
Computational-Analysis of the Non-Isothermal Dynamics of the Gravity-Driven
Flow of Viscoelastic-Fluid-Based Nanofluids Down an Inclined Plane

Idrees Khan1,2, Tiri Chinyoka1,2,* and Andrew Gill3

1Centre for Research in Computational & Applied Mechanics, University of Cape Town, Rondebosch, 7701, South Africa
2Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa
3Centre for High Performance and Computing, Council for Scientific and Industrial Research, Rosebank, Cape Town, 7700,
South Africa

*Corresponding Author: Tiri Chinyoka. Email: tchinyok@vt.edu

Received: 13 February 2022 Accepted: 07 May 2022

ABSTRACT

The paper explores the gravity-driven flow of the thin film of a viscoelastic-fluid-based nanofluids (VFBN) along
an inclined plane under non-isothermal conditions and subjected to convective cooling at the free-surface. The
Newton’s law of cooling is used to model the convective heat-exchange with the ambient at the free-surface. The
Giesekus viscoelastic constitutive model, with appropriate modifications to account for non-isothermal effects, is
employed to describe the polymeric effects. The unsteady and coupled non-linear partial differential equations
(PDEs) describing the model problem are obtained and solved via efficient semi-implicit numerical schemes
based on finite difference methods (FDM) implemented in Matlab. The response of the VFBN velocity, tempera-
ture, thermal-conductivity and polymeric-stresses to variations in the volume-fraction of embedded nanoparticles
is investigated. It is shown that these quantities all increase as the nanoparticle volume-fraction becomes higher.
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Nomenclature
Variables and Constants
� Dimensional variable
ðÞf Base-fluid quantity
ðÞnf Nanofluid (VFBN) quantity
ðÞs Nanoparticle (solid) quantity
T Temperature field
TW Isothermal wall temperature
p Pressure field
u 2D velocity field, (u, v)
x 2D Cartesian coordinates, (x, y)
t Time
h Width of thin-film

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI: 10.32604/fdmp.2022.021921

ARTICLE

echT PressScience

mailto:tchinyok@vt.edu
http://dx.doi.org/10.32604/fdmp.2022.021921


g Gravitational constant
cp Specific heat capacity
j Thermal conductivity
q Density
gs Solvent viscosity
gp Polymer viscosity
g Total viscosity
k Relaxation time
r Total stress tensor
s Polymer stress tensor
S Rate of deformation tensor

Parameters
b Polymer-to-the-total viscosity ratio
e Giesekus nonlinear parameter
h Inclination angle
’ Nanoparticle volume-fraction
Bi Biot-number
Br Brinkman-number
De Deborah-number
Gr Grashof-number
Pr Prandtl-number
Re Reynolds-number
Pe Peclet-number: Pe = Re × Pr

Abbreviations
VFBN Viscoelastic-fluid-based nanofluids

1 Introduction

Dispersion of thermally conductive, tiny metallic particles within a fluid (such as water, oil, etc.) is the
most obvious and effective method of improving/enhancing the heat-transfer-rate (HTR) characteristics and
thermal-conductivity properties of the fluid. The size and texture of the metallic particles are clearly
fundamental; large particles can lead to sedimentation, clogging, etc., while coarse-grained particles can
cause abrasion, etc. For these reasons, nanometer-size particles (nanoparticles) are used [1–24].

As in the cited references, the term nanofluid is herein used to describe the suspension of solid
nanoparticles in a base fluid. A variety of industrial applications (say heating and cooling) and medical
applications (chemotherapy, etc.) of nanofluids are well documented in the literature and summarized by
the cited references. Noting the fundamental importance of the rheology of the base fluid to the modern
applications of nanofluids, the studies, say in [1–3] focus attention on non-Newtonian (specifically
polymeric) base-fluids under various flow conditions. The widespread importance of non-Newtonian
fluids, both the Generalized Newtonian Fluids (GNF) as well as the polymeric (viscoelastic) fluids, in
contemporary application is quite straightforward for example [1–3,6,8,25–34].

