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ABSTRACT

We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid
over a shrinking/stretching curved surface, together with a heat transfer analysis of the same problem. The body
force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate. Curvilinear coordinates
are used to account for the considered curved geometry and a set of balance equations for mass, momentum, energy
and concentration is obtained accordingly. These are turned into ordinary differential equations using a similarity
transformation. We show that these equations have dual solutions for a number of different combinations of various
parameters. The stability of such solutions is investigated by applying perturbations on the steady states. It is found
that high values of the Micropolar and Casson parameters cause the flow to move more slowly. However, when
compared to a shrunken surface, a stretched surface produces a greater Micro-rotation flux.
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Nomenclature
K(1) Micropolar parameter
S 1ð Þ Suction/injection parameter
Tw Kð Þ Wall temperature
E(1) Non dimensional parameter
M(1) Modified Hartman number
Res(1) Reynolds number
kðNs=m2Þ Vertex viscosity
n(1) Micro-gyration
cp
� �

f
ðJ=kgKÞ Heat capacity of fluid

Nðm=sÞ Angular velocity components
sðmÞ Arc length
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u; vðmÞ Velocity components
NB Brownian motion parameter
K�(1) Curvature parameter
srs(pa) Wall shear stress
uðm=sÞ Velocity vector r-dircetion
Ec(1) Eckert number
b (1) Cassan fluid parameter
Res(1) Reynolds number
Shs 1ð Þ Sherwood number
Le Lewis number
NT ð1Þ Thermophoresis parameter
Pr(1) Prandtl number
n(1) Micro-gyration
R(m) Radius of curvature
k(1) Stretching parameter
qðkg=m3Þ Fluid density
c(1) Dimensionless parameter
mðm2=sÞ Viscosity of kinematic
aðm2=sÞ Thermal diffusivity
s(1) Ratio between heat capacity and base fluid
T(K) Temperature
lðNs=m2Þ Dynamic viscosity
TwðKÞ Wall temperature
T1ðKÞ Ambient temperature
RðmÞ Raduis of curvature

1 Introduction

COVID-19 has altered our way of life, causing us to become more aware of the limitations that we as
humans confront. Scientists and clinicians around the world are scrambling to figure out what is causing the
epidemic of the COVID-19 virus and what they can do to stop it. Scientists have concluded, as a result of
recent investigations, that nanotechnology can be used to address a wide range of clinical difficulties,
including the Coronavirus pandemic [1]. Nanotechnology has the potential to be used to prevent and
identify diseases in their early stages. The nanoparticles, when introduced into human immune system,
have the potential to target diseases at the cellular level. Nanoparticles have the extra advantage of
delivering molecular adjuvants for loaded antigens, which can improve the efficacy and safety of a
vaccine while also increasing its efficacy. In order to target delivery at the cellular level, a large number
of vaccines are being produced on the basis of nanoparticles (Lipid nanoparticles). The BioNTech/Pfizer
and Moderna mRNA Corona virus vaccines, for example, make use of Lipid nanoparticles to deliver
treatments more efficiently to the patient. Aside from that, face masks constructed of nanomaterials are
more capable of providing efficient air filtering and can also be reused for a longer period of time, giving
them an added edge in overcoming the shortage of high-quality masks.

Nanotechnology operates at the nanometric scale, and as a result, it is the study of a wide range of
systems and technologies that operate at this scale. Nanofluids, which are based on nanomaterials, are
becoming increasingly used in a variety of industrial and technical operations. Yoo et al. [2] were the first
to propose the concept of nanofluids in the year 1995, and since then, nanofluids have become a popular
topic of discussion among scientists. Yoo et al. [2] investigated the prospect of increasing energy
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exchange among fluids by incorporating various nanoparticles into the mix. Fetecau et al. [3] developed a
precise solution for the flow of nanoliquids by employing a fractional model. Meanwhile, Khan et al. [4]
presented the challenge of thin film electrically guided nanoliquids sprayed over a stretching cylinder in
their paper Tinny film electrically steered nanoliquids sprayed over a stretching cylinder in their paper. A
study conducted by Mekheimer et al. [5] using gyrotactic suspended nanoparticles and micro organisms
to investigate the discharge of Prandtl fluid flow by utilizing chemical reaction, radiation, and magnetic
field effects has just been published. Meanwhile, Ahmed et al. [6] investigated the Fa lkner-Skan problem
with double stratification in the flow of nanofluids by employing single/multiple wall carbon nanotubes in
the flow of single/multiple wall carbon nanotubes [7]. We out a comparative investigation of ethylene
glycol-based nanofluid flows, employing electro-osmotic and peristaltic pumping techniques. To examine
Hybrid nanoliquid slip flows, Wahid et al. [8] used an exponentially stretching/shrinking permeable sheet
that was stretched and shrunk exponentially. Because of the increasing demand for nanoliquid flows in
numerous fields of research and development, we find a wealth of studies on nanoliquid flows conducted
by a large number of other researchers [9,10].

