under different situations.

2 Physical Model

The incompressible unsteady stagnation point flow over stretching/shrinking sheet is embedded in
porous media with mass transpiration and mass transfer with chemical reaction as shown in Fig. 1. The
Cu‐Al2O3=H2O HNF is used as the main fluid flow. The wall and free stream are moving along x-axis
with velocity Uw ¼ dax 1� ctð Þ�1 and U1 ¼ ax 1� ctð Þ�1, respectively and y-axis is perpendicular to it.
At the wall; the concentration is maintained constant at Cw with a uniform mass flux mw 1� ctð Þ�1=2 and
the concentration of free stream is kept constant at C1. The governing 2D continuity, momentum and
mass equations are as follows (see Anusha et al. [7], Mahabaleshwar et al. [8]).

@u

@x
þ @v

@y
¼ 0; (1)

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ � 1

qhnf

@P

@x
þ mhnf

@2u

@x2
þ @2u

@y2

� �
þ mhnf

K
U1 � uð Þ; (2)

@v

@t
þ u

@v

@x
þ v

@v

@y
¼ � 1

qhnf

@P

@y
þ mhnf

@2v

@x2
þ @2v

@y2

� �
; (3)

@C

@t
þ u

@C

@x
þ v

@C

@y
¼ DB

@2C

@y2
� kC C � C1ð Þ; (4)
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and the boundary conditions (B.Cs) are,

u x; 0; tð Þ ¼ uw ¼ dax

1� ctð Þ ; v x; 0; tð Þ ¼ Vw x; tð Þ;C x; 0; tð Þ ¼ Cw x; tð Þ; (5)

u x;1; tð Þ ¼ u1 ¼ ax

1� ctð Þ ;C x;1; tð Þ ¼ C1: (6)

The following similarity transformation is introduced (see Fang et al. [9]) to transform the system of
PDEs (1) to (4) into system of ODEs in order to find out the analytical solution,

w x; y; tð Þ ¼ ax
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf
1� ctð Þ

r
f gð Þ; f gð Þ ¼ C � C1

Cw � C1
; where g ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf 1� ctð Þp : (7)

And therefore the velocities along x- and y-axes are obtained as,

u ¼ ax

1� ctð Þ fg gð Þ; v ¼ �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf
1� ctð Þ

r
f gð Þ; (8)

and wall mass transpiration velocity is,

Vw x; tð Þ ¼ Vw tð Þ ¼ �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf
1� ctð Þ

r
f 0ð Þ: (9)

On applying x-momentum with u ¼ u1 to Eq. (2) we can obtain,

� 1

qhnf

@P

@x
¼ ax

1� ctð Þ2 cþ að Þ; (10)

Figure 1: Schematic diagram of the problem
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Use Eqs. (7), (8) and (10) in Eqs. (2) and (4) to get,

dfggg þ af þ gc
2

� �
fgg � cþ afg

� �
fg þ cþ a� adDa�1 1� fg

� � ¼ 0; (11)

fgg þ Sc af � c
g
2

� �
fg þ aScbf ¼ 0; (12)

The B.Cs associated with this Eqs. (5) and (6) also reduced as

f 0ð Þ ¼ VC ; fg 0ð Þ ¼ d ; fg 1ð Þ ¼ 1: (13)

f 0ð Þ ¼ 1 ; f 1ð Þ ¼ 0; (14)

here, VC ¼ � Vw x; tð Þ
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mf = 1� ctð Þp is the mass transpiration parameter, where it is depend on sign of the constant

a, i.e., if a > 0, then a positive VC indicates mass suction and negative VC indicates mass injection, and

reversely if a < 0, positive VC indicates mass injection and negative VC indicates mass suction. d ¼ uw
u1

is the wall moving parameter, here also if a > 0, positive d indicates the stretching wall and the negative
d indicates shrinking wall and if a < 0, positive d indicates the shrinking wall and the negative d
indicates stretching wall.

Also, Sc ¼ mf
DB

is Schmidt number, b ¼ kC
a 1� ctð Þ is chemical reaction parameter, and the quantity

d ¼ d2
d1
. Further the values and relations are as mentioned in the Table 1.