The current study builds on the investigations in [1–3] and extends these investigations to free-surface,
gravity-driven, thin-film flows with convective heat exchange at the free-surface. Additionally and
alternatively, the current work extends the combined (particle-free) fluid-dynamics studies in [25] and
[29] to the inclusion of solid nanoparticles and hence raising the cited works to nanofluid-dynamics.
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The current work employs solution methodologies based on semi-implicit numerical-schemes derived
from the finite difference methods (FDM). The computational solution algorithms are implemented in the
MATLAB software. It is noted that other alternative numerical methodologies have been utilized for the
computational solution processes of similar nanofluid flow problems. Such alternative numerical
methodologies have been applied for hybrid nanofluid flow [35,36], for fractional viscoelastic fluid
[37,38], and for fractional viscoelastic hybrid nanofluid [39]. For example, the work in [40] investigates a
Generalized Newtonian fluid (the Casson fluid) based nanofluid subjected to thermal radiation, Joule
heating, and magnetic effects flowing over an inclined porous stretching sheet. Similar work in [41]
investigates thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable
stretching cylinder via collocation methods. The work in [42] gives an extensive review of strategies
based, among others, on nanofluids for solving “internal heat generation problem” for the optimization of
heat transfer in electronic devices. The work in [43] explores the significant potential of nanofluids, and
specifically the influence of nano-particle size and distribution, in solar energy harvesting. The
importance of viscoelastic fluid in heat generation/absorption is also explored in [44] using Maxwell fluids.

The following sequence is adopted in the paper. Section 2 outlines the description of the physical and
mathematical models. The development and implementation of the numerical and computational algorithms
as well as the real efficacy, accuracy, and convergence of the computational methodologies are given in
Section 3. The main results are presented graphically and discussed qualitatively in Section 4. Concluding
remarks follow in Section 5.

2 Problem Formulation

A schematic of the model problem is sketched in Fig. 1. A thin film of nanofluid (VFBN) of height h�

(where the height is in the direction normal to the inclined wall) flows down an inclined plane. The inclined
wall/plane makes an angle h with the horizontal.

Figure 1: Schematic of the model problem
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The x�-axis is taken parallel to the inclined wall and the y�-axis is taken perpendicular to this incline. The
superscript (�) denotes dimensional variables. The variables and parameters are otherwise similar to those
described in [1–3].

The solid boundary (the inclined wall) is kept at a constant temperature T �
w and convective cooling is

assumed at the free-surface, governed by Newton’s law of cooling.

The motion of the fluid is exclusively gravity-driven and hence the pressure gradient in the x�-direction
stays zero. Alternatively the pressure in the x�-direction stays constant. Naturally, the pressure in the
y�-direction is non-constant increasing from atmospheric pressure at the free surface to the maximum
fluid pressure at the bottom, i.e., at the inclined wall.

No-slip velocity boundary conditions are assumed along the rigid inclined wall. The velocity boundary
conditions at the free-surface naturally also arise from the zero-shear-rate requirements.

Following the notations of [1–3,29], the governing PDEs (in dimensional form) for the VFBN are,

r� � u� ¼ 0; (1)

q�nf
Du�

Dt�
¼ �r�p� þ r� � ðr�Þ þ q�nf g

�F; (2)

ðqcpÞ�nf
DT �

Dt�
¼ �r� � f�

q þ Q�
D þ r�: (3)

Here F ¼ ðsin h; � cos hÞ denotes the body force due to gravity and g� is the acceleration due to gravity.
The heat-source terms, denoted by r�, will subsequently be neglected in this study as their effects have been
comprehensively investigated in previous studies, as in [1].

