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ABSTRACT

Free convection of a viscous electrically conducting liquid past a vertical stretching surface is investigated in the
presence of a transverse magnetic field. Natural convection is driven by both thermal and solutal buoyancy. The
original partial differential equations governing the problem are turned into a set of ordinary differential equa-
tions through a similar variables transformation. This alternate set of equations is solved through a Differential
Transform Method (DTM) and the Pade approximation. The response of the considered physical system to the
non-dimensional parameters accounting for the relative importance of different effects is assessed considering
different situations.
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Nomenclature
a constant
T∞ ambient temperature
B0 magnetic field strength
u velocity of the fluid along x-axis
C fluid concentration
uw characteristic velocity
Cf non-dimensional skin friction
v velocity of the fluid along y-axis
Cw concentration of the plate
x, y co-ordinate axes along and
C∞ ambient concentration perpendicular to the plate
DB molecular diffusivity
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Greek Symbols
f dimensionless stream function
α thermal diffusivity
f′ dimensionless velocity profile
ν kinematic viscosity
g acceleration due to gravity
β1 coefficient of thermal expansions
k vortex viscosity
β2 coefficient of solutal expansions
M magnetic parameter
η similarity variable
Nux Nusselt number
θ dimensionless temperature
Pr Prandtl number
ϕ dimensionless concentration
qm mass transfers from the plat
ψ stream function
qw heat transfers from the plat
μ coefficient of viscosity
Rex Reynold number
σ magnetic permeability of fluid
Sc Schmidt number
ρ fluid density
Shx Sherwood number
λ1 thermal buoyancy parameter
T fluid temperature
λ2 solutal buoyancy parameter
Tw constant temperature of the plate
τw the wall shear stress

1 Introduction

In recent the application of flow phenomena over a stretching surface is vital due to its uses in the
production of materials in several industrial processes. However, these are composed with the heat and
mass transfer phenomena and for the design of various equipment’s, the role of heat transfer is important.
In particular, the production of plastic sheets, space vehicle aircrafts, gas turbines etc. the knowledge of
radiating heat transfer is useful. To reveal the principle of buoyancy according to the engineering context
its application is vast. The principle of buoyancy can be useful for the floating of the objects such as
ships and boats, submarines, hydrometer, balloons and airships and many others. Further, in view of
mathematics, the nonlinear equations are supreme factors for the studies relating to it. Many nonlinear
equations don’t have an accurate analytic technique to solve for which numerical methods have been
employed. There are some analytic methods like Adomian Decomposition Method (ADM), Differential
Transform Method (DTM), Variation of Parameters Method (VPM), Perturbation method and Homotopy
Perturbation Method (HPM) that can be employed to solve nonlinear equations easily.
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Considering the free convection of air past a vertical plate in presence of earth’s gravitational field is one
of the above cases was analyzed by Schmidt et al. [1]. Mishra et al. [2] have presented heat and mass transfer
analysis over Walters’ B’model over an extended surface. For the solution of the flow problem they have
employed Kummer’s function, an analytical technique. Especially, they have investigated the heat
equation for two cases such as PST and PWHF. Earlier Mishra et al. [3] have proposed a work to
investigate the flow of an incompressible fluid on a vertical flat plate where they have used numerical
technique to solve the problem. Another detailed study on the viscous incompressible fluid over a vertical
flat plate was encountered by Pattnaik et al. [4] where they have employed Laplace transform technique
of both time-dependent and independent cases since, Laplace transform technique is an effective
technique for some coupled equations. Pattnaik et al. [5,6] have considered this technique to analyze an
unsteady MHD flow to study the angle of inclination on the flow circumstances.

For the current study, the collection is obtained for some special literature review [7–10] regarding DTM
transformations and its applications for electric circuits, especially how it works on heat transfer equation,
solution for a system of second and higher-order equations. Recently, Sepasgozara et al. [11] have looked
forward in their work for a non-Newtonian viscoelastic fluid flow employing DTM and here authors have
compared the result with numerical technique also and both results obey with good accuracy. Jena et al.
[12–15] found some more related studies on Jeffery fluid flow, viscoelastic fluid flow, and micropolar
nanofluid flow where authors have used different methods such as numerical technique, Kummer’s
function and ADM technique for the solution of non-dimensional governing equations.

