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ABSTRACT

A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical,
Biological, Radiological and Nuclear (CBRN) applications. The code relies on the Finite Element Method
(FEM) for both the fluid and the dispersed solid phases. Starting from the Navier-Stokes equations and a general
description of the FEM strategy, the Streamline Upwind Petrov-Galerkin (SUPG) method is formulated putting
some emphasis on the related assembly matrix and stabilization coefficients. Then, the Variational Multiscale
Method (VMS) is presented together with a detailed illustration of its algorithm and hierarchy of computational
steps. It is demonstrated that the VMS can be considered as a more general version of the SUPG method. The final
part of the work is used to assess the reliability of the implemented predictor/multicorrector solution strategy.
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Nomenclature
Ae [-] Assembly matrix for the elements
Ni [-] Shape function
RX [-] Residual vector for X
Δt [s] = tn+1 − tn
Ω [m3] Space domain
αX [-] α-method for the X parameter
ν [m2/s] Kinematic viscosity
τX [-] Stabilization coefficient for X
~uadv [m/s2] Reference advection velocity
p [kg/(ms2)] Pressure
t [s] Time
u [m/s] Velocity
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Superscripts and Subscripts
adv Advection
BU Bulk viscosity stabilization coefficient
e Per element
F,M parameters for the α-method
l Multi-corrector iteration number
M, C Momentum, Continuity
n Timestep
PS Pressure stabilization coefficient
SU Stream-upwind stabilization coefficient
T Transpose

1 Introduction

1.1 Previous Works and Evolutions
In 2014, a DNS model for fluids laden with small particles was developed in the thesis of Janssens [1].

The model, using FEM for both the fluid and the dispersed phase, was validated by reference and
experimental CFD case studies (e.g., “Turbulent channel flow” case from Fig. 1, “Taylor-Green vortex
flow” case and “Turbulence-induced coalescence in aerosols” case).

Consequently to these validations, the aim of the proposed CFD model is to predict the dispersion of
particles in the atmosphere, for an area on the order of the hectometer, taking into account detailed
geometries of the topography. However, correctly resolving the atmospheric boundary layer is not straight
forward and its representation needs to be validated first. In article [2], a Schumann’s wall model was
implemented and tested in 2D. It used the Streamline Upwind Petrov-Galerkin (SUPG) stabilization
method implemented by Janssens [1] to stabilize the numerical oscillations. The results were encouraging
but in 3D, spurious numerical fluctuations near the wall were observed. There are suspicions concerning
the stabilization currently used in our finite element method. It appears as insufficient to damp the
oscillations occurring with high Reynolds number flow. So, we intend to amend it using the techniques
from the Variational Multiscale Method (VMS), which provides a combined framework for stabilization
and turbulence modeling. In this article, the proposed solution is first described and then compared

Figure 1: Turbulent channel flow (source: [1])
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theoretically to the SUPGmethod. In the second part, a comparison is proposed on the Taylor-Green test case
and the results are being analyzed.

2 Theory

In current work, the described methods are implicit. Thus, the system of equations is coupling the
velocity and the pressure.

2.1 Navier-Stokes in FEM
The model that is being implemented is based on the incompressible two Navier-Stokes transport

equations. These can be written following [1]:

r � u ¼ 0

@u

@t
þ ðu � rÞuþ uðr � uÞ

2
þrp� mr2u ¼ 0 (1)

The finite element formulation of the continuity and momentum equations can be achieved by
multiplying these equations with weighting functions. The unknown variables can be interpolated
between the discrete nodes by using shape functions and eventually, these equations can be integrated
over the whole domain. The expressions can be simplified by choosing weighting functions equal to
shape functions, which leads to a Galerkin formulation. After applying a θ-method to the time derivative
and because the shape functions are non-zero only on their respective node and surrounding element, the
integrals for all the elements can be replaced by a sum of the integral on each element. By solving this
discrete system, the pressure and the velocity for the next timestep can be found:

XN
e¼1

1

Dt
Te þ hAe

� �
ðxnþ1

e � xneÞ ¼ �Aex
n
e (2)

where θ is set to 1 for a forward Euler scheme or 0.5 for a Crank-Nicolson scheme. By default, it is set to
0.5 in [1]. The unknown xne for each element, grouped by nodal values, have following format for a 3D
element with m + 1 nodes:

xne ¼ ½pn0 � � � pnmðun0Þ0 � � � ðun0Þm � � � ðun2Þm� (3)

Matrices Ae and Te have the following structure:

Ae ¼ App Apu

Aup Auu

� �
¼

App Apu0 Apu1 Apu2
Au0p Au0u0 Au0u1 Au0u2
Au1p Au1u0 Au1u1 Au1u2
Au2p Au2u0 Au2u1 Au2u2

2
664

3
775 (4)

2.2 SUPG Stabilization Method
By applying the SUPG stabilization method detailed in [3] to Eq. (1), each block of Ae can be formulated

as follows:

App ¼
Z
�e

sPSrNT
p rNpd�e (5)

Apui ¼
Z
�e

Np þ sPS~uadvrNp

2

� �T

ðrNuÞi þ sPSðrNpÞTi ~uadvrNu

 !
d�e (6)
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Auip ¼
Z
�e

ðNu þ sSU~uadvrNuÞTrNpd�e (7)

Auiui ¼
Z
�e

ðmrNT
u rNu þ ðNu þ sSU~uadvrNuÞT~uadvrNuÞd�e þ Auiuj (8)

Auiuj ¼
Z
�e

sBU ðrNuÞi þ
1

2
ð~uadvÞiðNu þ sSUurNuÞ

� �T

ðrNuÞjd�e (9)

Tpui ¼
Z
�e

sPSðrNpÞTi Nud�e (10)

Tuiui ¼
Z
�e

ðNu þ sSU~uadvrNuÞTNud�e (11)

where ~uadv is the advection velocity, obtained, in [1], by a Taylor expansion of the previous velocities. And
where the stabilization terms, multiplied by their respective stabilization coefficients (τPS, SU, BU), are
presented in [4]. These coefficients have to be chosen in such a manner that the numerical values are
properly stabilized but not over-dissipated. This stabilization method was implemented by Janssens in [1]
and successfully helped to solve oscillations for reasonable Reynolds simulation (e.g., the channel flow
test case). Nevertheless, to be able to tackle the spurious numerical oscillations observed in [5], the idea
is to use a generalized version of the SUPG stabilization method, called Variational Multiscale method
(VMS), introduced by Hughes in [6]. The next section will present an implementation of the VMS
algorithm proposed by Bazilevs [7].

2.3 Variational Multiscale Method (VMS)
The VMS applies the scale separation (coarse vs. fine) primarily and only approximate the fines scales.

In these small scales, the stabilization terms appear “naturally”.

2.3.1 Structure
The proposed VMSmethod follows a predictor/multi-corrector structure, schematized in Fig. 2. This method

has more parameters than the standard SUPG method, allowing it to better respond to numerical oscillations.

2.3.2 Stages
Predictor stage

For each timestep, during the first stage, the predictor stage, the three variables (velocity u, derivative of
the velocity u

�
and pressure p) are set according to previous timestep.