Dimensionless parameters

The equations are studied in non-dimensional form via the following dimensionless-parameters;
Deborah-number (De), Reynolds-number (Re), Prandtl-number (Pr), Brinkman-number (Br), Peclet-
number (Pe = Re ⋅ Pr), activation-energy parameter (a), Grashof-number (Gr), Biot-number (Bi), and (b)
which represents the proportion of the polymer-viscosity compared to the fluid’s total-viscosity. These are
defined as follows:

b ¼ g�p1
g�1

;De ¼ k�1U�
1

h�
; Re ¼ q�f h

�U�
1

g�1
; Pr ¼

g�1cp�f

j�f
; Br ¼ U�

1
2g�1

j�f aT
�
W

;

Renf ¼
qnf
qf

Re; Penf ¼
qcp
� �

nf

qcp
� �

f

Pe; a ¼ R�T�
W

E� ; Gr ¼ g�h�

U�1
; Bi ¼ H�h�

k�0
:

(4)

The subscript (nf ) depicts nanofluid and the appropriate (nanofluid) quantity is obtained linearly from
contributions of the base-fluid volume-fractions (f ) and the nanoparticles (s) volume-fractions,

qnf ¼ ’qs þ ð1� ’Þqf ; ðcpqÞnf ¼ ’ðcpqÞs þ ð1� ’Þðcp; qÞf ;
where, ’ is the volume fraction function. The resultant dimensionless governing equations are,

r � u ¼ 0; (5)

Renf
Du
Dt

¼ �Renf rpþr � ðrÞ þ Renf GrF; (6)
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Penf
DT

Dt
¼ �r � jnf rT

� �þ BrQD; (7)

sþ es2 þ �kðTÞDe s
r � s

D

Dt
ln aT þ 1ð Þð Þ

� �
¼ gpðTÞ

ð1� ’Þ5=2
S: (8)

The expression for the appropriate mechanical dissipation term is,

QD ¼ cs: S þ ð1� cÞ gsðTÞ
ð ffiffiffiffiffiffiffiffiffiffiffiffi

1� ’
p Þ5

S: S: (9)

As given in [1], the expressions for viscosities, relaxation-times, and thermal-conductivities, under non-
isothermal conditions are,

gsðTÞ ¼ 1� bð Þeð�aTÞ; ðgsÞnf ¼
gsðTÞ

ð1� ’Þ5=2
; (10)

gpðTÞ ¼ beð�aTÞ; ðgpÞnf ¼
gpðTÞ

ð1� ’Þ5=2
; (11)

g ¼ gpðTÞ þ gsðTÞ; gnf ¼
g

ð1� ’Þ5=2
; (12)

�kðTÞ ¼ 1

aT þ 1
eð�aTÞ; (13)

jnf ¼ js � ð@ � 1Þ’ðjf � jsÞ þ ð1� @Þjf
js þ ’ðjf � jsÞ þ ð1� @Þjf ð1þ aA2TÞ: (14)

2.1 Boundary and Initial Conditions
The start-up conditions (at time t = 0) and the wall-conditions (at the inclined wall, y = 0, and at the free-

surface, y = 1) are,

Tð0; yÞ ¼ 0; uð0; yÞ ¼ 0; sð0; yÞ ¼ 0; 0 � y � 1; (15)

uðt; 0Þ ¼ 0; Tðt; 0Þ ¼ 0;
@

@y
uðt; 1Þ ¼ 1;

@

@y
Tðt; 1Þ ¼ �BiTðt; 1Þ; t � 0: (16)

Due to the hyperbolic nature of the equations for the polymeric stresses, the relevant boundary-
conditions for these equations are reconstructed from the main flow [1–3,29].

3 Numerical Solution

The numerical-scheme adopted for the velocity component is derived from a semi-implicit FDM
approach,

Renf
uðnþ1Þ � uðnÞ

Dt
¼ ðgsÞðnÞnf

@2

@y2
uðnþnÞ þ @

@y
sðnÞ12 þ @

@y
uðnÞ

@

@y
ðgsÞðnÞnf þ Renf Gr sin h; (17)

where
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uðnþnÞ ¼ ð1� nÞuðnÞ þ nuðnþ1Þ:

The velocity therefore updates at the new time-level, uðnþ1Þ, via the recursive algorithm,

� r1u
ðnþ1Þ
j�1 þ ðRenf þ 2r1Þuðnþ1Þ

j � r1u
ðnþ1Þ
jþ1 ¼ Renf u

ðnÞ
j þ ð1� nÞDt ðgsÞðnÞnf

@2

@y2
uðnÞ

þ Dt ð1� bÞ @

@y
ðgsÞðnÞnf

@

@y
uðnÞ þ @

@y
sðnÞ12 þ DtRenf Gr sin h

� �
;

