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ABSTRACT

A mathematical model is elaborated for the laminar flow of an Eyring-Powell fluid over a stretching sheet. The
considered non-Newtonian fluid has Prandtl number larger than one. The effects of variable fluid properties and
heat generation/absorption are also discussed. The balance equations for fluid flow are reduced to a set of ordin-
ary differential equations through a similarity transformation and solved numerically using a Chebyshev spectral
scheme. The effect of various parameters on the rate of heat transfer in the thermal boundary regime is investi-
gated, i.e., thermal conductivity, the heat generation/absorption ratio and the mixed convection parameter. Good
agreement appears to exist between theoretical predictions and the existing published results.
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List of symbols
u Component of velocity in the x-direction
v Component of velocity in the y-direction
T0 The reference temperature
T1 The temperature in the surroundings
b; C The characteristics of Powell-Eyring Model
k The permeability of the porous medium
g The gravitational acceleration
q1 The ambient fluid density
w The stream function
T The fluid temperature
Q The heat sources coefficient
qr The radiative heat flux
cp The specific heat at constant pressure
b1; b2 The positive dimensional constants
r� The Stefan-Boltzman constant
k� The absorption coefficient
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f The non-dimensional stream function
g The similarity variable
h The dimensionless fluid temperature
a; d The dimensionless Powell-Eyring fluid parameters
D The porous parameter
� The heat generation (absorption) parameter
e1 The thermal stratification parameter
Pr The Prandtl number
Cfx The local skin-friction
Nux The local Nusselt number
Re The local Reynolds number

1 Introduction

Many neoteric engineering applications require control of both the cooling mechanism and the high-
speed transfer of fluid flow, particularly the flow produced by stretching the sheet. Abundant examples
can be cited in chemical engineering and particularly in the manufacturing of plastic and rubber sheets,
crystal growing, food processing, solidification of liquid crystals, glass blowing, hot rolling, continuous
cooling, fiber spinning, exotic lubricants, and several other areas of technology. Many assumptions
regarding the nature of fluid flow over a stretching sheet, along with properly chosen boundary
conditions, result in accurate and numerical solutions to the conservation equations that describe flow
velocity, heat transfer mechanisms, and mass transfer processes [1–6]. While the prediction of cooling
phenomena is extremely useful, certain other information such as suction or injection, thermal radiation
and heat flux is also valuable [7–10]. A reasonably straightforward correlation between proper physical
circumstances and some physical assumptions, in particular, becomes useful in predicting model
performance or setting cooling parameters [11–13]. Because of its biological, geological, and engineering
applications in purification processes, liquid film evaporation, filtration processes, petroleum industries,
and subsurface water resources, the topic of fluid flow within a porous medium has recently gotten a lot
of interest. As shown in the diagram, the porous medium can be classified into two types based on its
porosity: porous medium with high porosity and porous medium with low porosity (Fig. 1).

The flow and temperature fields are considered over linear and non-linear stretching sheets in all of the
preceding investigations. Theoreticians have been less enthusiastic to study the non-Newtonian Powell-
Eyring fluid because they believe that this sort of boundary-layer fluid is unsuitable for industrial use.
However, they observed that non-Newtonian fluids caused by stretching sheets provide a significant
engineering and technological problem because of their widespread engineering and technological
applications in a variety of industrial and engineering processes [14–19]. In references [20–38], you can
find some additional interesting contributions on Newtonian and non-Newtonian nanofluid flow and its
applications in manufacturing.

Figure 1: (a) Porous medium with low porosity (b) Porous medium with high porosity
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The fundamental purpose of this research is to look at the heat transfer properties of an Eyring-Powell
fluid flow caused by a stretching sheet immersed in a porous media and influenced by thermal radiation. Our
focus here is on two fundamental physical phenomena: mixed convection and thermal stratification, both of
which have significant effects on cooling rates. The results of the current analysis were obtained after
employing the efficient Chebyshev spectral method.