2.1 Solution of Pressure Term
Since v ¼ v y; tð Þ Eq. (3) will give,

� 1

d1qf

@P

@y
¼ @v

@t
þ v

@v

@y
� d2
d1

mf
@2v

@y2
; (15)

and

@P

@y
¼ g t; yð Þ will give;

P ¼
Z

g t; yð Þ þ h t; xð Þ; (16)

where, h t; xð Þ is the constant function of the integration respect to y.

Table 1: Physical properties of hybrid nanofluid with relations

Physical
properties

Base fluid
fð Þ

water H2Oð Þ

Nanoparticles Relation

Al2O3 s1ð Þ Cu s2ð Þ
q kg=m3ð Þ 997.1 3970 8933

d1 ¼
qhnf
qf

¼ 1� f2ð Þ 1� f1 þ f1

qs1
qf

 !
þ f2

qs2
qf

l Pasð Þ 0:96� 10�3 _ _
d2 ¼

lhnf
lf

¼ 1

1� f1ð Þ2:5 1� f2ð Þ2:5

FDMP, 2023, vol.19, no.2 545



On differentiate Eq. (16) w.r.t x to obtain equation as
@P

@x
¼ @h t; xð Þ

@x
, this is free from y. From Eq. (10),

@P

@x
can be rewrite as,

� 1

d1qf

@P

@x
¼ ax

1� ctð Þ2 cþ að Þ; (17)

The pressure P can be obtained from Eqs. (15) and (17),

1

qf
P0 � Pð Þ ¼ d1ax2

2 1� ctð Þ2 cþ að Þ; (18)

where, P0 is constant of integration. Integrate Eq. (15) to get,

1

qf
P0 � Pð Þ ¼ d1

Zy
0

@v

@t
dyþ d1

v2

2
�d2mf

@v

@y
; (19)

From Eqs. (18) and (19),

1

qf
P0 � Pð Þ ¼ d1ax2

2 1� ctð Þ2 cþ að Þ þ d1

Zy
0

@v

@t
dyþ d1

v2

2
�d2mf

@v

@y
; (20)

2.2 Solution for Velocity
Consider a special case with a ¼ �1=2; c ¼ �1, then Eq. (11) will give the following form,

dfggg � 1

2
f � gð Þfgg þ 1þ fg

� �
fg � 3

2
þ d

1

2
Da�1 1� fg

� � ¼ 0; (21)

Defining a new transformation F gð Þ ¼ f gð Þ � g, and using this in Eq. (21) will give,

dFggg � 1

2
FFgg þ 2Fg þ 1

2
Fg

2 þ 1

2
dDa�1Fg ¼ 0; (22)

And the associated B.Cs will reduces as,

F 0ð Þ ¼ VC; Fg 0ð Þ ¼ d � 1; Fg 1ð Þ ¼ 0: (23)

Assume the solution of Eq. (22) is in the form,

F gð Þ ¼ c1 þ c2Exp �agð Þ: (24)

On applying B.Cs defined in Eq. (23),

c1 ¼ VC þ 1� d

a
; c2 ¼ 1� d

a
; (25)

And on using Eqs. (24) and (25) in Eq. (22) will give,

2da2 þ VC þ Da�1
� �

aþ d þ 3 ¼ 0; (26)
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Its roots will obtained as,

a ¼
� VC þ Da�1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VC þ Da�1ð Þ2 � 8d d þ 3ð Þ

q
4d

; (27)

here, to obtain physically feasible solution Eq. (27) must satisfy VC þ Da�1ð Þ2 � 8d d þ 3ð Þ � 0. And
Eq. (26) will give,

VC ¼ �2da� Da�1 � d þ 3ð Þ
a

¼ 0; (28)

The solution will become,

f gð Þ ¼ gþ VC � 1� d

a
1� Exp �ag½ �ð Þ; (29)

And axial velocity is given by

fg gð Þ ¼ 1� 1� dð ÞExp �ag½ �; (30)