(18)

where

r1 ¼ nðgsÞðnÞnf

Dt

Dy2
:

This represents a (diagonally-dominant) tri-diagonal linear algebraic system of equations. The
discretized temperature equation is obtained similarly,

Penf
@T

@t
¼ jðnÞnf

@2

@y2
T ðnþnÞ þ @

@y
T ðnÞ @

@y
jðnÞnf þ BrQðnÞ

D : (19)

The temperature therefore updates at the new time-level, T ðnþ1Þ, via the recursive algorithm,

� r2T
ðnþ1Þ
j�1 þ ðPenf þ 2r2ÞT ðnþ1Þ

j � r2T
ðnþ1Þ
jþ1 ¼ Penf T

ðnÞ
j þ ð1� nÞDt jnf @2

@y2
T ðnÞ

þ Dt
@

@y
T ðnÞ @

@y
jðnÞnf þ 2ð1� cÞDt BrðgsÞðnÞnf

@

@y
uðnÞ

� �2

þ2Dt BrcsðnÞ12

@

@y
uðnÞ;

(20)

where

r2 ¼ njðnÞnf

Dt

Dy2
:

The semi-implicit numerical scheme for the polymeric-stress, s is,

sðnþnÞ þ eðs2ÞðnÞ þ �kðnÞDe
sðnþ1Þ � sðnÞ

Dt
¼ explicit terms:

The solutions for the tensor components, sðnþ1Þ
11 , sðnþ1Þ

12 , and sðnþ1Þ
22 therefore follow directly from

algebraic manipulation,

ðDe�kðnÞ þ nDtÞsðnþ1Þ ¼ explicit‐terms: (21)

The explicit-terms for s11, s12 and s22 are respectively,

½�kðnÞDe� ð1� nÞDt�sðnÞ11 þ Dt�k
ðnÞ
De sðnÞ12

@

@y
uðnÞ þ sðnÞ11

@

@y
log 1þ aT ðnÞ

	 
� �
� eDtðs211 þ s212Þ; (22)

½�kðnÞDe� ð1� nÞDt�sðnÞ12 þ Dt�k
ðnÞ
De sðnÞ22

@

@y
uðnÞ þ sðnÞ12

@

@y
log 1þ aT ðnÞ

	 
� �

þ DtðgpÞnf
@

@y
uðnÞ � eDtðs11s12 þ s12s22Þ;

(23)
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½�kðnÞDe� ð1� nÞDt�sðnÞ22 þ Dt�k
ðnÞ
DesðnÞ22

@

@y
log 1þ aT ðnÞ

	 

� eDtðs212 þ s222Þ: (24)

4 Results

Graphical results are presented for the VFBN temperature field (T), velocity field (u), and polymeric-
stress components (s11; s12 and s22), using the below list of default values,

a ¼ 0:01; Br ¼ 1; Prnf ¼ 1; Renf ¼ 1; Bi ¼ 1; Gr ¼ 1; De ¼ 2; b ¼ 0:2; c ¼ 0:5;

Dy ¼ 0:01; Dt ¼ 0:1; h ¼ 45; t ¼ 50; f ¼ 1; ’ ¼ 0:04; A2 ¼ 0:2; e ¼ 1; @ ¼ 3:
(25)

4.1 Time Devolvement of Steady Solutions
The time development of flow variables from the initial states until steady solutions are reached, as is

illustrated in Figs. 2 and 3. It can be noted that all solutions stably and ultimately settle to consistent
steady states.

4.2 Time-Step and Mesh Size Convergence
Figs. 4–7 illustrate that the computational and numerical algorithms are independent of both time-step

size and mesh size as required. The computational and numerical scheme specifically, and efficiently,
reproduce the required steady-solutions for a wide range of expected time-step sizes and mesh sizes.