2 Formulation of the Problem

A layer of finite thickness is constrained on one side by a stretched wall in the physical model. This
surface is assumed to has a temperature Tw and it is stretching with a velocity Uw ¼ ax in the vertical
direction toward the x-axis (Fig. 2).

Figure 2: A schematic representation of the model

In order to be as precise as possible, the number of governing parameters for this physical model is
introduced by assuming that there are heat sources with a coefficient Q and thermal radiation
phenomenon with radiative heat flux qr and that the steady-state exists. Steady mixed convection flow for
the Powell-Eyring fluid with density q is assumed to move over a stratified sheet and some of fluid
properties are taken to be dependent of temperature such as viscosity l and thermal conductivity j.

The temperature distribution and energy transfer across the thermal layer can be predicted using the
thermal characteristics and boundary conditions. The shear stress relation, which describes the Powell-
Eyring model, is [39]:
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For the above physical situation, basic equations for mass, momentum and energy after using the
appropriate boundary layer approximations are thus:
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where u and v are the velocity components along x and y directions, respectively. g denotes the gravitational
acceleration, q1 is the fluid density away from the sheet, k is the permeability of the porous medium, T is the
temperature of the fluid, b� is the coefficient of thermal expansion and cp is the specific heat at constant
pressure. Likewise, qr is then given by [40]:

qr ¼ � 4r�

3k�
@T4

@y
; (5)

with the band of physical model and application of simplification for T4 about T0, the expression for T 4

becomes [41]:

T4 ffi 4T0
3T � 3T0

4 ; (6)

where T0 is the reference temperature. It is required to supply the relevant boundary conditions in order to
complete the formulation of the suggested problem. As a result, the current problem’s boundary conditions
are as follows:

u ¼ Uw ¼ ax; v ¼ 0; T ¼ Tw ¼ T0 þ b1x; y ¼ 0; (7)

u ! 0; T ! T1 ¼ T0 þ b2x; y ! 1; (8)

in which T1 and b2 are positive dimensional constants and T1 is the ambient temperature. The following non-
dimensional variables are now used to simplify the governing equations for the suggested physical
problem:

w ¼ ffiffiffiffiffiffiffiffiffi
am1

p
xf ðgÞ; g ¼

ffiffiffiffiffiffi
a

m1

r
y (9)

h ¼ T � T1
Tw � T0

(10)

For mathematical convenience, viscosity of the fluid l can be represented as l ¼ l1e�ch [42] which is a
nonlinear function of dimensionless temperature h alone, whereas the fluid thermal conductivity j can be
taken as j ¼ j1ð1þ ehÞ [42] which is a linear function of h alone, where l1 is the dynamic viscosity
away from the sheet, c is the non-dimensional viscosity parameter, j1 is the fluid conductivity at the free
surface and eis the fluid thermal conductivity parameter.

The following rigorous transformation for both the flow and heat transfer fields (3) and (4) could be
obtained by using Eqs. (9) and (10) along with the boundary conditions (7) and (8) as follows:

f 000 e�ch þ að1� df 002Þ� �� c f 00h0e�ch � f 02 þ ff 00 þ kh� Df 0e�ch ¼ 0 (11)

1

Pr
ð1þ Rþ ehÞh00 þ e h02
� �þ f h0 � f 0 h� e1f

0 þ �h ¼ 0 (12)

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; hð0Þ ¼ 1� e1; (13)

f 0 ! 0; h ! 0; g ! 1 (14)
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where a ¼ 1

l1bC
and d ¼ aq1Uw

2

2l1 C2
are the dimensionless Powell-Eyring fluid parameters, D ¼ m1

ak
is the

porous parameter, k ¼ gb�b1
a2

is the mixed convection parameter, R ¼ 16r�T03

3j1 k�
is the radiation parameter,

e1 ¼ b2
b1

is the thermal stratification parameter, � ¼ Q

q1 cpa
is the heat generation/absorption parameter

and Pr ¼ l1cp
j1

is the Prandtl number. Here, it is very necessary to mention that our physical model is

furnished previously by Bilal et al. [43]. In other words, when D ¼ c ¼ R ¼ e ¼ 0, our present model
can be reduced to the previously base model of Bilal et al. [43].