Micropolar fluids are a class of non-Newtonian fluids in which we are interested in the micro-motion of
fluid particles and are therefore named as such. Eringen [11] was the first to propose the concept of micro
components in fluids, back in 1966. The formation of a boundary layer of micro-structured liquids, on the
other hand, was predicted by Willson [12]. With the use of Lubrication approximation theory, Asghar
et al. [13] were able to obtain a reduced version of the flow equation to represent Micropolar slime. In
the contemporary age, Abbas et al. [14] investigated the prospect of increasing energy transformation
among Micro-rotational nanoliquids by employing the Ota, Yamada, and Xue models of hybrid
nanoliquids, which were developed by Ota, Yamada, and Xue. For their part, Ismail et al. [15] used
generated magnetic field effects to analyze the flow of micro-structured fluids while conducting their
experiments. With the help of a magnetic curved surface, Abbas et al. [16] investigated the unsteady flow
of Micropolar fluid flows. Raza et al. [17] discovered dual solutions in their investigation of Micropolar
fluid flows utilizing thermal radiations, which was published just a few months ago.

Casson fluid is yet another essential non-Newtonian liquid that is becoming increasingly important in our
daily lives, according to the National Institute of Standards and Technology. Casson fluids include a variety of
sauces, jellies, and soups, amongst other things. Casson [18] was the first to derive the constitutive equations for
Casson fluid and to illustrate the properties of various polymers. He published his results in 1959. McDonald
[19] pointed out in 1974 that the flow of blood is a good representation of the Casson fluid model. Under-
discussed fluid classes find use in a diverse range of fields including medical, biology, the food industry,
and several sorts of drilling procedures, just to name a few. Because of the wide range of applications for
which this essential class of fluids is used, many researchers keep a close eye on it in their laboratories.
Through the use of the homotopy approach, Nadeem et al. [20] found the optimal solutions of Casson
nanoliquid flows. The authors of another paper [21] concluded that skin friction along the wall is lower in
Newtonian fluids than in non-Newtonian Casson-nanofluids when comparing the two types of fluids. When
it comes to the flow of Casson nanoliquids, Mustafa et al. [22] used general power law velocity dispersal to
analyze the phenomenon. Sarkar et al. [23] investigated the evolution of Casson nanoliquids in the
aggregation of wedge angle and melting processes, respectively. In a similar vein, Ibrar et al. [24]
investigated the flow of Casson nanoliquids with magnetic current using single and multiple wall carbon
nanotubes, respectively. Nayak et al. [25] used entangled motile gyrotactic micro-creatures to examine the
flow of Casson nanoliquids utilizing chemical processes in order to better understand their behavior. Several
researchers, including Khan et al. [26], have investigated the possibility of a dual solution in the evolution
of Casson fluid flows across a Stretching/Shrinking sheet.

We believe that unsteady fluid mix is appropriate based on the literature research and to the best of our
knowledge. Nanofluids flows across a curved Stretching/Shrinking surface using the Micropolar Casson-
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Buongiorno model have not been investigated previously. Based on the findings of the studies given in
[27,28], we determined that it was reasonable to unleash the dual solution phenomena utilizing the fluid
flows under consideration. Stability testing will be carried out in order to better understand and identify
the most appropriate solutions that will be physically feasible. To achieve this goal, we will introduce a
form of exponential function into our steady state system to represent perturbation to it. This results in
the stable situation being turned into an eigen value problem, from which acceptable eigen values are
selected and noted for future reference.

