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ABSTRACT

In this study, the workability of cement-based grouts containing n-TiO2 nanoparticles and fly ash has been inves-
tigated experimentally. Several characteristic quantities (including, but not limited to, the marsh cone flow time,
the mini slump spreading diameter and the plate cohesion meter value) have been measured for different percen-
tages of these additives. The use of fly ash as a mineral additive has been found to result in improvements in terms
of workability behavior as expected. Moreover, if nano titanium oxide is also used, an improvement can be
obtained regarding the bleeding values for the cement-based grout mixes. Using such experimental data, a mul-
ti-layer perceptron artificial neural network model has been developed (5 neurons in the hidden layer of the net-
work model have been developed using a total of 42 experimental data). 70% of the data employed in this model
have been used for training, 15% for validation and 15% for the test phase. The results demonstrate that the arti-
ficial neural network model can predict Marsh cone flow time, mini slump spreading diameter and plate cohesion
meter values with an average error of 0.15%.
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1 Introduction

Due to the recent developments in nano technology, the use of nano powders as additives in cement-
based mixtures has become widespread. Some previous studies presented have shown that the use of
nano powders as additives in cement-based grouts has improved some of the mechanical and workability
properties of fresh grout mixes [1]. These past studies have shown that by using nano powders as
additives, properties such as rheological, workability and durability can be improved as well as the
hardened properties of cement-based grouts [2,3]. The most widely used material as nano additive in
cement-based grouts is nano silica in the past studies. In these studies, it has been shown that the use of
nano silica as an additive in cement-based grouts increases hydration products and reduces the setting
times of fresh grout samples [4–6]. In addition, it has been shown in other studies that the use of nano
silica in concrete mixtures improves the porous structure of hardened concrete by closing the voids [7,8].
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The fact that such nano materials have a large specific surface area due to their nanoscale dimensions has
increased the water requirement of the mixtures when they are added as an additive to cement based
grout mixes [9,10]. Ouyang et al. [11] showed that the use of nano silica as an additive in cement-based
grouts with different water binding ratios (w/b) significantly affects the apparent viscosity values of these
grout mixtures. With this experimental study, they presented a new analytical prediction model to predict
the viscosity behavior of grout mixes. The effects of using nano powders as additives in grout mixtures
were investigated in another experimental study conducted by Collepardi et al. [12]. In this study, it has
been shown that the increase in the rate of nano powder additives increases the cohesion value of the
grout mixtures, while decreasing the setting time, segregation, and bleeding values. Moreover, some
studies have shown that the addition of nano-alumina as an additive to cement-based grout has significant
effects on the rheological properties, mechanical properties, and capillary water absorption capacity of
these grouts [1,13]. These studies showed that higher ettringite contents can be produced during the early
hydration process, due to the initial dissolution of nano alumina compared to other oxidized compounds.

Due to the colloidal nanoscale dimensions of nano powders, exposure to molecular electrical attraction
may cause some problems such as agglomeration during mixing as an additive in grout mixtures. Due to the
colloidal nano size of nano powders and the presence of nanoparticles adhering to each other, these materials
cannot be homogeneously dispersed when added to grout mixes. Generally, this condition defined by the lack
of effective dispersion method [14,15]. Dispersion and homogenization methods are usually tried to mix
nano powders into cement-based grout in the most effective way [16,17]. If these methods are not
applied, undesirable situations such as the accumulation of nano powders in grout mixes may occur and
this situation generally reduces the viscosity of grout mixes. Therefore, the application of the ultra-
sonification method is a useful technic to limit the agglomeration of nanomaterials and to provide more
homogeneous distribution of nanomaterials in the slurry mixture [18,19].