Apart from the preceding system that governs our physical problem and allows us to quickly recognize
flow features and heat transfer mechanisms, it is very serious to study the following significant physical
quantities, the local skin-friction coefficient (Cfx) and the local Nusselt number (Nux) which take the
following form:

CfxRe
1
2 ¼ � ðe�c þ aÞf 00ð0Þ � ad

3
f 003ð0Þ

� 	
;

NuxRe
�1
2

1þ R
¼ �h0ð0Þ (15)

where Re ¼ Uwx

m1
is the local Reynolds number.

3 Results and Discussion

To validate the reliability and precision of the numerical process utilized here via the Chebyshev spectral
method, calculations for the values of the skin-friction coefficient are done below. The data obtained is
compared to Bilal and Ashbar’s previously published findings [43]. From our observations of the tabular
data in Table 1, we have found that our results are in good accord.

The preceding considerations and assumptions lead to the current results and discussion section. As a
result, while describing the physical problem of hydrodynamics, a system of ordinary differential
equations with novel governing parameters emerges, giving us the opportunity to choose which of them
is required to develop the suggested model. The Chebyshev spectral approach [44] is appealing because it
achieves more precision than other numerical methods for solving the system that regulates our situation.
It is also worth noting that all of the results produced utilizing the Chebyshev spectral approach, as well
as other associated published results, are mutually supportive. The results of the fully developed velocity
and temperature profiles for governing parameter runs in the laminar flow region are plotted in
Figs. 3–11. Fig. 3 depicts the numerical result of the present analysis, which offers a close examination of
the impact of the porous parameter D on the non-Newtonian fluid flow and heat transfer characteristics. A
startling result shown in Fig. 3a is that the presence of a porous media in a fluid flow causes a significant
resistance force that slows the fluid velocity. As a result, the induced warming heat inside the fluid layers
is caused by this resistive force. As shown in Fig. 3b, the porosity parameter can be used as a warming
factor for the fluid within the thermal boundary layer.

Table 1: Comparison of the values of skin friction coefficient for various a with d ¼ � ¼ � ¼ 0:1, Pr = 0.7,
e1 = 0.3 when D ¼ c ¼ R ¼ e ¼ 0

a Bilal et al. [43] Present work

0.1 0.99532140 0.9953209953

0.3 0.92212766 0.9221276589

0.5 0.86289107 0.8628910004
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Figs. 4a and 4b show how the velocity and temperature fields vary as the a value increases. The velocity
field and the thickness of the boundary layer are increased as the a value increases in these pictures, whereas
the temperature field decreases.

The velocity and temperature profiles in Figs. 5a and 5b indicate the impact of the dimensionless Powell-
Eyring parameter d on the flow and heat transfer mechanism. The existence of the d parameter imposes an
additional viscous force on the fluid layers, resulting in a decrease in velocity distribution across the
boundary layer and a modest improvement in the temperature field mechanism.

Figure 3: (a) f 0ðgÞ for assorted values of D (b) hðgÞ for assorted values of D

Figure 4: (a) f 0ðgÞ for assorted values of a (b) hðgÞ for assorted values of a

Figure 5: (a) f 0ðgÞ for assorted values of d (b) hðgÞ for assorted values of d
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The curves in Figs. 6a and 6b show that for low viscosity parameter c the velocity distribution was
slightly increased only near the sheet surface, whereas near the ambient, there was no effect of altering in
viscosity on the velocity distribution. Similarly, changing the viscosity parameter causes a backflow for
heat distribution, which was clearly established as shown in Fig. 6b.

