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ABSTRACT

This work deals with the modeling of the unsteady Newtonian fluid flow associated with an open cylindrical reser-
voir. This reservoir presents a hole on the right bottom wall. Fluid volume variation, heat and mass transfers are
neglected. The unsteady governing equations are based on the conservation of mass and momentum. A finite
volume technique is used to solve the non-dimensional equations and related boundary conditions. The algebraic
system of equations resulting from the discretization process are solved by means of the THOMAS algorithm. For
pressure-velocity coupling, the SIMPLE algorithm (Semi Implicit Method for Pressure Linked Equations) is used.
Results for laminar flow (Re < 1000), including the pressure and velocities profiles as well as the streamlines in the
reservoir are presented. Moreover, the effects of the D/d and H0/D ratios and Reynolds number Re on the fluid flow
are discussed. It is shown that the velocities and pressure depend essentially on the reservoir size. To validate the
model, the present results have been compared with Zhou et al.’s results, Poiseuille’s and Bernoulli’s exact solution.
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Nomenclature
d Hole diameter [m]
d+ Dimensionless hole diameter = d/d
D Reservoir diameter [m]
Fr Froude number ¼ U0=

ffiffiffiffiffi
gd

p
g Gravity acceleration [m.s−2]
H0 Reservoir height [m]
P Total pressure [Pa]
P+ Dimensionless pressure ¼ P � P0=rU 2

0

P0 Atmospheric pressure [Pa]
r Radial coordinate [m]
r+ Dimensionless radial coordinate = r/d
Re Reynolds number = ρU0d/μ
t Time [s]
t+ Dimensionless time =U0t/d
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tf Maximal time [s]
tþf Dimensionless maximal time tþf ¼ U0tf =d
U0 Average fluid velocity at outlet [m.s−1]
u Fluid velocity following z [m.s−1]
u+ Dimensionless fluid velocity following z+ = u/U0

v Fluid velocity following r [m.s−1]
v+ Dimensionless fluid velocity following r+ = v/U0

z Axial coordinate [m]
z+ Dimensionless axial coordinate = z/d
ρ Fluid density [kg.m−3]
μ Dynamic viscosity of the fluid [kg.m−1.s−1]
υ Kinematic viscosity of the fluid [m2.s−1]

1 Introduction

The reservoir has a very important role in industry applications. It is presented in different forms. It is
considering here the open cylindrical form. The researchers generally focus their studies on the emptying of
open cylindrical tank through an orifice centered on the bottom. In a drain, the fluid height decreases with the
time and the orifice size [1].

The fluid has two types draining single-layer and double-layer. Zhou et al. [2] developed numerically the
single-layer flow of an open cylindrical tank with an orifice placed symmetrically on the bottom. They found
a synchronization of the critical heights calculated with the analytical solution of Lubin et al. [3]. For fluids
having different densities, the double-layer flow has been studied experimentally by Forbes et al. [4]. When
the orifice is open, the liquid flows and the dip forms on the liquid surface in the tank.

To determine the time of fluid drain, Fadhilah et al. [5] studied the numerical simulation of the liquid
flow in a cylindrical tank using open FOAM.

The numerical simulation of free surface flow in the reservoir has been studied by Xhang et al. [6]. They
modeled theirs system using Navier-Stokes equation and unstructured finite volume method. Authors
considered that the walls are rigid or elastic and that the fluids are viscous or not. They simulated also the
viscous fluid flow past a submerged obstacle in the reservoir.

Knowing the exact emptying time of vessel is very important because it gives an advantage to plan the
work and permits to anticipate all the risks caused by the lost time. For this reason, Nasyrova et al. [7] were
interested in numerical study to compare the theoretical model and real tank. The purpose of this work is to
demonstrate Torricelli’s law for reservoirs having the same size but a different geometry. The determination
of time draining is based on the discrete element method assuming that the fluid is multiphase (gas-liquid).

Peng et al. [8] modeled fluid flow in rectangular shallow basins by using lattice Boltzmann method.
They studied the system under the different conditions and basin geometry. The governing equations are
those that govern sallow water. To solve these equations, the semi Lagrangian method is used. Their
results showed that the proposed model is acceptable for modeling shallow basin.

To be able to supply water drinkable in urban environment with a low investment cost, Camnasio et al.
[9] analyzed the coupling between flow and sediment deposition in rectangular shallow reservoir. The
obtained results confirmed the existence of sedimentation that resulted in the formation of vortex inside
the reservoir.