2.3 Solution for Concentration
For the special case a ¼ �1=2; c ¼ �1, the Eq. (12) got the form,

fgg �
1

2
Sc f � gð Þfg �

1

2
Scbf ¼ 0; (31a)

Use Eq. (29) in above,

fgg �
Sc

2
VC � 1� d

a
þ 1� d

a
Exp �agð Þ

	 

fg �

1

2
Scbf ¼ 0; (31b)

Then use Eq. (28) in above,

fgg þ Sc daþ Da�1

2
þ 2

a
þ d � 1

2a
Exp �agð Þ

	 

fg �

1

2
Scbf ¼ 0; (32)

On introducing the new variable e ¼ 1� dð Þ Sc

2a2
Exp �agð Þ in the Eq. (32) will yield,

e
@2f
@e2

þ 1� Sc dþ Da�1

2a
þ 2

a2

� �
þ e

	 

@f
@e

� Sc

2a2e
bf ¼ 0; (33)

And the B.Cs in terms of new variable are,

f
Sc 1� dð Þ

2a2

� �
¼ 1; f 0ð Þ ¼ 0: (34)

Then the general solution of Eq. (33) in terms of e is obtained as,

f eð Þ ¼ C1
1eC1H C1;Dþ 1;�e½ �; (35)
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And Eq. (35) in terms of g will be in the form,

f gð Þ ¼ C1
1 1� dð ÞC1

Sc

2a2

� �C1

Exp �C1agð ÞH C1;Dþ 1; d � 1ð Þ Sc

2a2
Exp �agð Þ

	 

; (36)

To obtain value of constant C1
1, the B.C in Eq. (14) is used in Eq. (36), the general solution will be,

f gð Þ ¼ Exp �C1agð Þ
H C1;Dþ 1; d � 1ð Þ Sc

2a2
Exp �agð Þ

	 


H C1;Dþ 1; d � 1ð Þ Sc

2a2

	 
 ; (37)

where, C1 ¼ Aþ D

2
; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4B

p
, and here

A ¼ Sc dþ Da�1

2a
þ 2

a2

� �
; B ¼ Scb

2a2
(38)

then wall mass flux is given by,

�fg 0ð Þ ¼ Sc 1� dð Þ
2a

C1

Dþ 1

H C1 þ 1;Dþ 2; d � 1ð Þ Sc

2a2

	 


H C1;Dþ 1; d � 1ð Þ Sc

2a2

	 
 ; (39)

2.4 Uniform Mass Flux Case
Define the transformation for Eq. (4) as, h gð Þ ¼ C � C1

mw

D

ffiffiffi
m

p , with following B.Cs,

at y ¼ 0 ; �D
@C

@y
¼ mwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ctð Þp
as y ! 1 ; C ! C1

; (40)

Use Eq. (40) in Eq. (4) for c ¼ �1 will give,

hgg � Sc

2
VC � 1� d

a
þ 1� d

a
Exp �agð Þ

	 

hg � 1

2
Scbh ¼ 0; (41)

With B.Cs,

hg 0ð Þ ¼ �1 ; h 1ð Þ ¼ 0; (42)

The Eq. (41) is similar to Eq. (31b) upto their general solution,

h gð Þ ¼ C1
1 1� dð ÞC1

Sc

2a2

� �C1

Exp �C1agð ÞH C1;Dþ 1; d � 1ð Þ Sc

2a2
Exp �agð Þ

	 

; (43)
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On using B.Cs as in Eq. (42), Eq. (43) will imply.

h gð Þ ¼
Exp �C1agð ÞH C1;Dþ 1; d � 1ð Þ Sc

2a2
Exp �agð Þ

	 


aC1 H C1;Dþ 1; d � 1ð Þ Sc

2a2

	 

þ 1� d

Dþ 1

Sc

2a2
H C1 þ 1;Dþ 2; d � 1ð Þ Sc

2a2

	 
� � ; (44)

2.5 General Power Law Wall Concentration
In the current section we examined the general condition by assuming the wall concentration with a

power law dependence on both time and distance as Cw ¼ C1 þ Cref xn 1� ctð Þm, wheren;m 2 R. Now
define the dimensionless concentration as follows:

C ¼ C1 þ Cw � C1ð Þxn 1� ctð Þm� gð Þ; and � gð Þ ¼ C � C1
Cw � C1

; (45)

by applying this new definition in Eq. (4) to obtain the following ODE for c ¼ �1,

�gg þ Sc af þ 1

2
g

� �
�g � Sc anfg þ m� ab

� �
� ¼ 0; (46)

With the following B.Cs,

� 0ð Þ ¼ 1; � 1ð Þ ¼ 0: (47)

For a ¼ �1=2 and using Eqs. (28)–(30), Eq. (46) will reduce to,

�gg þ Sc daþ 1

2
Da�1 þ 2

a
þ d � 1ð Þ

2a
Exp �ag½ �

� �
�g

þ Sc
n

2
1þ d � 1ð ÞExp �ag½ �½ � � m� b

2

� �
� ¼ 0

; (48)

By introducing new variable n ¼ d � 1ð Þ Sc

2a2
Exp �agð Þ in Eq. (48) to obtain,

n
@2�

@n2
þ 1� A1 � nð Þ @�

@n
þ A2

n
þ n

� �
� ¼ 0; (49)

where, A1 ¼ Sc dþ 2

a2
þ Da�1

2a

� �
; A2 ¼ 1

a2
Sc

n

2
� m� b

2

� �
.

And the B.Cs will reduce to,

�
Sc a� 1ð Þ

2a2

� �
¼ 1; � 0ð Þ ¼ 0: (50)

Now define � nð Þ ¼ nkw nð Þ in Eq. (49) to convert it into following expression,

n
@2w

@n2
þ �1 � nð Þ @w

@n
� k � nð Þw ¼ 0; (51)
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Here � ¼ 1þ 2k � A1, and expression for k is given by,

k ¼ A1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1

2 � 4A2

p
2

; with
Sc

4a2
2da2 þ 4þ aDa�1
� �2 � 2n� 4m� 2�; (52)

Eq. (51) is the standard form of hypergeometric differential equation and its solution will be in the
form of,

w nð Þ ¼ C1M k � n;�; nð Þ; (53)

It gives the solution of Eq. (49) in the form, f nð Þ ¼ C1n
kM k � n;�; nð Þ, therefore the solution of

Eq. (48) with B.Cs as in Eq. (47) is obtained as,

� gð Þ ¼
Exp �akgð ÞM k � n; �; d � 1ð Þ Sc

2a2
Exp �agð Þ

	 


M k � n; �; d � 1ð Þ Sc

2a2

	 
 ; (54)

And the wall mass flux is,

��g 0ð Þ ¼ ak þ Sc d � 1ð Þ k � nð Þ
2�a

M 1þ k � n; �þ 1; d � 1ð Þ Sc

2a2

	 


M k � n; �; d � 1ð Þ Sc

2a2

	 
 : (55)

2.6 General Power-Law Mass Flux
In this section, the general condition is assumed with the wall concentration by a power law dependence

on both time and distance �D
@C

@y
¼ mwx

n 1� ctð Þm�
1

2, where n;m 2 R. Now define the dimensionless

concentration as follows:

C ¼ C1 þ mw

D

ffiffiffi
m

p
xn 1� ctð ÞmH gð Þ; (56)

Use Eq. (56) in Eq. (4) for c ¼ �1 will give,

Hgg þ Sc af þ 1

2
g

� �
Hg � Sc anfg þ m� ab

� �
H ¼ 0: (57)

With B.Cs as,

Hg 0ð Þ ¼ �1; H 1ð Þ ¼ 0; (58)

Eq. (57) is the same as Eq. (46), therefore their solutions are similar. We can obtain the solution of
Eq. (57) as,

H gð Þ ¼ C1 d � 1ð Þ Sc

2a2

	 
k
Exp �akgð ÞM k � n; �; d � 1ð Þ Sc

2a2
Exp �agð Þ

	 

; (59)
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On applying B.C as in Eq. (58) to Eq. (59), we obtain the solution of Eq. (57) as follows:

H gð Þ ¼
2�aExp �akgð ÞM k � n; �; d � 1ð Þ Sc

2a2
Exp �agð Þ

	 


2a2k�M k � n; �; d � 1ð Þ Sc

2a2

	 

þ Sc k � nð Þ d � 1ð ÞM k � nþ 1; �þ 1; d � 1ð Þ Sc

2a2

	 
 ; (60)

The current work with nanoparticles dispersed in the base fluid is well agreement with the investigation
of Fang et al. [9] in the absence of nanoparticles, porous media, stagnation point parameter and chemical
reaction parameter.