Regarding the mixed convection parameter k and its influence on both the velocity and temperature
distribution, there are curves on Figs. 7a and 7b. It can be seen from these figures that the high
distribution of the velocity can be achieved with great mixed convection parameters, while we reach the
reverse for the distribution of the temperature.

Figs. 8a and 8b show the effect of the radiation parameter R as defined previously on both the velocity
and the temperature fields. It is clear that the temperature field is strikingly affected by the radiation
mechanism due to the increased importance of the thermal radiation mechanism in faster heat flow. The
same trend is observed for the velocity field but with slightly different behavior.

Further, a typical steady flow and heat transfer pattern for different values of the thermal conductivity
parameter e are shown in Figs. 9a and 9b. Thus, the influence of the thermal conductivity parameter e
might be strong enough to cause more velocity fluid flow and more heat distribution, resulting in a
thicker thermal boundary layer.

Figure 6: (a) f 0ðgÞ for assorted values of c (b) hðgÞ for assorted values of c

Figure 7: (a) f 0ðgÞ for assorted values of k (b) hðgÞ for assorted values of k
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Figs. 10a and 10b show the variations in velocity f 0ðgÞ and temperature hðgÞ as a function of the space
coordinate g for various values of the heat generation parameter �. For relatively high temperature
distribution, the primary mechanism for this mission was the great heat generation parameter �. In
general, the heat generation parameter �has a small effect on the velocity field in comparison with the
results given for the heating field.

In order to illustrate the effect of the thermal stratification parameter e1 on the velocity field clearly, the
curves in Fig. 11a are drawn on an expanded scale. During the fluid flow, the flow process was discovered to
be essentially laminar, with a slight retarding effect on the velocity distribution as the thermal stratification
parameter e1 increased. One qualitative observation of some importance is the influence of the same

Figure 8: (a) f 0ðgÞ for assorted values of R (b) hðgÞ for assorted values of R
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Figure 9: (a) f 0ðgÞ for assorted values of e (b) hðgÞ for assorted values of e

Figure 10: (a) f 0ðgÞ for assorted values of � (b) hðgÞ for assorted values of �
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parameter, e1 on the temperature field as obtained from Fig. 11b. A very interesting feature of the
stratification parameter e1 is that it can achieve and govern the cooling process for the sheet surface.

Now, both the physical quantities Cfx and Nux according to Eq. (15), which describes the drag force and
the heat transfer at the sheet surface; respectively, are shown in Table 2 for different values of governing
parameters a; d; e; c; R; D; e1 and k with Pr ¼ 1:5. The increase in local Nusselt number due to large
dimensionless Powell-Eyring parameter a and the mixed convection parameter k can be attributed to the
increase in heat capacity or decrease in resistance to heat flow. It is seen from this table that an increase
in the parameters d; c; k; R; e and D decreases the local skin-friction coefficient while the reverse trend
is observed for parameters d, a and e1. On the other hand, the porous parameter d, the variable viscosity
parameter c and the radiation parameter R can have a significant influence on the rate of heat transfer as
clearly noticed from Table 2.

1 2 3 4 5 6

0.2

0.4
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0.8

1.0

f '

0.36 0.37 0.38 0.39 0.40 0.41
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0.700

0.705

0.710

e1 0.0, 0.1, 0.2

0.3, 0.2

0.2, 0.3, 0.2

1 2 3 4 5 6
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0.4

0.6

0.8

1.0

R 0.5, 0.1

0.2, Pr 1.5

e1 0.0, 0.1, 0.2

Figure 11: (a) f 0ðgÞ for assorted values of e1 (b) hðgÞ for assorted values of e1

Table 2: Values for CfxRe
1
2 and NuxRe

�1
2

1þR for different D; a; d; e; c; R; �; e1 and k with Pr ¼ 1:5 using
Chebyshev spectral method

