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ABSTRACT

The accurate forecast of the photovoltaic generation (PVG) process is essential to develop optimum installation
sizing and pragmatic energy planning and management. This paper proposes a PVG forecast model for a PVG/
Battery installation. The forecasting strategy is built on a Medium-Term Energy Forecasting (MTEF) approach
refined dynamically every hour (Dynamic Medium-Term Energy Forecasting (DMTEF)) and adjusted by means
of a Short-Term Energy Forecasting (STEF) strategy. The MTEF predicts the generated energy for a day ahead
based on the PVG of the last 15 days. As for STEF, it is a combination between PVG Short-Term (ST) forecasting
and DMTEF methods obtained by selecting the least inaccurate PVG estimation every 15 minutes. The algorithm
results are validated by measures taken on a 3 KWp standalone PVG/Battery installation. The proposed
approaches have been integrated into a management algorithm in order to make a pragmatic decision to ensure
load supply considering relevant constraints and priorities and guarantee the battery safety. Simulation results
show that STEF provides accurate results compared to measures in stable and perturbed days. The NMBE (Nor-
malized Mean Bias Error) is equal to -0.58% in stable days and 26.10% in perturbed days.
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NomenclaturedPVGDaily Daily estimated Photovoltaic power Generation (W)dPVGhourly Hourly estimated Photovoltaic power Generation (W)dPVGminutes Estimated Photovoltaic power Generation every couple of minutes (W)
p, q ARMA order parameters
CARh Auto-regressive coefficient
CMAn Moving average coefficient
eDay�n White noise
t Time
tsunriseDay Sunrise time
tsunsetDay Sunset time
B Backward shift operator
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Greek letters
r Backward difference
ap Polynomial of order p
bq Polynomial of order q

Abbreviations
PVG Photovoltaic Generation
MTEF Medium-Term Energy Forecasting
DMTEF Dynamic Medium-Term Energy Forecasting
STEF Short-Term Energy Forecasting
NMBE Normalized Mean Bias Error
ML Machine Learning
SVM Support Vector Machine
ANN Artificial Neural Network
FL Fuzzy Logic
ARMA Auto-Regressive Moving Average
NWP Numerical Weather Prediction
ST Short-Term
RE Relative Error
ARIMA Auto-Regressive Integrated Moving Average
NRMSE Normalized Root Mean Square Error
SOC State of Charge

1 Introduction

Accurate PVG forecast is necessary in most photovoltaic systems especially for decision making of
energy planning and management and for system sizing. In literature, several models were proposed in
order to ensure PVG forecasting. They are classified into three major categories: statistical, physical and
satellite-derived methods [1–3]. Statistical methods are based on PVG historical data to perform forecast.
They are mainly regression models, Markov chain, Autoregressive (ARMA model and its derivations)
and Machine Learning (ML) methods (Support Vector Machine (SVM), Artificial Neural Network (ANN)
and Fuzzy Logic (FL)). The most popular approach in this category is the Auto-Regressive Moving
Average (ARMA) model. It is easy to implement unlike (ML) methods that require big database to reach
a high forecasting accuracy. Besides, it offers accurate forecasting results [4]. However, forecasting
accuracy of statistical methods may decrease in case of weather perturbation. Furthermore, ML methods
require a big data set to maintain high forecasting accuracy.

Physical methods use Numerical Weather Prediction (NWP) models to forecast meteorological variables
such as radiation and temperature with high forecasting accuracy. Forecasted meteorological parameters are
fitted as inputs to the photovoltaic generator model to provide PVG forecast. Physical approaches require
more complex calculations and input data than statistical approaches [5]. As for satellite-derived methods,
they can be introduced with satellite observation images of cloud coverage [6,7] or satellite-derived
numerical data [8,9]. Such methods afford high forecasting accuracy, but they require very pricey
equipment and suffer from temporal and spatial resolution. PVG forecasting horizon may be classified
into three major categories: long, medium and short-term forecasting. The long-term horizon is made over
one month to one year. As for Medium-Term, it forecasts for one week to one month. Finally, short-term
forecast provides predictions for few minutes to some hours ahead [10,11]. PVG forecasting accuracy
may be influenced by several factors such as meteorological and installation conditions, temporal scale
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and resolution, the geographical location, and the availability of historical data and of the weather forecast
[12]. ARMA model has shown forecasting convergence and adaptability in various locations in the world
and for diverse forecasting horizons [13–18].