3 Results and Discussion

The examination of unsteady stagnation point flow over porous media with mass transpiration and mass
transfer with chemical reaction for Cu‐Al2O3=H2O hybrid nanofluid is carried out to observe several results.
The momentum and mass transfer problem are combined to form the system of PDEs (1) to (4), then the
system is converted into system of ODEs (11) to (12) via similarity transformations. Then the governing
ODEs are solved analytically to obtain the solution for velocity and concentration profiles in exponential
and hypergeometric forms. Four different cases are considered for the concentration profile as constant
wall concentration, uniform mass flux, general power law wall concentration and general power law mass
flux. The effect of different physical parameters such as Darcy number Da�1ð Þ, mass transpiration
parameter VCð Þ, stretching/shrinking parameter dð Þ, chemical reaction parameter bð Þ, Schmidt number
Scð Þ on velocity and concentration profile is examined under different situations. These effects are
observed with the help of graphical representation of physically interested parameters for the solid
volume fraction of Al2O3 nanoparticle ’1ð Þ which is taken as 0.1 and that of Cu nanoparticle ’2ð Þ is
fixed at 0.04.

Fig. 2 demonstrates the solution domain a versus d for different values of VC . It can be observed that, as
the mass transpiration decreases from suction to injection, the solution domain will expand for negative
values of d.

Figure 2: a vs. stretching/shrinking parameter d for different values of mass transpiration parameter VC
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Fig. 3 depicts the transverse velocity due to stretching sheet and different values of VC in Fig. 3a. It
shows that transverse velocity increases with increase in VC . Fig. 3b demonstrates the transverse velocity
for different values of Da�1 and it will increase with increase in Da�1.

Fig. 4a is the plot for axial velocity due to shrinking sheet d ¼ �4ð Þ with various values of VC. In this
situation, axial velocity is negative and it is decreases with increase in mass transpiration from injection to
suction. Furthermore, Fig. 4b is the plot for axial velocity due to stretching sheet d ¼ 2ð Þ with various values
of injection parameter. In this situation axial velocity is positive and it is increased with increase in injection
parameter. Fig. 5 is depicted for axial velocity due to shrinking sheet d ¼ �4ð Þ with various values of Da�1.
In this condition axial velocity is negative and it is decreased with increase in Da�1 for both suction and

Figure 3: Transverse velocity f gð Þ for different values of VC in (a) and Da�1 in (b)
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injection cases. Fig. 6 investigates the axial velocity due to shrinking sheet with various values of shrinking
sheet parameter. As the shrinking sheet parameter increases, the axial velocity will decrease in both suction
and injection cases.

The concentration profiles for different values of shrinking sheet parameter are demonstrated in Fig. 7
for suction and non-permeability cases in Figs. 7a and 7b, respectively. It can be seen that f gð Þ will decrease
with increase in shrinking sheet parameter. Initially, f gð Þ will decrease upto certain value of g and then
become constant to 0.

The concentration profile for different values of b is demonstrated in Fig. 8 for non-permeability and
injection case in Figs. 8a and 8b, respectively. It can be seen that f gð Þ will decrease with increase in b.

Figure 4: Axial velocity fg gð Þ for different values of VC for shrinking sheet in (a) and stretching sheet in (b)
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The concentration profile for different values of mass transpiration parameter due to shrinking sheet
d ¼ �4ð Þ is demonstrated in Fig. 9. It can be seen that f gð Þ will decrease with increase in mass
transpiration from injection to suction.