2 Mathematical Formulation

Consider the case of a liquid mixture. As illustrated in Fig. 1, a Casson Micropolar nanofluid is
discharged across a bent stretching/shrinking surface that has been wrapped in a circle of radius R. For
our two-dimensional frame of reference rs� axes, we will use the ðr þ R; sÞ Curvilinear Coordinates
System as our starting point. The velocity components u and v are measured in the directions of the s and
r axis, and correspondingly. It is proposed that a hydrodynamic force acting in the r direction of the
surface will aid in the control of the flow of the fluid in question. When the normal assumptions for
boundary layer approximations are taken into consideration, the set of equations that governs this
particular flow is the following:
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When t. 0 , the relevant boundary conditions are

u ¼ bs; v ¼ ffiffiffiffiffi
am

p
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; at r ¼ 0;

u ! 0;
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! 0 N ! 0;C ¼ C1; T ¼ T1 as r ! 1: (7)

Eqs. (1)–(4) represent velocity and angular velocity profile, Eqs. (5) and (6) represent temperature profile
and concentration of nano particles.
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To simplify the above equations, we will use these transformations:

v ¼ � R
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a

m 1� atð Þ
r
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After solving Eqs. (2)–(6) we get
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Figure 1: Geometry of the flow
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’00 þ 1
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The boundary conditions for above flow problem are:

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ k; g 0ð Þ þ nf 00 0ð Þ ¼ 0; h 0ð Þ ¼ 1;Nb’0 0ð Þ ¼ �Nth0 0ð Þ;
f 0 gð Þ ! 1; g gð Þ ! 0; f 00 gð Þ ! 0; ’ðgÞ ! 0; hðgÞ ! 0; as g ! 1: (13)

Moreover, some of the important physical measures are Skin friction coefficient Cf , Nusselt number Ns,
Sherwood number Shs and these are expressed as:

Cf ¼ srs
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Moreover, the dimensionless form these measures are:
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where Res ¼ as2

mf

	 

is the local Reynold number.

3 Stability Analysis

Under specified parametric combinations, the numerical simulation of Eqs. (9)–(13) yields dual
solutions to the equations. It is therefore essential to choose the most appropriate solution that is both
realistic and viable. The stability analysis will be conducted in accordance with the methodologies
established by the authors Weidman et al. [27] and Rosca et al. [28], respectively. In order to accomplish
this, we establish another variable s ¼ at, where is linked to the beginning value problem and thus
provides us with the most likely replies between the two alternatives. We introduce some additional
similarity variables:
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Simplifying Eqs. (3)–(6) using transforming variables from (17) we have
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Subject to boundary conditions
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Also, when g ! 1 we have

@f

@g
g; sð Þ ! 0;

@2f

@g2
g; sð Þ ! 0; h g; sð Þ ! 0;

’ðg; sÞ ! 0; g g; sð Þ ! 0: (22)

We have steady solution of the system of Eqs. (9)–(12) with boundary condition (13), in the form
f gð Þ ¼ f0 gð Þ; g gð Þ ¼ g0 gð Þ; h gð Þ ¼ h0 gð Þ and ’ gð Þ ¼ ’0 gð Þ.

We assume the following variables to generate the perturbation:
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Here functions Fðg; sÞ, Gðg; sÞ, Hðg; sÞ and Qðg; sÞ are very small as compared to
f0 gð Þ; g0 gð Þ; h0 gð Þ and ’0 gð Þ respectively with c being the eigen value parameter. Simplifying
Eqs. (18)–(22), by using Eq. (23) we have
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and the corresponding boundary conditions are
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Keeping in view the work done by authors in [27,28], we investigate the steady solutions g0 gð Þ; h0 gð Þ,
f0 gð Þ;’0 gð Þ in Eqs. (9)–(12), substituting s ¼ 0 in the system of Eqs. (24)–(28). Thus G ¼ G0 gð Þ,
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F ¼ F0 gð Þ, H ¼ H0 gð Þ, and Q ¼ Q0 gð Þ is considered to be the initial rise and fall in Eq. (23). After
simplifications we attained the following linearized eigen value system:

1

b
þ K þ 1

� �
Fiv
0 þ 1

ðgþ K�Þ3
 !

F 0
0 �

1

ðgþ K�Þ2
 !

F 00
0 þ 1

gþ K�

� �
2F

000
0

" #

� F 00
0 f00 þ F 0

0f
00
0 � F

000
0 f0 � F0f

000
0

	 
 K�

gþ K�

� �
� K�

gþ K�ð Þ2 �F 00
0 f0 þ 2f00F

0
0 � F0f

00
0

� �
� K�

gþ K�ð Þ3 f00F0 þ F 0
0f0

� �� K
1

gþ K�

� �
G0

0 þ G00
0

� �
� b�

gþ K� F 0
0 þ 0:5gF 00

0

� �þ c
gþ K� F

0
0

� 0:5b� 3F 00
0 þ gF

000
0

	 

þ cF 00

0 ¼ 0;

(29)