The purpose of Kalyan et al.’s [10] researches is to analyze the water flow tank using nonlinear finite
element. Navier-Stokes equations have been used to model their system. They assumed that water is
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compressible and is discretized eight nodes. The study is carried out the hydrodynamic pressure. For various
tank lengths, the nonlinear influences are also developed.

The work of Memon et al. [11] was focused on determination of exact solution for unsteady tank
drainage through the circular pipe. They supposed that the fluid is incompressible and Newtonian, the
couple stress is isotherm. The exact solution is obtained from governing equation (continuity and
momentum) to determine the time for complete drainage.

This article presents the concept of applying numerical model to study the unsteady 2D fluid flow in
cylindrical reservoir with a hole based on the Navier-Stockes equations by analyzing the influences of the
more important parameters on the velocities and pressure as the Reynolds number and the configuration
parameters. The lack of work on the flow characterizing this configuration motivated us to carry out this
research. In this work, governing equations are resolved using the finite volume method based on
Thomas algorithm. Fluid volume variation, heat and mass transfer are neglected in this case. The tank
configuration and flow parameters influence on the pressure and the velocity profiles as well as the
streamlines profile in the tank are investigated.

2 Analysis and Modeling

2.1 Physical Description
Fig. 1 shows the physical description of the system. It is composed of an open cylindrical reservoir filled

with water and a hole placed on the right bottom wall. The height and diameter of the reservoir are H0 and D
respectively whereas the hole diameter is d.

2.2 Mathematical Formulation
The system in Fig. 1 has been considered. The flow is supposed two-dimensional, laminar and

incompressible. Heat and mass transfers are neglected. The fluid level and the physical properties are
assumed to be constant. The gravity force exerts only on this fluid. With respect of mentioned
assumptions and after introducing the dimensionless transformation, the dimensionless Navier Stokes
equations in cylindrical coordinate is written as follows [12]:

rþ ¼ r

d
; zþ ¼ z

d
; uþ ¼ u

U0
; vþ ¼ v

U0
; Pþ ¼ P � P0

qU2
0

; tþ ¼ U0t

d
(1)

Figure 1: Geometrical configuration
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Dimensionless continuity equation:

1

rþ
@
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Dimensionless momentum equation:
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(3)

Reynolds and Froude numbers:

Re ¼ qU0d

l
; Fr ¼ U0ffiffiffiffiffi

gd
p (4)

Dimensionless boundary conditions:

At the reservoir outlet:

0 � rþ � D� d

d
and 0 � tþ � tþf with tþf ¼ U0tf

d
uþðrþ; 0; tþÞ ¼ 0 ; vþðrþ; 0; tþÞ ¼ 0 ;

D� d

d
� rþ� D

d
uþðrþ; 0; tþÞ ¼ �1; vþðrþ; 0; tþÞ ¼ 0; Pþðrþ; 0; tþÞ ¼ 0:

(5)

At the reservoir inlet:

0 � zþ � D

d

uþðrþ; H0

d
; 0Þ ¼ 0; vþðrþ; H0

d
; 0Þ ¼ 0;

Pþðrþ; H0

d
; 0Þ ¼ 0

(6)

On the walls:

0 � zþ � H0

d
and 0 � tþ � tþf

uþð0; zþ; tþÞ ¼ 0; vð0; zþ; tþÞ ;
uþðD

d
; zþ; tþÞ ¼ 0; vþð0; zþ; tþÞ ¼ 0

(7)

The discretization of the dimensionless Navier Stokes equations as mentioned above using the finite
volume method leads to the following general form [13]:

Ai; jfi; j þ Bi; jfi; j þ Ci; jf; j ¼ Dj (8)

With f = (u+, v+, P+)

The SIMPLE and Thomas algorithms have been used to solve respectively the pressure-velocity
coupling and the algebraic equations system has been solved by THOMAS algorithm [14], see Eq. (8).
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3 Results and Discussion

For the numerical simulation, the reservoir data illustrated in the Table 1 below is used.

Based on the analyzes of the influence of the meshes on the results, the mesh 70 × 30 nodes was chosen
to save run time and memory for numerical computation.

The convergence criterion is determined such that the source term of pressure correction equation is less
than 10−8.