There is an investigation by Usman et al. [16] for DTM and Runge-Kutta of order four which describes
that DTM is a much more effective technique to solve and this kind of results can help researchers for quicker
and easier analysis. For the first time the great mathematician Baker had written a book namely Essentials of
Pade Approximants and our research work is comprehensively occupied by his study [17]. Through in this
book, the author has given a very clear and elaborate description of Pade Approximants, solution for Pade
Approximants, the Pade table, and the structure of the Pade table, etc. Another four-step Pade algorithm is
used to solve ODEs and that has been carried out by Boyd [18]. The author has mentioned all the four steps
starting from series expansion to multiple solutions of equations. For the reduction of fuel consumption, a
non-uniform slab heating pattern in a furnace is used by Ajili et al. [19]. Discreet ordinates thermal
radiation is eployed to carry out the load distribution effect. Dehkordi et al. [20] considered the Fe3O4-
water nanofluid for the influence of electric field in a microchannel and its major application is used in
boiling processes. The investigation was carried out as a study of molecular dynamics. Further, the
development in the said work is obtained by simulating the thermal domains considering Cu-water
nanofluid in a nanochannel that is proposed by Asgari et al. [21]. Karimipour and his co-workers [22]
have analyzed the behavior on the physical properties of thermal conductivity in a byhrid nanofluid
composed of Cu and CNT nanopartcles. Cattaneo-Christov heat flux model is proposed by Nadeem et al.
[23–25] in various non-Newtonian fluid considering different geometries. Muhammad et al. [26,27] and
Nadeem et al. [28,29] conducted the work on the ferromagnetic fluid for the influence of various thermal
properties with stratification condition. Rashidi et al. [30] have investigated the mixed convection
problem about a flat plate embedded in a porous medium by implementing DTM along with the Pade
approximation technique. Further, the study is compared with a numerical investigation to enhance the
quality of research and for the accuracy check. In another study also Rashidi et al. [31] studied the flow
pattern of the MHD flow using a combination of both DTM and Pade approximation method. Here
authors have compared DTM with DTM-Pade and both these with Runge-Kutta fourth-order method.
Also through this study authors concluded that DTM-Pade is an excellent and quicker method to solve
boundary value problems. Authors in different works [32–36] have shown their interest in MHD flow
using the DTM-Pade technique as the prior investigation on different fluid flow problems. The
performance of the radiative heat on the melting heat transport phenomenon for the flow using
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nanomaterials with irreversibility analysis is conducted by Khan et al. [37]. Further, Hayat et al. [38]
presented the irreversibility characteristics in the flow of nanofluids with the interaction of velocity slip
and dissipative heat energy by a stretchable cylinder. Hayat and his co-workers [39–44] have presented
the simulation and modeling of entropy optimization for various nanoliquids considering different
geometries.

With reference to the aforesaid discussions, the aim of the present investigation is to reveal the impact of
buoyancy forces on the two-dimensional flow of conducting viscous fluid past an expanding surface. The
present study overrides the earlier investigation by imposing an approximate analytical technique called
Differential Transform Method and along with the enhanced solution is obtained by employing Pade
approximant. The comparison also obtained and presented graphically.

2 Problem Formulation

A steady two-dimensional flow of viscous fluid over a vertical stretching surface is undertaken in the
present investigation. The flow occurs in the direction of x-axis and y-axis is transverse to it. The fluid
becomes electrically conducting due to the applied magnetic field of strength B0 is acted along the flow
direction i.e., normal to y-axis. The surface temperature and concentration are deployed as Tw and Cw

respectively. Similarly, the ambient conditions are also presented in Fig. 1.