1þ 0:5Kð Þ 1

K� þ g

� �
G0

0 þ G00
0

� �
þ K�

gþ K� f0G
0
0 þ F0g

0
0 � G0f

0
0 � g0F

0
0

� �
� K� 2G0 þ F 00

0 þ 1

gþ K� F
0
0

� �
� b�

2
gG0

0 þ 3G0

� �þ cG0 ¼ 0;

(30)

H 00
0 þ

1

K�þg
H 0

0�Pr 0:5gb�H 0
0�

K�

K�þg
f0H

0
0þF0h

0
0

� ��Nb h00Q
0
0þ’0

0H
0
0

� ��cH0�2Nth00H
0
0

� �
¼0; (31)

Q00
0þQ0

0

1

K�þg

� �
�Le � K�

K�þg
Q0

0f0þ’0
0F0

� ��Q0cþ0:5gb�Q0
0

� �
þ H 00

0 þ
1

K�þg

� �
H 0

0

� �
Nt

Nb
¼0: (32)

The boundary conditions are as follows:

F0 0ð Þ ¼ 0;F 0
0 0ð Þ ¼ 0;G0 0ð Þ ¼ �nF 00

0 0ð Þ;
h0 0ð Þ ¼ 0;Q0

0 0ð ÞNb ¼ �H 0
0 0ð ÞNt:

For g ! 1; we have,

F 0
0 gð Þ ! 0;F 00

0 gð Þ ! 0;H0 g; sð Þ ! 0;G0 gð Þ ! 0;Q0 gð Þ ! 0 (33)

As per findings of authors Weidman et al. [27] and Rosca et al. [28], the stability analysis will give
smallest values for c. We modify condition F 0

0ðgÞ ¼ 1; to solve the system (29)–(33). Table 2 shows
smallest eigen values obtained hence forth.

4 Discussion on Numerical Solutions

We will now investigate impacts of various embedded parameters on different profiles.

4.1 Velocity Profile
Velocity Profile f

0 ðgÞ has two solutions, which are depicted in Fig. 2. For both solutions, we can observe
that the velocity decreases as a function of the material parameter K. As a result, increasing the amount of
Micropolar components in the solution can reduce the flow rate. However, when compared to the second
solution, the first solution has a broader profile. According to this behavior, Micropolar components
generate spin gradient viscosity, which causes the flow speed to slow down as a result of the flow. Fig. 3
depicts that the same profile lowers as the bendiness parameter K* is increased for both solutions, as seen
in the graph. Due to the fact that curving the bent channel further increases the breadth of the boundary
layer, which results in a drop in the flow’s speed, this phenomenon happens. On the right-hand side of
Fig. 4, we can see that increasing the value of parameter causes the profile f

0 ðgÞ for both solutions to be

FDMP, 2023, vol.19, no.2 479



reduced. By increasing the fluid thickness, the non-Newtonian parameter creates flow regime resistivity,
which results in a lowering of the profile of interest f

0 ðgÞ. Both solutions flow more quickly when the
magnetic indicator number M is used, as illustrated in Fig. 5. When comparing the first and second
solutions, the profile of the first solution climbs significantly higher. The magnetic parameter M is in
charge of regulating the speed of the flow through the system. In reality, the parameter M generates
Lorentz force, which can be used to enhance the speed of the flow by acting in the direction of the flow
regime. Furthermore, the same force can also be utilized to counteract the movement of the flow in the
opposite direction.

Figure 2: Variation of velocity profile against K Figure 3: Variation of velocity profile against K*

Figure 4: Variation of velocity profile against β Figure 5: Variation of velocity profile against M
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4.2 Micro Polar Profile
Adding higher values of the material parameter K for second solution causes the micro-rotational profile

HðgÞ to climb sharply, as seen in Fig. 6. The first solution, on the other hand, displays the opposite tendency.
This means that in the second solution, a greater amount of the material parameter yields a larger micro-
rotational vector flux. Spin gradient viscosity is created by the random motion of Micropolar fluids, and
this causes the profile HðgÞ to rise. When n ¼ 0:5 is used, the profile HðgÞ decreases as a function of the
curvature parameter K* in Fig. 7. We can conclude that the micro-rotational flux decreases as the bent
channel is curved further. In addition, because of the increased boundary layer thickness, the flow’s speed
and microrotation flux will be reduced as a result of the bending. These two figures show the same
profile rises for both solutions of when k. 0 is used as the channel stretch in Figs. 8 and 9. However, the
profile shrinks for shrinking cases when k, 0 is used. Stretched channels had increased micro-rotational
flux, therefore we can draw this conclusion.