3.1 Profiles of Dimensionless Components of Velocities
Fig. 2 illustrates the variation in z+ = 7.5 of the adimensional speed u+ according to r+ for three durations:

t+ = 7.9, 5.26 and 2.63. It should be noted that a component of the negative velocity reflects a descending
flow, the highest absolute value of which is located at the vicinity of the hole of the reservoir. The
inflection point observed near the left vertical wall results from the boundary conditions at the free water
surface that one have imposed on the velocity. The dimensionless u+ is an increasing function of
dimensionless time t+ and it will become constant until a certain time, which is the establishment time.
The profile stops changing, which is to say the flow has become stationary. The unsteady flow at the
beginning and the peak of adimensional velocity are caused by the existence of the orifice on the right
bottom wall.

The evolution in z+= 7.5 of the adimensional velocity component v+ according to r+ describes a
parabolic profile characteristic of a Poiseuille flow, see Fig. 3. The speed v+ increases with time t+. The
adimensional velocities u+ and v+ have an opposite directions. In this case, we have a Poiseuille’s profile.
By moving away from the wall, the shear stress is less important and the fluid can flow freely. In

Table 1: Cylindrical reservoir data

D/d d/d H0/d tþf
4 1 15 10

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

r+

u+

t+=7.9

t+=5.26
t+=2.63

Figure 2: Effect of t+ with adimensional velocity u+
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accordance with the u+ speed, the destabilization of the flow begins at the inlet of the hole and becomes more
and more stable.

3.2 Profile of the Dimensionless Pressure P+

By taking three values of t+; z+ = 7.5; Fr = 0.1 and Re = 100, the dimensionless pressure profile as a
function of r+ is given by Fig. 4. It is observed that the three curves are confounded. This means that the
pressure always remains constant inside the tank. It is independent of time.

3.3 Influences of the Reynolds Number on u+, v+ and P+

The Reynolds number Re is based on the average speed of water at the reservoir outlet. The increasing of
the Reynolds number means that the velocity in the tank is intensifying. Fig. 5 shows the effect of Re on
dimensionless velocity u+ for z+ = 7.5, t+ = 5 and Fr = 0.1. The Reynolds number and velocity u+ grow
proportionally. The hole at the bottom causes the pic on the velocity u+, see Fig. 5.
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Figure 3: Effect of t+ on the adimensional velocity v+
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Figure 4: Influence of t+ on dimensionless pressure P+
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Fig. 6 represents the influences of Reynolds number Re on adimensional velocity v+ for z+ = 7.5, t+ = 5,
Fr = 0.1. According to the figure, Reynolds number Re and the adimensional velocity v+ progress regularly.
For low Reynolds number Re, a parabolic profile of the boundary layer type was obtained. Otherwise, the
curve gradually deviates from the other curves corresponding to the low Reynold value. The parabolic
profile slowly disappears. The regime tends towards a turbulent regime. The speed v+ varies according to
the evolution of the Reynolds number.

For various Re, Fig. 7 represents the dimensionless pressure profile as a function of r+ at x+ = 10,
t+ = 100, Fr = 6.32. Even if the Reynolds number Re is varied, the pressure in the reservoir remains
always almost unchanged. Therefore, Re has a small influence on the pressure P+.
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Figure 5: Influence of reynolds number on velocity u+
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Figure 6: Influence of reynolds number on velocity v+
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3.4 Influence of H0/D Ratio
The H0/D ratio considerably influences the evolution in z+ = 7.5 of the speed component u+ according to

radial component r+, see Fig. 8 below. In fact, the increase in this ratio results in a disappearance of the
inflection point observed in the vicinity of the outlet orifice and by a decrease in the absolute value of
this dimensionless speed component which is all the greater as the ratio H0/D is high. In fact, the increase
in the H0/D ratio generates, for a given length of the reservoir, an increase in the height of the water
column and consequently in the speed of ejection of the water at the outlet of the orifice. In fact, the
velocity profile u+ continuously deforms along the height of the tank and tends towards a parabolic profile.

3.5 Influence of Orifice Diameter Variation
The D/d ratio considerably influences in z+ = 7.5 the evolution of adimensional speed component u+

according to r+ depicted in Fig. 9. The increase in the D/d ratio, for a value of d, results in a reduction in
the size of the outlet orifice of the reservoir and consequently in the hydraulic diameter and therefore in
the Reynolds number. This results in an increase in the transfer of momentum by diffusion to the
detriment of convection. The maximum value is obtained for values of r+ close to the opening of the
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Figure 7: Influence of reynolds number on pressure P+
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Figure 8: Influence of the variation of the ratio H0/D ratio
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reservoir. These three curves are similar. If the ratio of D/d is small, D and d have comparable sizes, the fluid
flows freely and its speed becomes very important. Orifice diameter d very small, in front D corresponds to
the very large D/d value causes the braking of the flow near the hole.