Assuming the aforesaid conditions and following [32] the governing flow phenomena are presented as

@u

@x
þ @v

@y
¼ 0; (1)

u
@u

@x
þ v

@u

@y
¼ m

@2u

@y2
� rB2

0

q
uþ gb1ðT � T1Þ þ gb2ðC � C1Þ; (2)

u
@T

@x
þ v

@T

@y
¼ a

@2T

@y2
; (3)

u
@C

@x
þ v

@C

@y
¼ DB

@2C

@y2
: (4)

where m ¼ l
q
;

The corresponding boundary conditions are expressed as follows:

u ¼ v ¼ 0; T ¼ Tw; C ¼ Cw at y ¼ 0; (5)

Figure 1: Flow geometry
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u ! 0; T ! T1; C ! C1; y ! 1: (6)

To transformed into the non-dimensional form the followings [45] are the suitable and defined as

g ¼ a

m

� �1
2y; wðx; yÞ ¼ ðmaÞ12x f ðgÞ; hðgÞ ¼ T � T1

Tw � T1
; fðgÞ ¼ C � C1

Cw � C1
: (7)

Using the aforesaid equations, Eq. (1) is identically satisfied and Eqs. (2)–(4) become

f 000ðgÞ þ f ðgÞf 00ðgÞ � f 0ðgÞ2 �M f 0ðgÞ þ k1hðgÞ þ k2 fðgÞ ¼ 0; (8)

h00ðgÞ þ Pr f ðgÞh0ðgÞ ¼ 0; (9)

f00ðgÞ þ Sc f ðgÞf0ðgÞ ¼ 0; (10)

where M ¼ rB2
0

qa
; k1 ¼ gb1ðTw � T1Þ

a2x
; k2 ¼ gb2ðCw � C1Þ

a2x
; Pr ¼ m

a
; Sc ¼ m

DB
:

Besides, the converted boundary conditions are prescribed as follows:

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; hð0Þ ¼ 1; fð0Þ ¼ 1;

f 0ð1Þ ! 0; hð1Þ ! 0; fð1Þ ! 0: (11)

The physical quantities for the said problem are as follows:

Cf ¼ sw
qu2w

; Nux ¼ xqw
kðTw � T1Þ ; Shx ¼

xqm
DBðCw � C1Þ ;

sw ¼ l
@u

@y

� �
y¼0

; qw ¼ �k
@T

@y

� �
y¼0

; qm ¼ �DB
@C

@y

� �
y¼0

:
(12)

Applying the non-dimensional transformations (7) we have

Re1=2x Cf ¼ f 00ð0Þ; Re�1=2
x Nux ¼ �h0ð0Þ; Re�1=2

x Shx ¼ �f0ð0Þ; (13)

where Rex ¼ ax2=m.

3 Solution Methodology

3.1 Fundamentals of DTM
Based upon the Taylor series expansion the methodology i.e., differential transform method, a semi-

analytical method, is illustrated here. To get a series solution in terms of polynomials the differential
equations are converted into a set of recurrence relations. Zhou [7] first proposed the concept of
differential transform to electric circuit problems.

The transformation of kth derivative of the defined function f (x) is

FðkÞ ¼ 1

k!

dkf ðxÞ
dxk

� �
x¼x0

: (14)

The inverse transform of F(k) is defined as

f ðxÞ ¼
X1
k¼0

FðkÞðx� x0Þk : (15)
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Substituting F (k) from Eq. (14) in Eq. (15) we get

f ðxÞ ¼
X1
k¼0

ðx� x0Þ
k!

k dkf ðxÞ
dxk

� �
x¼x0

: (16)

This is Taylor’s series expansion of f (x) about x = x0.

The method provide solutions in terms of convergent series with easily computable components. The
aim of this article is to introduce the DTM as an efficient tools to solve the highly nonlinear differential
equations. We choose a similarity transform variable to modify Navier–Stokes equation to a coupled
highly non-linear ordinary differential equation which then solved by using DTM along with Pade
technique to get close form solution. To illustrate the simplicity and accuracy of its variants by comparing
the results with numerical solution by using bvp5c technique, a MATLAB solver. This work introduces
the DTM for two reasons:

(i) This method gives a good sense of continuation to the Taylor series in the application of
differentiation.

(ii) This method is gaining momentum among researchers due to its simplicity and has some pedagogical
benefits.