In order to improve the PVG forecasting results obtained in previous work in [19]. This paper proposes a
new methodology of dynamic forecasting of Photovoltaic Energy Generation (PVG). The methodology aims
to increase the forecasting accuracy of PVG in clear and cloudy days by using a combination of three easy
implemented approaches to the forecasting system: A Medium-Term Energy Forecasting approach (MTEF),
a Dynamic Medium-Term Energy Forecasting (DMTEF) and a Short-Term (ST) approach.

Section two presents the PVG forecasting strategy and provides details about MTEF, DMTEF and STEF
approaches. Obtained results are discussed in section three with reference to a representative case study.
Finally, some notes are highlighted by way of conclusion to this work in the fourth and last section.

2 PVG Forecasting Strategy

The PVG forecasting approach consists of three sorts of dynamic forecasting (Fig. 1). First, the MTEF
approach forecasts the PVG for one day ahead based on the fifteen previous days generated energy measures.
The forecasted energy is therefore disseminated using a gaussian distribution in order to plot the PVG
estimated power curve (dPVGDaily) during the daylight. Then, the DMTEF performs an hourly adjustment
and dissemination of the forecasted PVG energy (obtained by using the MTEF approach) referring to the
past two hours of generated energy measures. Finally, the STEF approach forecasts the PVG based on a
specific time horizon (1 to 15 min). Furthermore, it executes an hourly adjustment of the results carried
out by the DMTEF approach for the rest of the current day. The following steps describe the PVG strategy:

Step 1: Forecasts the PVG energy for one day ahead on the basis of a specific database.

Step 2:Distributes the forecasted PVG power by using an energy distribution model based on a gaussian
equation in order to obtain dPVGDaily (result of MTEF approach).

Step 3: Performs a dynamic adjustment of the obtained power curve of dPVGDaily based on a relative error
considered between the collected dPVGDaily energy every hour and the previous measured PVGDaily energy.
The adjustment process is executed in case the relative error is out of ±5%.

Step 4: Distributes the obtained dPVGDaily energy after being adjusted in order to plot the dPVGhourly

power curve by using the DMTEF approach.

Step 5: Execute a PVG Short-Term (ST) forecasting based on ARIMA model considering the measured
PVG in the past two hours.
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Figure 1: PVG forecast architecture
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Step 6: Performs a combination between DMTEF approach and ST approach by executing an
adjustment of dPVGhourly every 15 min on the basis of the lowest relative error between ST approach and
DMTEF approach.

Step 7: Distributes the obtained dPVGhourly energy after being adjusted in order to plot the dPVGminutes

power curve by using the STEF approach (Fig. 1).dPVGDaily, dPVGhourly and dPVGminutes are the obtained PVG forecasting results of MTEF, DMTEF, and
STEF, respectively.

2.1 MTEF Approach
The MTEF approach consists of performing a dynamic estimation of dPVGDaily with respect to two steps:

Step 1: The PVG is forecasted for one day ahead based on the previous 15 days measurements of PVG
energy.

Step 2: Gaussian distribution of the forecasted PVG to obtain an estimated PVG power curve from
sunrise time to sunset time with 1 min time step.

The dPVGDaily is estimated for one day ahead based on time series measurements using the ARMAmodel
[18–20]. The MTEF approach is composed of three major processes: the training process, the testing process
and the forecasting process. The ARMA model is selected thanks to its simplicity and good forecasting
accuracy. It is composed of two functions (Eq. (1)): the autoregressive (AR) function and the Moving
Average (MA) function.

dPVGDay ¼
Xp
h¼1

CARh
dPVGDay�i þ

Xq
n¼0

CMAneDay�n (1)

where p and q are ARMA order parameters, CARh is the AR coefficient, CMAn the MA coefficient, eDay�n is
the white noise.

The obtained dPVGDay is distributed by using a Gaussian distribution in order to estimate the PVG power
(Eq. (2)).

dPVG tð Þ ¼ p
dPVGDay

2 ðDaylightÞDay
sin

pt
Daylightð ÞDay

 !
(2)

where t is the time, dPVGDay the forecasted PVG of for one day ahead. ðDaylightÞDay is the forecasted daylight
and obtained according to Eq. (3).

ðDaylightÞDay ¼ tsunsetDay � tsunriseDay (3)

tsunriseDay is the sunrise time and tsunsetDay is the sunset time [21].

The time horizon selection is performed in order to test the forecasting accuracy of ARMA model by
using the MTEF approach. The test is performed based on two kinds of data base. A data base of
365 days of the year 2019 and a seasonal data base organized into three seasons: a cold season
(November, December, January and February), a moderate season (March, April, May and October), and
a hot season (June, July, August and September). Furthermore, MTEF strategy is executed on three
different time horizons (5 days, 10 days and 15 days) in order to select the best time horizon with the
highest forecasting accuracy.