Figure 6: Variation of HðgÞ against K Figure 7: Variation of HðgÞ against K*

Figure 8: Variation of H gð Þ against , 0 Figure 9: Variation of HðgÞ against k. 0
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4.3 Temperature Profile
This is seen in Fig. 10, which illustrates the lower temperature profile of a bent channel. It is because we

decreased the surface area with the fluid when we raised K*, and this resulted in a drop in liquid temperature.
Thermophoresis aids in increasing the thermal flux in both solutions, as seen in Figs. 11 and 12. To put it
another way: Large values of the parameter Nt aid in the movement of warm particles to the cooler
regions of the liquid, making the liquid hotter. Furthermore, we observed that varied values of the
parameter Nb have no effect on thermal activity. Fig. 13 shows that the temperature of the fluid decreases
for the first solution, whereas the opposite is true for the second solution. We already know that a lower
Pr number is recommended for improved energy transfer.

Figure 10: Variation of temperature profile
against K*

Figure 11: Variation of temperature profile
against Nt

Figure 12: Variation of temperature profile
against Nb

Figure 13: Variation of temperature profile
against Pr
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4.4 Concentration Profile
For both solutions, large values of parameter Nt cause a decrease in the concentration flux. In Fig. 14, a

large quantity of parameter Nt causes the fluid to get warmer, which reduces the thickness of the
concentration boundary layer. As seen in Fig. 15, both solutions benefit from the Brownian motion
parameter Nb, which increases concentration flux. As we increased the parameter Nb, we saw an increase
in mass transfer along the surface’s wall.

We also compare our present values of Re1=2s Cf with other published results of Sahoo et al. [29] and
Nogrehabadi et al. [30]. Table 1 portrays a comparison table of numerical values of Re1=2s Cf when we
take K� ! 1000; b ! 10000;KM ¼ Nt ¼ Nb ¼ Le ¼ E=k=0. We conclude that our decay results are
matching the values calculated in [29,30].

5 Stability Analysis

Some parametric options have been shown to have dual solutions in previous sections, as demonstrated
by numerical simulations of Eqs. (9)–(13). For this reason, we used a numerical eigenvalue system of
Eqs. (29)–(33) to determine the best solution. For positive lowest eigen values, we noticed that our
solutions show an initial deterioration. Furthermore, we found that the solutions remained unstable when
the eigen values were negative. Table 2 shows the least eigen values that were identified as a result of

Figure 14: Variation of concentration profile
against Nt

Figure 15: Variation of temperature profile against Nb

Table 1: Comparison of present numerical values of Re1=2s Cf with Sahoo et al. [29] and Nogrehabadi et al.
[30]. Taking K� ! 1000; b ! 10000;K M ¼ Nt ¼ Nb ¼ Le ¼ E=k=0

Present results Sahoo et al. [29] Nogrehabadi et al. [30]

1.000 1.0011 1.002

0.8717 0.8714 0.8720

0.7760 0.7749 0.7763

0.7009 0.6997 0.7015

0.5910 0.5891 0.5911

0.4302 0.4284 0.4301
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these solutions. Our findings show that the first options are more feasible than the second ones. According to
[27,28], there were similar findings.

6 Conclusion

The performance of the Casson Micropolar nanoliquid flow mixer and energy transfer were examined in
this study. We discovered that for some parametric values, our equations yield two solutions. As a result, we
needed to do a stability analysis in order to select the best solution. Our steady state system was perturbed by
exponential functions. Because exponential functions converge more quickly than some other function, this
is why they are used. It was easy for us to identify the proper eigenvalues because they agreed so well with
our possible solutions. The MATLAB solver bvp4c has stopped working.

We arrived at the following key observations:

� We witnessed that the profile f
0 ðgÞ increases if we enlarged the values of M . But the same profile is

decreasing function of parameters K�; b and K.

� The profileHðgÞ is the decreasing function of parameter K�. However, for large values of parameter K
the profile down surged in case of first and up surged for second solutions, respectively.

� The profile hðgÞ is increasing function of Nt, however it remains unchanged for different values of Nb.

� For second solution, the function hðgÞ rises high for large amounts of parameter Pr, but the profile
behaves differently for other solution.

� The profile hðgÞ declines when added more values in parameter K�.
� The function ’ðgÞ declines for large values of parameter Nt, however opposite picture is portrayed by

the profile when we enlarged the parameter Nb:
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