This method constructs an analytical solution of linear as well as non-linear differential equations in the
form of a polynomial. Though it uses the general form of the traditional high-order Taylor series method, it
overcomes the inefficient sides of Taylor series method which takes a long time for higher orders. Symbolic
computations of the necessary derivatives of the data functions are computed by using iterative procedure for
obtaining analytical solutions of differential equations. From Eqs. (14) and (15), the fundamental theorems of
DTM can be deduced, which are listed in Table 1.

The DTM transformations which we used in the present work are listed in Table 2.

Table 1: The fundamental theorems of DTM

Original function Transformed function

f(x) = u(x) ± v(x)

f(x) = λu(x)

f(x) = xm

f ðxÞ ¼ dnuðxÞ
dxn

f(x) = u(x)v(x)

f(x) = u′(x)v′(x)

f(x) = u(x)v′(x)

F[k] =U[k] ± V[k]
F[k] = λU[k]

F½k� ¼ 1; k ¼ m
0; otherwise

�
F[k] = (k + 1)(k + 2)...(k + n)U[k + n]

F½k� ¼ Pk
n¼0

U ½k�V ½k � n�

F½k� ¼ Pk
n¼0

ðnþ 1Þðk � nþ 1ÞU ½k þ 1�V ½k � nþ 1�

F½k� ¼ Pk
n¼0

ðk � nþ 1Þ U ½k� V ½k � nþ 1�
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Taking the differential transforms of Eqs. (8)–(10), we obtained Eqs. (17)–(19), respectively

F½k þ 3� ¼ k!

ðk þ 3Þ!

Pk
r¼0

ðr þ 1Þðk � r þ 1ÞF½r þ 1�F½k � r þ 1� � k1�½k� � k2�½k�

�Pk
r¼0

ðk � r þ 2Þðk � r þ 1ÞF½r�F½k � r þ 2� þMðk þ 1ÞF½k þ 1�

0
BBB@

1
CCCA: (17)

�½k þ 2� ¼ � k!

ðk þ 2Þ!Pr
Xk
r¼0

ðk � r þ 1Þ½r��½k � r þ 1�: (18)

�½k þ 2� ¼ � k!

ðk þ 2Þ! Sc
Xk
r¼0

ðk � r þ 1ÞF½r��½k � r þ 1�: (19)

where F(k), Θ (k) and Φ(k) are the differential transforms of f(t), θ(t) and ϕ(t) respectively. The boundary
conditions Eq. (11) are transformed as

Table 2: The DTM transformations

Original function Transformed function

f(x)f ′(x) Pk
r¼0

ðk � r þ 1ÞFðrÞFðk � r þ 1Þ

f(x)f ′′(x) Pk
r¼0

ðk � r þ 1Þðk � r þ 2ÞFðrÞFðk � r þ 2Þ

f(x)f ′′′(x) Pk
r¼0

ðk � r þ 1Þðk � r þ 2Þðk � r þ 3ÞFðrÞFðk � r þ 3Þ

f′(x)f ′′(x) Pk
r¼0

ðk � r þ 1Þðk � r þ 2Þðr þ 1ÞFðr þ 1ÞFðk � r þ 2Þ

f′′(x)f ′′′(x) Pk
r¼0

ðk � r þ 1Þðk � r þ 2Þðk � r þ 3Þðr þ 1Þðr þ 2ÞF½r þ 1�F½k � r þ 3�

(f′(x)) 2 Pk
r¼0

ðk � r þ 1Þðr þ 1ÞFðr þ 1ÞFðk � r þ 1Þ

f(x)g′(x) Pk
r¼0

ðk � r þ 1ÞFðrÞGðk � r þ 1Þ

f(x)g′′(x) Pk
r¼0

ðk � r þ 1Þðk � r þ 2ÞFðrÞGðk � r þ 2Þ

f′(x)g′(x) Pk
r¼0

ðk � r þ 1Þ2Fðk � r þ 1ÞGðk � r þ 1Þ

f′′(x)g(x) Pk
r¼0

ðk � r þ 1Þðk � r þ 2ÞGðrÞFðk � r þ 2Þ
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F½0� ¼ 0; F½1� ¼ 1; F½2� ¼ a

2
; �½0� ¼ 1; �½1� ¼ b; �½0� ¼ 1; �½1� ¼ c: (20)