Unþ1;ð0Þ ¼ Un (12)

_Unþ1;ð0Þ ¼ c� 1

c
_Un (13)

Pnþ1;ð0Þ ¼ Pn (14)

γ (as well as αf and αm that are presented in this section) is a real-valued parameter defining the α-method.
It is developed in [8,9].
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Multi-corrector stage

Then, a number of iterations (l = 1, 2, …, lmax) is performed (typically between 2 and 4) to converge to
steady values, or in other words, the residuals for, both, the continuity and momentum equations of Eq. (1)
are minimized. To be more explicit, during these iterations, the following steps are performed:

1) The first step is to set the intermediate time levels:

_Unþam;ðlÞ ¼ _Un þ amð _Unþ1;ðl�1Þ � _UnÞ (15)

Unþaf ;ðlÞ ¼ Un þ af ðUnþ1;ðl�1Þ � UnÞ (16)

Pnþ1;ðlÞ ¼ Pnþ1;ðl�1Þ (17)

αf and αm are intermediate time level parameters. They (as well as previously mentioned γ) are selected,
taking accuracy and stability considerations into account. According to [9], obtaining second-order accuracy
in time is possible if:

c ¼ 1

2
þ am � af (18)

and the method is unconditionally stable if:

am � af � 1

2
(19)

2) These intermediate values are used to assemble the residuals of the continuity and momentum
equations and solve the following linear system:

A _u _uD _Unþ1;ðlÞ þ A _upDPnþ1;ðlÞ ¼ �RM
ðlÞ (20)

Ap _uD _Unþ1;ðlÞ þ AppDPnþ1;ðlÞ ¼ �RC
ðlÞ (21)

Figure 2: Predictor/Multi-corrector’s structure
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that can be rearranged as below:

A _u _u A _up

Ap _u App

� �
D _Unþ1;ðlÞ
DPnþ1;ðlÞ

� �
¼ �RM

ðlÞ
�RC

ðlÞ

" #
(22)

3) This will provide values for the derivative of the velocity and the pressure that can be updated in the
last step of the multi-stage corrector:

_Unþ1;ðlÞ ¼ _Unþ1;ðl�1Þ þ D _Unþ1;ðlÞ (23)

Unþ1;ðlÞ ¼ Unþ1;ðl�1Þ þ cDtD _Unþ1;ðlÞ (24)

Pnþ1;ðlÞ ¼ Pnþ1;ðl�1Þ þ DPnþ1;ðlÞ (25)

In terms of computation, the second step of the multi-corrector stage, namely, assembling and solving
the linear system, is the costliest.

2.3.3 VMS Assembly Matrix Ae

Below, compared to Eqs. (5)–(11), a slightly different assembly matrix Ae is provided:

Ae ¼ A _u _u A _up

Ap _u App

� �
(26)

Indeed, in this case, the first block depends on the derivative of the velocity u
�
and the last block on the

pressure p. This structure was chosen to match the proposed implementation of [7] but it is equivalent to the
one presented in the SUPG Section 2.2.

For each block, the expression is detailed hereafter:

A _ui _ui ¼
Z
�e

ðamNT
_u N _u þ amðusMrN _uÞTN _u þ af cDtN

T
_u urN _u þ af cDtðrN _umÞTrN _uþ

af cDtðurN _usM ÞT ðurN _uÞÞd�e

(27)

A _ui _uj ¼
Z
�e

ðafcDtðrN _uÞTj mðrN _uÞi þ af cDtðrN _uÞTi sCðrN _uÞjÞd�e (28)

A _uip ¼
Z
�e

�ðrN _uÞTi Np þ ðuTsM ðrN _uÞiÞTrNpd�e (29)

Ap _ui ¼
Z
�e

ðaf cDtNT
p ðrN _uÞi þ af cDtðrNpÞTi sMurN _u þ amðrNpÞTi sMN _uÞd�e (30)

App ¼
Z
�e

ðrNpÞTsMrNpd�e (31)

As previously described, the N½ _u;p� represent the shape functions; α[f,m] and γ the intermediate time level
parameters; Δt the difference between timestep tn+1 and tn; u is the advection velocity (different of ~uadv
because computed during the simulation and not constructed from a Taylor serie); ν is the kinematic
viscosity; and τ[C,M] are the stabilizing coefficients that still needs to be described thoroughly.
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2.3.4 Defining the Stabilizing Coefficients
τM and τC are the stabilizing coefficients associated to the momentum and continuity equations. Below,

their respective expressions:

sM ¼ 4

Dt2
þ uh � Guh þ C1m

2G : G

� ��1
2

(32)

sC ¼ ðsMg � gÞ�1 (33)

where C1 is a positive constant, derived from an element-wise inverse estimate described in [10] and set to
1 in our work. And where three specific operations have to be introduced:

1. The tensor product G:G ¼ P3
i;j¼1

GijGij

2. The tensor product uh � Guh ¼ P3
i;j¼1

uhi Gijðuhj ÞT

3. The tensor product g � g ¼P3
i¼1

giðgiÞT

where Gij ¼
P3
k¼1

J�1
k;i ðJ�1

k;j ÞT is the element metric tensor, computed from the element shape function inverse

Jacobian matrix J�1 ¼ @xi
@nk

� ��1
. For the last item gi ¼

P3
j¼1

ðJ�1Þj;i.

2.4 SUPG vs. VMS Assembly Matrix Comparison
Now that both SUPG (2.2) and VMS (2.3) are described, it is convenient to show that, indeed, the VMS

method can be considered as a generalized version of the older and more used SUPG method.

To ease the comprehension, the intermediate time level parameters are set to unity: αf = αm = γ = 1, and
Δt is set equal to 1 making the value of _u and u equal.

For each block of the assembly matrices, the observation is given:

1. PP block (Eqs. (5), (31)): Both equations are expressing the shape functions related to the pressure
and can be considered equivalent, assuming τPS ≡ τM

2. PUi block (Eqs. (6), (10), (30)): Both Ae and Te for SUPG are gathered into Ae in VMS. Besides,
Eq. (6) is proportional to the two first terms of Eq. (30), while the third term in Eq. (30) is
equivalent to Eq. (10).

Note that the second term of the SUPG formulation is written in skew symmetric form to improve its
stability and accuracy properties.

3. UiP block (Eqs. (7), (29)): After an integration by parts, the first term of Eq. (7) can be expressed as
the first term of Eq. (29). The second terms are directly equivalent.

This also implies that, for setting the pressure to 0 on a boundary (i.e., at the outlet), nothing has to be
done. It is the “do-nothing” boundary condition [11].

4. UiUi block (Eqs. (8), (11), (27)): All the terms are identical.
5. UiUj block (Eqs. (9), (28)): In the last block, there is a clear distinction between the SUPG and the

VMS formulation. For the first term of Eq. (9), supposing τBU ≡ τC, it can be considered equivalent to
the second term of Eq. (28). The second term of Eq. (9) is the skew-symmetric form in the SUPG
matrix while the viscous tensor in VMS is treated differently.
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3 Results

Now that the VMS theory that is implemented has been described, a few tests will be presented.

Note that, to reduce the computer cost, all tests are performed in 2D.

The first section is focused on the structure of the algorithm whereas the second, on the implementation.

3.1 VMS Structure: Poisson and Taylor-Green
The VMS structure described in Section 2.3.1 is a predictor/multi-corrector structure. To confirm the

correctness of our implementation, it was first tested qualitatively, with classical equations that have
analytical values.

The two chosen tests are the Poisson equation (with a uniform velocity boundary condition) for its
simple implementation and the Taylor-Green equation for its periodical boundary conditions (Fig. 3).

The objective of these tests was to ensure the output, with the new structure, would correlate with the one
produced with a standard Navier-Stokes structure.

3.2 Tests for the VMS Implementation
Having acquired confidence in the structure, the next step was to test the algorithm’s implementation.

The latter is more complicated because the only comparison that can be performed is to compare the
assembly matrix Ae between the SUPG implementation and the VMS algorithm implementation, when
both the viscosity ν and the stabilization coefficients τx are reduced to zero.

To better analyse how each equation described in Section 2.3.3 is influencing Ae, they are schemed with
blocks in Table 1. Note that each block is actually a 3 � 3 matrix.