The concentration profile of mass flux case for different values of shrinking sheet parameter is
demonstrated in Fig. 10 for suction, non-permeability and injection cases, respectively in Figs. 10a–10c.
It can be seen that h gð Þ will decrease with increase in shrinking sheet parameter. Initially, h gð Þ will
decrease upto certain value of g and then become constant to 0. On compare, injection case has more
mass transfer than non-permeable case and non-permeable case has more mass transfer than suction case
and the difference is very less in this case.

Figure 5: Axial velocity fg gð Þ for different values of Da�1 due to shrinking sheet for suction case VC ¼ 1ð Þ
in (a) and injection case VC ¼ �1ð Þ in (b)
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The concentration profile of mass flux case for different values of b due to shrinking sheet d ¼ �4ð Þ is
demonstrated in Fig. 11 for suction, non-permeability and injection case in Figs. 11a–11c, respectively. It can
be seen that h gð Þ will decrease with increase in b. On compare, injection case has more mass transfer than
non-permeable case and non-permeable case has more mass transfer than suction case and the difference is
greater in this case.

The concentration profile of mass flux case for different values of mass transpiration parameter due to
shrinking sheet d ¼ �4ð Þ is demonstrated in Fig. 12. It can be seen that h gð Þ will decrease with increase in
mass transpiration from injection to suction. Injection case has more transfer than suction case.

Figure 6: Axial velocity fg gð Þ for different values of shrinking sheet parameter for suction case VC ¼ 1ð Þ in
(a) and injection case VC ¼ �1ð Þ in (b)
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The concentration profile of mass flux case for different values of Sc due to shrinking sheet d ¼ �4ð Þ is
demonstrated in Fig. 13 for suction, non-permeability and injection case in Figs. 13a–13c, respectively. It can
be seen that h gð Þ will decrease with increase in Sc. By a comparison study, it can be found that injection case
has more mass transfer than non-permeable case and non-permeable case has more mass transfer than suction
case and the difference is more in this case also.

Figure 7: Concentration profile f gð Þ for different values of shrinking sheet parameter for suction case
VC ¼ 1ð Þ in (a) and non-permeability case VC ¼ 0ð Þ in (b)
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The concentration profile of mass flux case for different values of Da�1 due to shrinking sheet d ¼ �4ð Þ
is demonstrated in Fig. 14 for suction, non-permeability and injection case respectively in Figs. 14a–14c. It
can be seen that h gð Þ will decrease with increase in Da�1.

Fig. 15 shows the general power law wall concentration profile for different values of shrinking sheet
parameter for suction, non-permeability and injection cases in Figs. 15a–15c, respectively. It can be seen
that � gð Þ will increase with increase in shrinking sheet parameter. Initially � gð Þ decreases upto certain
value of g and then become constant to 0.

Figure 8: Concentration profile f gð Þ for different values of b due to shrinking sheet parameter for non-
permeability case VC ¼ 0ð Þ in (a) and injection case VC ¼ �1ð Þ in (b)
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Figure 9: Concentration profile f gð Þ for different values of suction/injection parameter due to shrinking
sheet parameter

Figure 10: Concentration profile h gð Þ of mass flux case for different values of shrinking sheet parameter for
suction case VC ¼ 1ð Þ in (a) no-permeability case VC ¼ 0ð Þ in (b) and injection case VC ¼ �1ð Þ in (c)
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Figure 11: Concentration profile h gð Þ of mass flux case for different values of b due to shrinking sheet for
suction case VC ¼ 1ð Þ in (a) non-permeability case VC ¼ 0ð Þ in (b) and injection case VC ¼ �1ð Þ in (c)

Figure 12: Concentration profile h gð Þ of mass flux case for different values of VC due to shrinking sheet
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Figure 13: Concentration profile h gð Þ of mass flux case for different values of Schmidt number Scð Þ due to
shrinking sheet for suction case VC ¼ 1ð Þ in (a) no-permeability case VC ¼ 0ð Þ in (b) and injection case
VC ¼ �1ð Þ in (c)

Figure 14: Concentration profile h gð Þ of mass flux case for different values of Da�1 due to shrinking sheet
for suction case VC ¼ 1ð Þ in (a) no-permeability case VC ¼ 0ð Þ in (b) and injection case VC ¼ �1ð Þ in (c)
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Figure 15: General power law wall concentration profile � gð Þ for different values of shrinking sheet parameter
for suction case VC ¼ 1ð Þ in (a) no-permeability case VC ¼ 0ð Þ in (b) and injection case VC ¼ �1ð Þ in (c)