Solving Eqs. (17)–(19) with Eq. (20) we derived the DTM solutions as

f ðgÞ ¼ gþ a g2

2
þ 1

6

1� k1
�k2 þM

� �
g3 þ 1

24

a� bk1
�ck2 þ aM

� �
g4

þ 1

60

a2

2
þ 1

2
M

a� k1
�k2 þM

� �� �
g5 þ 1

720
að�2k1 � 2k2 þ ð1þMÞ2Þ
þbk1ð1�M þ PrÞ þ ck2ð1�M þ ScÞ

 !
g6 þ : : :;

(21)

hðgÞ ¼ 1þ b g� 1

6
bPr g3 � 1

24
a b Pr g4 � 1

20
Pr

1

6
b

1� k1
�k2 þM

� �
� b Pr

2

� �
g5

� 1

30
Pr

1

24
b

a� bk1
�ck2 þ aM

� �
� 5 a b Pr

12

� �
g6 þ : : :;

(22)

fðgÞ ¼ 1þ c g� 1

6
c Sc g3 � 1

24
a c Sc g4 � c

120
Sc

1� k1
�k2 þM

� �
� 3c Sc

� �
g5

� c

720
Sc

a� bk1
�ck2 þ aM

� �
� 10 a Sc

� �
g6 þ : : :

(23)

To proceed with our work we have taken k1 ¼ 0:1; k2 ¼ 0:1; M ¼ 1; Pr ¼ 0:71; Sc ¼ 0:22 to get the
solutions as

f ðgÞ ¼ gþ a

2
g2 þ 0:3 g3 þ 1

24
ð2 a� 0:1 ðbþ cÞÞ g4 þ 1

60
ð0:9þ 0:5 a2Þ g5

þ 1

120
ð0:6 aþ 0:011833 bþ 0:00367cÞ g6 þ : : :;

(24)

hðgÞ ¼ 1þ b g� 0:118333 b g3 � 0:0295833 a b g4 þ 0:0019525 b g5

�0:0236667
1

24
b ð2a� 0:1b� 0:1cÞ � 0:295833 a b

� �
g6 þ : : :;

(25)

fðgÞ ¼ 1þ c g� 0:366667 c g3 � 0:00916667 a c g4 � 0:00209 c g5

�0:00733333
1

24
c ð2a� 0:1b� 0:1cÞ � 0:0916667 a c

� �
g6 þ : : ::

(26)

After applying DTM to get an accurate solution of the boundary value problem, we have applied Pade
Approximant.

3.2 Pade Approximant
The Pade approximant of f(η) on [a, b] is a rational fraction of two polynomials PN(η) and QM(η), where

degrees N and M are degree of the polynomials, respectively [17].

½N=M � ¼ PN ðgÞ
QM ðgÞ, the notation [N/M] will be used to denote this quotient. For a better approximation, the

diagonal approximants [N/N] order will be used.

212 FDMP, 2022, vol.18, no.2



The power series form of the function f(η) is

f ðgÞ ¼
X1
i¼0

cig
i (27)

The notation ci, i = 0, 1, 2, ... is reserved for the given set of coefficients and f(η) is the associated
function. [L/M] Pade approximant is a rational fraction.

f ðgÞ ¼ a0 þ a1gþ a2g2 . . . . . . :þ aLgL

b0 þ b1gþ b2g 2 . . . . . . . . .þ bMgM
: (28)

which has a Maclaurin expansion, agrees with Eq. (27). It is noticed that in Eq. (28) there are L +M + 1
unknown coefficient in all. This number suggests that normally [L/M] ought to fit the power series Eq.
(27) through the orders 1, η, η2,... , ηL+M. In the notation of formal power series

f ðgÞ ¼
X1
i¼0

cig
i ¼ a0 þ a1gþ a2g2 þ : : :þ aLgL

b0 þ b1gþ b2g2 þ : : :þ bMgM
þ 0ðgLþM Þ: (29)

Equating the coefficients of ηL+1, ηL+2, ... , ηL+M we get

bMcL�Mþ1 þ bM�1cL�Mþ2 þ : : :þ b0cLþ1 ¼ 0
bMcL�Mþ2 þ bM�1cL�Mþ3 þ : : :þ b0cLþ2 ¼ 0