D a d c k R e � e1 CfxRe
1
2 NuxRe

�1
2

1þR

0.0 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.1 0.977822 0.580847

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.065410 0.566089

0.5 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.184191 0.545271

0.2 0.0 0.3 0.2 0.2 0.5 0.2 0.1 0.1 0.907303 0.543430

0.2 0.4 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.114081 0.572231

0.2 0.6 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.207140 0.582979

0.2 1.0 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.377411 0.599919

0.2 0.3 0.0 0.2 0.2 0.5 0.2 0.1 0.1 1.074080 0.567706

0.2 0.3 0.4 0.2 0.2 0.5 0.2 0.1 0.1 1.062521 0.565721

0.2 0.3 0.6 0.2 0.2 0.5 0.2 0.1 0.1 1.056640 0.565117

0.2 0.3 1.0 0.2 0.2 0.5 0.2 0.1 0.1 1.043442 0.562515

0.2 0.3 0.3 0.0 0.2 0.5 0.2 0.1 0.1 1.153021 0.573845

0.2 0.3 0.3 0.3 0.2 0.5 0.2 0.1 0.1 1.024540 0.561791

0.2 0.3 0.3 0.6 0.2 0.5 0.2 0.1 0.1 0.914511 0.550865
(Continued)
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4 Conclusions

The current investigation’s overall goal is to determine the velocity distribution, temperature
distribution, heat transfer rate, and drag properties of Powell-Eyring fluid flow in the boundary layer
region. The material presented in this research is limited to the measurement of the flow and heat transfer
of the Powell-Eyring fluid with mixed convection and heat generation and the determination of their
effect on the cooling mechanism through a porous medium. This data would contribute considerably to
the understanding of the mixed-convection heat transfer phenomena. Numerically, a solution to the
present physical problem using the Chebyshev spectral method was introduced. The main findings of our
study are summarized as follows:

1. It is even possible that with large values of the first Powell-Eyring parameter and smaller values of the
porous parameter, the boundary layer thickness will be totally increased.

2. Another interesting situation is that in which both the porous parameter and the thermal conductivity
parameter increase significantly, the temperature distribution may be regarded as being enhanced
uniformly.

3. Thermal radiation and heat generation have another important effect insofar as they can establish a
thicker thermal layer with the thermal stratification phenomenon.

4. It is interesting to note that the thickness of the fluid layer depends very little on the second Powell-
Eyring parameter, the thermal conductivity parameter, and the thermal stratification parameter.

5. A strong relationship between the cooling mechanism and both of the thermal stratification
parameters and the radiation parameter is found.

Table 2 (continued)

D a d c k R e � e1 CfxRe
1
2 NuxRe

�1
2

1þR

0.2 0.3 0.3 0.2 0.0 0.5 0.2 0.1 0.1 1.150441 0.551961

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.065503 0.565903

0.2 0.3 0.3 0.2 0.4 0.5 0.2 0.1 0.1 0.984585 0.577123

0.2 0.3 0.3 0.2 0.2 0.0 0.2 0.1 0.1 1.084020 1.054510

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.065502 0.565903

0.2 0.3 0.3 0.2 0.2 1.0 0.2 0.1 0.1 1.051771 0.360353

0.2 0.3 0.3 0.2 0.2 1.5 0.2 0.1 0.1 1.041653 0.253161

0.2 0.3 0.3 0.2 0.2 0.5 0.0 0.1 0.1 1.069551 0.615534

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.065502 0.565903

0.2 0.3 0.3 0.2 0.2 0.5 0.5 0.1 0.1 1.059810 0.507332

0.2 0.3 0.3 0.2 0.2 0.5 1.0 0.1 0.1 1.051093 0.436324

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.0 0.1 1.070623 0.598414

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.2 0.1 1.061721 0.530376

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.4 0.1 1.048120 0.443447

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.0 1.057630 0.580097

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.1 1.065912 0.566866

0.2 0.3 0.3 0.2 0.2 0.5 0.2 0.1 0.2 1.072771 0.551755
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