In order to evaluate the PVG forecasting accuracy, daily predicted and measured data were analyzed by
computing the NRMSE and the NMBE errors for each prediction type:
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NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
estimated value� measured valueð Þ2

r
1

N

XN

1
masured value

� 100 (4)

NMBE ¼
PN

i¼1 estimated value� measured valueð ÞPN
1 measured value

� 100 (5)

Tables 1 and 2 illustrate NRMSE and NMBE of PVG forecasting accuracy based onMTEF approach for
the year 2019 and for each season, respectively.

The MTEF reveals the best PVG forecasting accuracy using 15 days’ time horizon for the year 2019 data
base with NRMSE = 1.57% and NMBE = −0.98%.

The MTEF reveals the best PVG forecasting accuracy over 15 days’ time horizon for the three seasons.
The best season for the selected time horizon is the hot season with NRMSE = 0.85% and NMBE = −1%. The
obtained results are explained by the high weather stability in the hot season compared to moderate and cold
season.

2.2 DMTEF Approach
The DMTEF approach consists of performing the phenomenon of dynamicity by effectuating an hourly

adjustment of the dPVGDaily curve of the 16th day obtained by the MTEF approach. The adjustment operation
is mainly based on a relative error calculation between the hourly forecasted PVG energy (dPVGhourly) and the
hourly measured PVG energy (PVGhourly) from sunrise time to sunset time. The adjustment decision is

Table 1: PVG forecasting accuracy based on MTEF approach for the year 2019

Time horizon Date NRMSE (%) NMBE (%)

15 days 01/01/2019 to 15/01/2019 1.57 −0.98

10 days 01/01/2019 to 10/01/2019 1.81 −1.73

5 days 01/01/2019 to 5/01/2019 3.94 −7.02

Table 2: PVG forecasting accuracy based on MTEF approach for each season

Database Saison NRMSE (%) NMBE (%)

15 days Hot 0.85 −1

Moderate 1.68 −0.83

Cold 2.40 −3.25

10 days Hot 1.07 −1.38

Moderate 1.93 −1.77

Cold 2.80 −3.64

5 days Hot 2.02 −0.95

Moderate 4.48 −11.41

Cold 5.81 −9.95
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executed when the relative error is out of the interval between −5% and 5%. Such process increases the
estimation accuracy of dPVGDaily. The following steps describe the DMTEF approach:

Step 1: The relative error calculation between the hourly forecasted PVG (dPVGhourly ) and the hourly
measured PVG (PVGhourly) is computed with respect to Eq. (6).

RE ¼ PVGhourly � dPVGhourly

PVGhourly
� 100 (6)

Step 2: The adjustment decision is executed in case relative error (RE) is more than 5% or less than
−5%. In such case, the estimated value is rejected and then replaced by the last measure dPVGhourly ¼
PVGhourly.

2.3 STEF Approach
The STEF approach is a combination of PVG Short-Term (ST) forecasting and DMTEF approach. It

consists of adjusting every 15 min the dPVGhourly obtained by the DMTEF approach considering the
measured PVG in the previous two hours. Such process allows to increase the estimation accuracy ofdPVGDaily for the rest of the day (from two hours after sunrise time to sunset time). The Auto-Regressive
Integrated Moving Average (ARIMA) model is used to perform PVG Short-Term (ST) forecasting thanks
to its approved use and good accuracy [22–28]. ARIMA is an extended part of the ARMA method
known as AR integrated MA. The integrated part of ARIMA remove the non-stationary data. The
following equations describe the ARIMA model:

ap Bð ÞrdPVGt ¼ bq Bð Þd tð Þ (7)

ap Bð Þ ¼ 1� h1B� h2B
2 � � � � � hPB

P (8)

bq Bð Þ ¼ 1� h1B� h2B
2 � � � � � hqB

q (9)

where B is the backward shift operator, BPVGy ¼ PVGy�1, r ¼ 1� B is the backward difference, the
parameters ap and bq are the polynomials of orders p and q, respectively. The product of the AR part (p)
described in Eq. (8), is an integrated part of I dð Þ ¼ r�1, and the MA part (q) described in Eq. (9),
composes the ARIMA (p, d, q) model. The following steps describe the STEF approach:

Step 1: The relative error calculation between the forecasted PVG every 15 min by STEF approach
(dPVGminutes;STEF) and the measured PVG (PVGminutes) is computed with respect to Eq. (6).