: : :
bMcL þ bM�1cLþ1 þ : : :þ b0cLþM ¼ 0

9>>=
>>;: (30)

If i < 0, we define ci = 0 for consistency. Since b0 = 1, Eq. (30) becomes a set ofM linear equations forM
unknown denominator coefficients.

cL�Mþ1 cL�Mþ2 : : : cLþ1

cL�Mþ2 cL�Mþ3 : : : cLþ2

cL cLþ1 : : : cLþM

0
@

1
A bM

bM�1

: : :
b0

0
B@

1
CA ¼ �

cLþ1
cLþ2

: : :
cLþM

0
B@

1
CA: (31)

From the above expression, bi may be obtained. The numerator coefficients a0, a1,…….aL follow
immediately from Eq. (29) by equating the coefficients of 1, η, η2,... , ηL+M such as

a0 ¼ c0; a1 ¼ c1 þ b1c0; a2 ¼ c2 þ b1c1 þ b2c0; : : : ; aL ¼ cL þ
Xmin L=M

i¼1

bicL�i: (32)

Thus, Eqs. (29) and (32) normally determine the Pade approximants.

Pade approximant is used to bring the infinite boundary layer behaviour of the solution obtained by
DTM. The Pade approximant gives a better closed form solution when applied after DTM, and it may
still work where the DTM as well as Taylor series does not converge. For these reasons we have used
Pade approximants. Since Pade approximant is a rational function, it can be used to get the initial values
of the function of higher order which may contain an artificial singular point, but this can be avoided.

Following, we have calculated diagonal Pade approximant of order [2/2] of f′(η), θ(η) and ϕ(η) as

f 0PADE½2=2�ðgÞ ¼
Num:

Denom:
(33)

where
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Num: ¼ 0:1083þ 0:1083 a� 0:125 a2 � 0:125 a3 þ ð0:0542þ 0:0125 a2 � 0:0625 a3 þ 0:0021 b

þ að0:1292þ 0:0021ðbþ cÞÞ þ 0:0021 cÞ gþ ð�0:0235þ 0:0412 a� 0:0417 a3 � 0:0313 a4

þ 0:0011 bþ a2ð0:054167� 0:0011ðbþ cÞÞ þ 0:0011 cÞ g2

Denom: ¼ 1þ 0:108333 a� 0:125 a2 � 0:125 a3 þ ð�0:0542þ 0:1375 a2 þ 0:0625 a3 þ 0:0021 b

þ að0:0208þ 0:0021ðbþ cÞÞ þ 0:0021 cÞgþ ð�0:0235þ 0:0208 a3 � 0:0313 a4 � 0:0011 b

þ að�0:0881� 0:0021 ðbþ cÞÞÞ þ a2ð�0:075� 0:0011 ðbþ cÞÞ � 0:0011 cÞg2

hPADE½2=2�ðgÞ ¼ 1þ ðb� 0:25 aÞgþ ð0:118333� 0:25 a bÞg2
1� 0:25 a gþ 0:11833 g2

(34)

fPADE½2=2�ðgÞ ¼
1þ ðc� 0:25 aÞgþ ð0:036667� 0:25 a cÞg2

1� 0:25 a gþ 0:036667 g2
(35)

Solving Eqs. (33)–(35) with

lim
g!1 f 0ðgÞ ¼ 1; lim

g!1 hðgÞ ¼ 0; lim
g!1fðgÞ ¼ 0; (36)

We get,

a ¼ � 1:3364112199640579935131912697803;

b ¼ � 0:35418080373051794261506359075758;

c ¼ � 0:10974681880027031234427109278927:

(37)

So, the desired solutions of Eqs. (24)–(26) are becomes

f ðgÞ ¼ g� 0:66820561 g2 þ 0:3 g3 � 0:10943457 g4 þ 0:0298833 g5 � 0:00672034 g6 þ : : :; (38)

hðgÞ ¼ 1� 0:35418 gþ 0:668206 g2 þ 0:3 g3 � 0:1094346 g4 þ 0:029883 g5 � 0:0067203 g6 þ : : :; (39)

fðgÞ¼ 1� 0:1097468 gþ 0:00402405 g3 � 0:0013445 g4 þ 0:0002294 g5 þ 0:00001052 g6þ : : : : (40)