Figure 16: General power law wall concentration profile � gð Þ for different values of b due to shrinking sheet
parameter for suction case VC ¼ 1ð Þ in (a) no-permeability case VC ¼ 0ð Þ in (b) and injection case VC ¼ �1ð Þ in (c)
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Figure 17: The general power law wall concentration profile � gð Þ for different values of VC due to
shrinking sheet

Figure 18: The general power law wall concentration profile � gð Þ for different values of Schmidt number
Scð Þ due to shrinking sheet for suction case VC ¼ 1ð Þ in (a) no-permeability case VC ¼ 0ð Þ in (b) and
injection case VC ¼ �1ð Þ in (c)
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Furthermore, Fig. 16 demonstrates the general power law wall concentration profile for different values
of b due to shrinking sheet d ¼ �4ð Þ for suction, non-permeability and injection case respectively in Figs.
16a–16c. It can be seen that � gð Þ will decrease with increase in b.

Figure 19: Stream line graphs for upper branch solution keeping VC = −6, d = −1, K = 1, in (a) t ¼ 0:1,
in (b) t ¼ 0:5 and in (c) t ¼ 1
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The general power law wall concentration profile for different values of mass transpiration parameter
due to shrinking sheet d ¼ �4ð Þ is demonstrated in Fig. 17. It can be seen that � gð Þ will increase with
increase in mass transpiration from injection to suction and it seems that suction case has more transfer
than injection case.

Figure 20: Stream line graphs for lower branch solution keeping VC ¼ �6 ; d ¼ �1 ; K ¼ 1, in (a) t ¼ 0:1,
in (b) t ¼ 0:5 and in (c) t ¼ 1
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The general power law wall concentration profile for different values of Sc due to shrinking sheet
d ¼ �4ð Þ is demonstrated in Fig. 18 for suction, non-permeability and injection case respectively in Figs.
18a–18c. It can be seen that � gð Þ will decrease with increase in Sc.

Finally, Figs. 19 and 20 demonstrate the stream line graphs for upper branch solution and lower branch
solution, respectively for some values of time t = 0.1, 0.5, 1. Stretching velocity of the wall is away from the
origin since stream velocity is towards the origin. It can be seen that as the time increases, the stagnation point
is moving away from the origin and towards the positive y direction.

4 Conclusion

The current work examined the unsteady stagnation point HNF flow over porous sheet with mass
transpiration and mass transfer with chemical reaction. The momentum and mass transfer problem are
solved analytically to obtain the solution for velocity and concentration profiles in exponential form and
hypergeometric form respectively. The concentration profile is obtained for four different cases such as
constant wall concentration, uniform mass flux, general power law wall concentration and general power
law mass flux. The effect of different physical parameters like Darcy number Da�1ð Þ, mass transpiration
parameter VCð Þ, stretching/shrinking parameter dð Þ, chemical reaction parameter bð Þ, Schmidt number
Scð Þ on velocity and concentration profile is examined under different situations. The observations are as
follows:

� The solution domain will expand as mass transpiration decreases for shrinking sheet case.

� Transverse velocity increases with increase in VC and Da�1.

� Axial velocity decreases with increase in mass transpiration and it decreases with increase in Da�1 for
both suction and injection cases.

� The axial velocity will decrease as the shrinking sheet parameter increases both in suction and
injection cases.

� Concentration profile f gð Þ will decrease with increase in shrinking sheet parameter or chemical
reaction parameter or mass transpiration.

� The concentration profile of mass flux case h gð Þ will decrease with increase in shrinking sheet
parameter, chemical reaction parameter, mass transpiration, Schmidt number or inverse Darcy
number.

� Injection case had more mass transfer than suction case.

� The general power law wall concentration profile � gð Þ will increase with increase in shrinking sheet
parameter or mass transpiration and it will decrease with increase in chemical reaction parameter or
Schmidt number.
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