3.6 Streamline
Fig. 10 shows the trajectories of the fluid particles (streamlines) in the tank at t+ = 2.63; Fr = 0.1;

Re = 100. One proved from this figure that under the action of the gravity field the fluids converge
towards the discharge hole.

3.7 Validation

3.7.1 Validation with Zhou et al. Results [2]
To validate our model, the results of Zhou et al. [2] have been used. In this case, the hole of

dimensionless diameter d+ = 0.2 must place in the center of the tank and one have taken Re = 100; Fr = 1;
H0/D = 1; r+ = 1 and t+ = 1.2.
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Figure 10: Streamline in the reservoir
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Figure 9: Influence of the opening of the orifice
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The profile of curves on Fig. 11 represents the comparison between Zhou et al. results [2] and the present
results. One proves that the discrepancy between these two models is of the order of 1.43% on average.

3.7.2 Validation with Analytical Result
By changing the diameter d of the orifice to the diameter D of the tank (d = D), our system can be

assimilated as a vertical cylindrical pipe. This condition has been used to validate our model. The present
result has been compared with Poiseuille’s result. Fig. 12 affirms that the two curves have almost same
appearance. The accuracy of model is of 97%. Comparison presents a good agreement.

3.7.3 Validation with Bernoulli’s Exact Solution
The one-dimensional unsteady Bernoulli equation was used to validate our results. By integrating this

equation along the streamlines, the adimensional analytical expression is given by Eq. (9) [15].
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Figure 11: Comparison between Zhou et al. results [2] and the present numerical results
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Figure 12: Comparison between the analytic results and the present numerical results
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uþðtþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2gH0

p
U0

tanh

ffiffiffiffiffiffiffiffiffiffiffi
2gH0

p
U0

tþ
� �

(9)

To be able to compare the present result with that of Bernoulli, the orifice has been placed symmetrically
at the reservoir’s bottom and it has been assumed that the flow is one-dimensional, that is to say that the
variation of the speed is neglected along the direction r.

These two curves in Fig. 13 represent respectively the variation of adimensional velocity average
depending of the adimensional time t+ for the present study and the Bernoulli’s exact solution. Results
comparisons show a good agreement with a discrepancy of 2% in average.

4 Conclusions

A 2D model has been developed to simulate the unsteady flow. The mathematical model is based on the
mass conservation and momentum. It was assumed that there are no heat and mass transfers. The governing
equations and the boundary conditions were discretized using the finite volume method. The solution of the
algebraic equations system is assured by Thomas’s algorithm. The SIMPLE algorithm has been used to solve
the pressure-velocity coupling. The results show us the influences of t+, H0/d, D/d, Re on the velocities
(u+, v+) and the pressure. Comparisons between the present results and from those literatures were done
and present a good agreement. The following conclusions are drawn:

(1) The existence of the orifice on the bottom wall causes the rapid increase (peak) of the adimensional
velocity and the instability of the flow at the beginning. By moving away from the wall, the shear
stress is less important and the fluid can flow freely. In accordance with the velocity u+, the
destabilization of the flow begins at the inlet of the hole and becomes more and more stable.

(2) The dimensionless velocities increase proportionally with the Reynolds number. For low Reynolds
number, a parabolic profile of the boundary layer type was obtained. Otherwise, the regime tends
towards a turbulent regime. The pressure always remains constant inside the tank. It is
independent of time.

(3) The speed of ejection of the water at the outlet of the orifice increase proportionally with height of the
water column. The velocity profile u+ continuously deforms along the height of the tank and tends
towards a parabolic profile.
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Figure 13: Validation with Bernoulli’s analytical result
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(4) The transfer of momentum by diffusion to the detriment of convection decrease with increase of the
orifice diameter. The small value of orifice diameter causes the braking of the flow near the hole.

The continuity of this work concerns the experimental validation of the obtained theoretical results, the
numerical study for turbulent or laminar flow in the same tank with or without obstacle by considering the
heat and mass transfer at the reservoir wall.
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