4 Results and Discussion

An electrically conducting viscous liquid past a vertical stretching surface via the influences of thermal
ad buoyancy is characterized in the present analysis. As a novelty of the investigation, we aim to solve the
transformed differential equations using the Differential transform method, and the refinement of the solution
is obtained by Pade approximant. Finally, the numerical results are compared with the earlier investigation
carried out by the help of the numerical method. The variation of the physical quantities affecting the flow
phenomena is presented via graphs and the physical significance of each parameter is deployed. At the time
of computation the variation of parameters in the corresponding figure is displayed for the fixed values of
other pertinent parameters laid down as; M ¼ 1; k1 ¼ 0:1; k2 ¼ 0:1; Pr ¼ 0:71; and Sc = 0.22.

4.1 Validation Section
The present section displays the validation graphs of transverse and longitudinal velocities, energy, and

solutal profiles using the current methodology and the earlier numerical method via Figs. 2–6.
In Fig. 2, the coincide results of all the profiles with the work of Ajili et al. [19] in a particular case

(M = 0, λ1 = 0, λ2 = 0). This result shows the convergence criteria of the methodology applied in the
present study and also shows a road map for further investigation using several values of different
physical parameters.
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Fig. 3 illustrates the comparison of transverse velocity profile solved earlier using numerical methods
with that of present DTM and its refinement Pade approximant. From the figure, it is noteworthy that, the
better approximate result by the Pade approximant method of the corresponding DTM coincides with the
earlier numerical method up to a great extent. All the profiles are coincident to each other within a certain
region and afterward, deviation occurs. This phenomenon depends upon the order of the DTM applied
herewith. In the present case, the [2/2] order Pade approximant is used. Higher-order approximation may
result in more accurate results for various contributing parameters.

Fig. 4 portrays the similar behavior of the profiles on the longitudinal velocity distribution. As a
concluding remark, it reveals that the methodologies applied in the present paper have a greater
convergence rate depending upon the order of preference. However, the higher-order Pade, the rational
approximation will give better accuracy for all the profiles.

The comparison plots for the fluid temperature and concentration in all these methods are displayed via
Figs. 5 and 6 respectively. Although the resulting analysis is similar to that of an earlier description so it is not
wise to repeat.

Figure 2: Validation profile with the previous study Figure 3: Comparison of stream function

Figure 4: Comparison of velocity profile Figure 5: Comparison of temperature profile
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4.2 Velocity Distribution
The computational behavior of the physical parameters, i.e., magnetic parameter, Prandtl number,

thermal, and mass buoyancy parameters are exhibited in Fig. 7. Fig. 7a deployed the characteristics of the
magnetic parameter on the longitudinal velocity distribution for the several values of other pertinent
parameters. The inclusion of the magnetic field contributed by the resistive force offered by the Lorentz
force retards the velocity profile significantly for which the velocity boundary layer thickness also retards.
The resistive force opposes the profile to boost up. The variation of the Prandtl number on the velocity
distribution is illustrated in Fig. 7b. The higher Prandtl number diminishes the velocity profile
asymptotically to meet the requisite boundary conditions. Sudden fall near the surface of the sheet is
marked within the domain η < 2 and further, the profile becomes smooth. However, increasing rate the of
the boundary layer thickness of the velocity profile retards significantly. Figs. 7c and 7d elucidate the
buoyancy effects offered by both the thermal and mass buoyancy parameters on the velocity distribution.
It is seen that enhancement in the profile occurs due to the increase in the buoyancy parameter. The
overshot in the profiles is due to the buoyancy parameters.