RESTEF ¼ PVGminutes � dPVGminutes; STEF

PVGminutes
� 100 (10)

Step 2: Recalculate the relative error obtained in Eq. (6) by considering 15 min as time horizon between
the forecasted PVG (dPVGminutes;DMTEF) and the measured PVG (PVGminutes) with respect to Eq. (11).

REDMTEF ¼ PVGminutes � dPVGminutes;DMTEF

PVGminutes
� 100 (11)

Step 3: The adjustment decision consists of attributing to dPVGminutes the value of PVGminutes;STEF or
PVGminutes;DMTEF that presents the lowest relative error RESTEF and REDMTEF .dPVGminutes ¼ PVGminutes;STEF if RESTEF < REDMTEF

Otherwise, dPVGminutes ¼ PVGminutes;DMTEF
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3 Results and Discussion

The MTEF, DMTEF and STEF approaches are to be integrated into a management algorithm of a
standalone PVG/Battery installation (Fig. 2). It is fundamentally composed of two power supply sources (a
3 KWp PVG and a battery bank of 273 Ah), a DC/AC inverter and two loads (a 350 W cold room and a
one horsepower water pump) used in agricultural purpose. The aim is to make pragmatic decision on the
times of supplying loads by considering the estimated PVG on the one hand and loads constraints and
priorities on the second hand. In fact, the cold room must be continuously supplied as for the water pump,
it must be switched on only if the battery is fully charged and for as long as possible depending on the
estimated available energy. Other loads under different operation criteria and lower priorities may be added.

3.1 MTEF Accuracy
In order to test the forecasting accuracy of ARMA model based on MTEF approach, a data base of

15 days for a stable and perturbed period is adopted considering the obtained results of time horizon
selection presented in Section 3.1.

Figs. 3 and 4 show simulation results of MTEF approach based on ARMA model for the two selected
periods, respectively.
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Figure 2: Off-grid PVG/Battery installation

Figure 3: MTEF approach based on ARMA model for a stable period
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Both figures reveal a good forecasting accuracy results of MTEF approach based on ARMA model in
both periods.

Table 3 illustrates the NRMSE of the stable and perturbed periods:

Figs. 5 and 6 show simulation results of the distribution of the forecasted dPVGDaily by MTEF approach
based on ARMA model for the two selected periods, respectively.

Both figures show good results but not optimal. From sunrise to sunset, a significant dissimilarity is
noticed between the distribution of the forecasted dPVGDaily by MTEF approach based on ARMA model
and measurements for the considered periods (Figs. 5 and 6). As for stable period, the measured PVG
energy is 22.74 KWh and the forecasted PVG energy by MTEF approach is 23.43 KWh. As for
perturbed period, the measured PVG energy is 12.33 KWh and the forecasted PVG energy by MTEF
approach is 10.45 KWh. The acquired excess or loss of forecasted PVG energy may influence load’s
operation of the standalone PVG/Battery installation system under study. PVG estimation may become
more accurate with DMTEF approach and STEF approach.

Figure 4: MTEF approach based on ARMA model for a perturbed period

Table 3: NRMSE of MTEF approach for stable and perturbed periods

Period NRMSE (%)

Stable 5.53

Perturbed 11.36
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Table 4 illustrates the NMBE of the stable and perturbed days:

Figure 5: PVG estimation based on MTEF approach for a stable day

Figure 6: PVG estimation based on MTEF approach for a perturbed day

Table 4: NMBE of MTEF approach for stable and perturbed days

Day NMBE (%)

Stable −4.48

Perturbed 49.61
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3.2 DMTEF Accuracy
The DMTEF approach is used to perform dynamicity on the MTEF approach by effectuating an

adjustment every hour of the estimated dPVGDaily. The accuracy of the DMTEF approach is tested based
on two typical days: a perturbed day (November 16) and a stable day (May 01). Figs. 7 and 8 show
simulation results of DMTEF approach.

Figure 7: PVG estimation based on DMTEF approach for a stable day

Figure 8: PVG estimation based on DMTEF approach for a perturbed day
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The obtained results reveal an optimization of PVG estimation based on DMTEF. The proposed
dynamicity offers a noticeable increasing of The PVG estimation accuracy between the distribution of the
adjusted dPVGDaily by DMTEF approach and measurements for the considered periods (Figs. 7 and 8). As
for stable period, the forecasted PVG energy by DMTEF approach is improved to become 22.88 KWh
compared to the estimation given by MTEF approach. As for perturbed period, the forecasted PVG energy
by DMTEF approach is improved to become 11.22 KWh. The acquired excess or loss of forecasted PVG
energy is reduced compered to MTEF approach. Thus, the doubt about load operation is reduced.