Figure 3: Taylor-Green test case

Table 1: Ae structure

Auiui
Auiuj Auip

Auiuj
Auiui Auip

Apui
Apui App

Note: To ease the reading, the Ae matrix will be printed,
limited to 3 decimals (sufficient to see the differences).
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3.2.1 Results with ν = τx = 0

A simulation was performed, for an identical mesh, with both the SUPG implementation and the VMS
implementation. Table 2 displays Ae for the SUPG implementation. This is the reference result.

In Table 2, one can see the matrix is symmetrical, considering the blocks. Another observation is that
Auiuj and App blocks are null value. Eventually, all blocks have a column structure (values varying only
column-wise).

The next table (Table 3) proposes the VMS implementation (Eqs. (27)–(31)).

When analysing Table 3 for the similarities, the observation is that the null valued blocks are identical.
For the differences, the first remark is that Ae is column-wise except for Auip that is row-wise and has the
opposite sign, compared to SUPG values. Second, the Auiui values are not equal to SUPG ones.

After modifying Auip by transposing it and taking its opposite value, Table 3 becomes Table 4.

In the latter, the only difference resides in Auiui . This issue is still under investigation. When the issue will
be solved, the next step will be to reactivate the stabilization coefficients and the viscosity to study their
behavior.

Table 2: Ae with ν = 0 for SUPG

�0:182 0:000 0:182
�0:182 0:000 0:182
�0:182 0:000 0:182

0:000 0:000 0:000
0:000 0:000 0:000
0:000 0:000 0:000

�0:083 0:083 0:000
�0:083 0:083 0:000
�0:083 0:083 0:000

0:000 0:000 0:000
0:000 0:000 0:000
0:000 0:000 0:000

�0:182 0:000 0:182
�0:182 0:000 0:182
�0:182 0:000 0:182

0:000 �0:083 0:083
0:000 �0:083 0:083
0:000 �0:083 0:083

�0:083 0:083 0:000
�0:083 0:083 0:000
�0:083 0:083 0:000

0:000 �0:083 0:083
0:000 �0:083 0:083
0:000 �0:083 0:083

0:000 0:000 0:000
0:000 0:000 0:000
0:000 0:000 0:000

Table 3: Ae with u = 0 for VMS

�0:083 0:000 0:083
�0:083 0:000 0:083
�0:083 0:000 0:083

0:000 0:000 0:000
0:000 0:000 0:000
0:000 0:000 0:000

0:083 0:083 0:083
�0:083 �0:083 �0:083
0:000 0:000 0:000

0:000 0:000 0:000
0:000 0:000 0:000
0:000 0:000 0:000

�0:083 0:000 0:083
�0:083 0:000 0:083
�0:083 0:000 0:083

0:000 0:000 0:000
0:083 0:083 0:083
�0:083 �0:083 �0:083

�0:083 0:083 0:000
�0:083 0:083 0:000
�0:083 0:083 0:000

0:000 �0:083 0:083
0:000 �0:083 0:083
0:000 �0:083 0:083

0:000 0:000 0:000
0:000 0:000 0:000
0:000 0:000 0:000
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4 Conclusion

In this article, after having acknowledged the purpose of the work and its context, the aim was to present
the Variational Multiscale Method, to describe the chosen implementation, to demonstrate that it can be
considered as a more general version of the SUPG method, and to present its similarities and differences
with that method.

In the first part, the main objective of the work and its context were briefly recalled.

Then, in the second part, a theoretical explanation was provided for these two methods. Their respective
assembly matrices were described and a comparison revealed their characteristics.

The third part was more focused on the results of the implementation. It was shown that the predictor/
multi-corrector stages structure was properly implemented. It was also shown that the implementation of the
algorithm itself is not yet correct although evolving in the right direction.

Eventually, when the VMS implementation will reflect perfectly the SUPG (for the non-viscous case), it
will offer a robust foundation to explore the VMS capacities.
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