4.3 Temperature Distribution
The efficiency of the physical parameters such as magnetic parameter, Prandtl number, thermal, and

mass buoyancy on the fluid temperature is displayed via Fig. 8. The distribution of the magnetic
parameter on the temperature is shown in Fig. 8a. It is observed that an increase in the magnetic
parameter boosts up the temperature profile. The fact is the magnetic parameter that retards the velocity
profiles, the stored energy overshoots the fluid temperature. Fig. 8b presents the behavior of the Prandtl
number on the fluid temperature. Prandtl number is the ratio of kinematic viscosity with that of thermal
diffusivity. An increase in Prandtl number means the thermal diffusivity decreases resulted in the
temperature decreases. Figs. 8c and 8d exhibit the buoyancy effects on the fluid temperature with the
fixed values of other pertinent parameters. Increasing buoyancy retards the fluid temperature in the entire
domain.

Figure 6: Comparison of concentration profile
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4.4 Concentration Distribution
Fig. 9 illustrates the variation of the magnetic parameter, Schmidt number, and both the thermal and

mass buoyancy parameters on the fluid concentration. It is clear from Fig. 9a that, the increasing
magnetic parameter enhances the fluid concentration. The role of the heavier density characterized by the
Schmidt number is described in Fig. 9b. In the present case, we have considered the Hydrogen (H),
Helium (He) and Ammonia (NH3) with their corresponding values of Sc presented in the figure. It is seen
that the heavier density parameter retards the concentration of the fluid significantly. Similar observations
are marked in Figs. 9c and 9d for the behavior of the buoyancy parameters on the concentration profiles.

Figure 7: Velocity distribution profile for (a) M ; ðbÞ Pr; ðcÞ �1 and (d) �2

Figure 8: Temperature distribution profile for (a) M ; ðbÞ Pr; ðcÞ �1 and (d) �2

FDMP, 2022, vol.18, no.2 217



4.5 Physical Quantities of Interest
The computation of the physical quantities of interest, i.e., the coefficients of shear stress, rate of heat,

and mass transfer for several values of contributing parameters are described in Figs. 10–12. The coefficient
of shear stress for the variation of buoyancy parameters and the Prandtl number vs. magnetic parameter is
displayed in Figs. 10a and 10b. The shear rate enhances with the increased thermal and mass buoyancy
parameter whereas in comparison to both the parameters it is observed that the mass buoyancy overrides
the efficiency of the thermal buoyancy parameter. However, the reverse impact is observed for the
increasing Prandtl number with the variation of the magnetic parameter.

Figure 9: Concentration distribution profile for (a) M, (b) Sc, (c) λ1 and (d) λ2

Figure 10: Skin friction profile for (a) λ1, λ2 and (b) Pr with M
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Fig. 11a represents the influences of buoyant forces and Fig. 11b deployed with the variation of Prandtl
number on the rate of heat transfer coefficients. An increase in Prandtl number favors in to enhance the rate of
heat transfer.

The behavior of thermal and mass buoyancy parameters on the rate of mass transfer is presented in
Fig. 12a and the variation of Schmidt number is displayed in Fig. 12b versus the magnetic parameter. An
increase in buoyant forces boosts up the concentration rate with the increasing magnetic parameter
throughout and the heavier species also enhances the rate significantly.

5 Conclusive Remarks

The approximate analytical approach for the study of the steady two-dimensional flow of viscous fluid in
the presence of the magnetic field is analyzed in the present investigation. The transformed governing

Figure 11: Nusselt number profile for (a) λ1, λ2 and (b) Pr with M

Figure 12: Sherwood number profile for (a) λ1, λ2 and (b) Sc with M
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equations are tackled by using the Differential transform method and its refinement using the Pade
approximant method for the various values of contributing parameters. The validation with the earlier
numerical method was also established. However, the conclusive remarks for various physical parameters
described earlier are presented below.

The validation with earlier study presents road map for the further investigation on the physical
properties of contributing parameters.

� The Pade approximant shows a better accuracy than that of the numerical as well as the DTM applied
for the said problem.

� Heavier viscous diffusivity produces higher Prandtl number retards the velocity distribution at all
points within the flow domain.

� Buoyant driven forces enhances the velocity distributions whereas impact is opposite in the case of
temperature distributions.

� Mass buoyancy parameter is counterproductive than that of thermal buoyancy for the enhancement in
the shear rate coefficient.

� Heavier species favours is to boost up the rate of mass transfer with increasing magnetic parameter.
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