4.3 Code Validation
A similar investigation to the current one was conducted in [29] using the Oldroyd-B constitutive model

and in the absence of nanoparticles. The Oldroyd-B model is obtained from the Giesekus model by taking the
nonlinear parameters as zero, i.e., e ¼ 0. The absence of nanoparticles in [29] mathematically reduces to
taking ’ ¼ 0. The study in [29] therefore used the ordinary Oldroyd-B constitutive model with constant
thermal-conductivity, jnf � jf , i.e., js ¼ @ ¼ A2 ¼ 0. By taking js ¼ 0, @ ¼ 0, e ¼ 0, ’ ¼ 0, and
A2 ¼ 0 in the current model, the VFBN results reduce to those for a normal viscoelastic (Oldroyd-B)
fluid and are exactly the same as those in [29].
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Figure 2: Time-development of profiles to steady-state with Dt ¼ 0:05
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4.4 Sensitivity of Solutions to Embedded Parameters
A representative sample of the flow behavior of field variables with variations in the fluid and flow

parameters is now presented. The sensitivity of the VFBN thermal conductivity to changes in ’ is
illustrated in Fig. 8. As expected, the VFBN thermal-conductivity increases with increasing nanofluid
volume-fraction, ’.

It therefore naturally follows that the VFBN temperature increases with increasing ’. This expected
response of the VFBN temperature to variations in ’ is illustrated in Fig. 9. An increase in fluid
temperature directly results in a reduction in fluid viscosity and hence an increase in the fluid velocity. It
is therefore expected that the VFBN velocity would increase with increasing VFBN temperature. This
expected increase of the VFBN velocity to variations in ’ is also illustrated in Fig. 9. Lastly, Fig. 9
demonstrates an increase in the polymeric-stresses with increasing nanofluid volume-fraction, ’.
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Figure 3: Time development of maximum flow quantities to steady-state
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Similar responses (as with ’) of the VFBN thermal-conductivity to variations in both the
thermal-conductivity parameter, A2, and the activation-energy parameter, a, are respectively illustrated in
Figs. 10 and 11.

Fig. 12 shows the response of flow quantities to variations in the nanofluid Prandtl number, Prnf . Noting
that Prnf is inversely proportional to the strength of the heat sources, the VFBN thermal conductivity
(subsequently therefore the VFBN temperature) should decrease as Prnf increases. These expected results
illustrated in Figs. 12 and 13, respectively.

The behaviour of VFBN thermal conductivity with variations in the Deborah number, De, is illustrated
in Fig. 14. It is observed that the VFBN thermal-conductivity increases with increasing De.
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4.5 Wall Shear-Stress and Wall Heat Transfer Rate
As was already observed in the previous section, the nanofluid (VFBN) velocity and temperature both

increase with increasing ’; Prnf , and De, see Figs. 8, 9, 12–14. The wall shear-stress and wall heat transfer
rate (at the inclined wall) follow the same patterns, they both also increase with increasing ’; Prnf , and De.
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Figure 8: Variation of VFBN thermal conductivity with ’
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Figure 9: Variation of VFBN flow quantities with ’
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5 Concluding Remarks

Efficient and robust computational and numerical schemes based on semi-implicit FDM were employed
to investigate the thermo-physical and fluid-dynamical characteristics of a non-isothermal, free-surface, thin-
film, gravity-driven flow of a VFBN. The VFBN flows down an inclined-plane and is subjected to
convective-cooling at the fluid-air interface, i.e., the free-surface. The numerical and computational
algorithms were checked for convergence in both space and time and were also positively validated
against the results in the existing literature. A single-phase nanofluid model, in which metallic
nanoparticles of spherical shape are homogenously mixed (ensuring non-sedimentation) to a viscoelastic
base fluid of the Giesekus type, was adopted. The results illustrate that the volume-fraction of the
embedded nanoparticles play fundamental roles in the fluid-dynamical and thermodynamical properties of
the VFBN. Specifically, the VFBN thermal-conductivity, VFBN temperature, VFBN velocity, and VFBN
polymeric stresses (in particular, the first normal stress difference) all increase as the nanoparticle volume-
fraction increases. The results are of fundamental industrial significance and importance, especially to
heating and cooling applications where heat-transfer-rate (HTR) enhancement and thermal-conductivity
improvement may be achieved via nanoparticles and nanofluidics.
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