Table 5 illustrates the NMBE of the stable and perturbed days:

3.3 STEF Accuracy
The STEF approach makes use of ST forecasting in order to forecast PVG every 15 min considering the

previous measured 2 h based on the ARIMA model. Such approach performs an adjustment of the previous
estimated dPVGHourly by DMTEF approach every 15 min. Figs. 9 and 10 show simulation results of ST
forecasting and Figs. 11 and 12 show simulation results of STEF approach.

Table 5: NMBE of DMTEF approach for stable and perturbed days

Day NMBE (%)

Stable −0.91

Perturbed 29.20

Figure 9: PVG estimation based on ST forecasting for a stable day
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The obtained results reveal an optimization of PVG estimation based on ST forecasting. Such approach
offers a noticeable increasing of The PVG estimation accuracy between the distribution of the estimateddPVGDaily by ST forecasting and measurements for the considered periods (Figs. 9 and 10). As for stable
period, the forecasted PVG energy by ST forecasting is improved to become 22.88 KWh compared to
MTEF approach. As for perturbed period, the forecasted PVG energy by DMTEF approach is improved

Figure 10: PVG estimation based on ST forecasting for a perturbed day

Figure 11: PVG estimation based on STEF approach for a stable day
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to become 11.08 KWh. The acquired excess or loss of forecasted PVG energy is reduced compered to MTEF
approach. Thus, the risk about load not convenient operation times is reduced.

The obtained results reveal an optimization of PVG estimation based on STEF. An increasing of the
PVG estimation accuracy is clearly noticed between the distribution of the adjusted dPVGDaily by STEF
approach and measurements for the considered periods (Figs. 11 and 12). As for stable period, the
forecasted PVG energy by STEF approach is improved to become 22.83 KWh compared to MTEF,
DMTEF and ST approach. As for perturbed period, STEF approach keep dominance compared to the
aforementioned approaches by improving the forecasted PVG energy to become 11.34 KWh. Such
optimization offers more reliable and convenient load operation management.

Table 6 illustrates the NMBE of the stable and perturbed days:

3.4 Simulation Results of Sources and Loads Operation of PVG/Battery Installation Based on MTEF,
DMTEF and STEF Approaches
The standalone PVG/Battery installation system is used to test the impact of the accuracy of the

proposed STEF approach on the loads operation in compared to what it was previously with MTEF
approach. The battery bank is used as a precaution source in anticipation of worst cases (lack of load
supply by PVG source observed after performing STEF approach). As for loads, the major adjustment
will appear in the water pump profile considering the continuous supply of the cold room. Figs. 13

Figure 12: PVG estimation based on STEF approach for a perturbed day

Table 6: NMBE of STEF approach for stable and perturbed days

Day NMBE (%)

Stable −0.58

Perturbed 26.10

FDMP, 2022, vol.18, no.6 1695



and 14 show simulation results of sources and loads operation of PVG/Battery installation based on MTEF
and STEF approaches.

The obtained results of Figs. 12 and 13 show a clear variation of the water pump operation duration in
stable and perturbed day. The optimization of PVG forecasting accuracy obtained by STEF approach offer
more reliable and convenient load operation to the PVG/Battery installation system under study. The battery
SOC keep a balanced profile and has no intervention thanks to the PVG source capability to supply loads
from sunset to sunrise.

Figure 13: sources and loads profile with MTEF and STEF approaches in stable day

Figure 14: Sources and loads profile with MTEF and STEF approaches in perturbed day
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4 Conclusion

A dynamic forecasting of Photovoltaic Energy Generation (PVG) was developed and experimentally
tested in a management system of a standalone PVG/Battery installation. The methodology consists of
forecasting PVG for three time period ahead: daily, hourly and for each 15 min. First, the MTEF
approach forecasts the PVG using an ARMA model for a day ahead based on 15 days data base of
measures. Then the DMTEF approach adjusts the hourly obtained PVG by MTEF approach considering
the relative error. Finally, a STEF approach combines DMTEF approach and PVG Short-Term (ST)
forecasting, based on ARIMA model, to adjust estimated PVG every 15 min. Obtained results show good
concordance between the three kinds of forecast with measures. Besides, the load operation is improved
and the battery safety is respected in stable and perturbed days. Future works aims to improve the
accuracy of the proposed strategy in more than one day (stable and perturbed) and with different PVG
installations (Grid connected and hybrid PVG systems).
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