Water-binder ratio (w/b) is one of the parameters that has the most important influence on the mechanical
and fluidity properties of grout mixes. For this reason, the first parameter to be considered in the design of
grout mixtures is known as determining the optimum water to binder ratio (w/b) for injection applications.
With the increase of this ratio, the total water content of the grout mixes increases and as a result, the viscosity
of the mixes decreases. This means that the fluidity and workability of grout mixes directly increase. This
ratio generally varies in a wide range according to the application method in grout injections. While the
w/b ratio for covering prestressed anchors usually ranges from 0.35 to 0.42, this ratio ranges from 0.5 to
1.5 for repair and strengthening of wall structures [20]. In addition, while this ratio is generally used
between 0.5 and 1 for the sealing of cement slurries, it has been selected between 0.6 and 2 for jet grout
applications in geotechnical works [21,22]. Studies conducted to date have shown that high w/b ratios
negatively affect many mechanical behaviors of grout mixes. The increase in the w/b ratio during the
preparation of the grout mixes decreases the hydration products required for the C-S-H gel formation of
these samples, while increasing the bleeding rate for the fresh grout mixture. Therefore, some
supplementary cementitious materials (SCMs) as mineral additives such as fly ash, silica fume, ground
granulated blast furnace slag, metakaolin, bentonite and rice husk ash are usually used to minimize the
adverse effects of high-water content in cement-based grouts. SCMs have been used as additives in
cement-based grouts to keep properties such as resistance to chemical attack, control of hydration
temperature and general durability of grout mixtures at the desired level and to eliminate the negativities
observed in such properties [20–34]. The use of such mineral additives in the most effective mixing ratios
has an important function in improving the various physical properties of grouts such as rheological,
mechanical and workability properties [24]. There are very few mineral additives such as fly ash that not
only increase the rheology, workability and long-term performance but also improve the durability
properties of grouts [34,35].
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Artificial neural networks (ANN), which started to be used in the middle of the 20th century, have
become one of the mathematical tools that are frequently used by researchers due to their improved
prediction performance [36]. ANNs, which are inspired by the biological structure of the human brain,
have higher prediction performance compared to traditional tools, especially in modeling nonlinear
functions [37]. In their study, Alyani et al. [38] applied single-pot hydrothermal synthesis for the growth
of cobalt-doped TiO2 nanosheets (Co-TNs) containing different amounts of cobalt on reduced graphene
oxide surfaces (Co-TNs/rGO (x)). Synthesized nanocomposites were characterized by a series of analyzes
including XRD, UVeVis DRS, FESEM/EDX, elemental mapping, TEM, HRTEM and Raman
spectroscopy, and the visible light degradation of Tetracycline antibiotic (TC) was investigated. An ANN
model was used to estimate the photocatalytic removal of the tetracycline antibiotic. It was seen that the
data obtained from the MLP network model with 14 neurons in its hidden layer gave optimum results.
Xiang et al. [39] used the local ANN potential to study the FxE of the anatase type TiO2 compound.
They placed the flexoelectric TiO2 coefficient according to the total energy of the double-field supercells
predicted by the ANN potential for different shear-strain gradients. The value obtained because of the
study is consistent with the previous experimental measured value. It is stated that the results show that
the ANN potential is a suitable and efficient approach to examine FXE. To predict the rheological
behavior of SAE50/MWCNTs-TiO2 hybrid nano-lubricant, Chen et al. [40] obtained two separate data
sets by curve fitting in power law and consistency indices, shear stress-shear rate diagrams. An optimal
ANN was proposed to predict viscosity, and another ANN was proposed to predict the consistency index
and the power law index. However, correlation was also developed using the same data set. The results
obtained showed that for a precise estimation of the force law index, it is necessary to propose
6 equations, each corresponding to a temperature. The proposed correlations and comparisons between
ANNs have also shown that ANNs are more useful than correlations. Çolak et al. [41] experimentally
investigated the effect of high temperature on the flexural and compressive strength of mortars containing
waste PET aggregates and proposed an ANN model. Mortar samples prepared in 5 different
concentrations with waste PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and
400°C and their flexural and compressive strengths were experimentally measured after waiting 1, 2 and
3 h at these temperatures. It was observed that the flexural strength and compressive strength values
decreased with increasing temperature and PET aggregate amounts in all mixtures. It was seen that the
ANN model developed can predict flexural and compressive strengths with an average error of −0.51%.
Fedakar [42] has developed prediction models for the elasticity module using the ANN model. In the
study, reliable empirical formulas for fine-grained soils are proposed using ANN. For this purpose,
thousands of ANN models have been developed using long-term pavement performance and external
datasets. The results showed that the constitutive models failed to predict the resilient modulus and the
best resilient modulus estimates were obtained in the ANN-C9 model. Güllü et al. [43] presented a study
on the application of artificial intelligence techniques, including radial-based neural network, MLP,
generalized regression neural network, and adaptive neurofuzzy inference system. Prediction models were
developed to predict the unconfined compressive strength of silty soil stabilized with bottom ash, jute
fiber and steel fiber under different freeze-thaw cycles. The results showed that the predictions originating
from all the artificial intelligence techniques used were ideally accurate. Kocabaş et al. [44] proposed a
fuzzy genetic approach for modeling the critical submergence rate value. Channel flow velocity, inlet pipe
velocity and porosity were used as inlet variables, and critical submergence rate as outlet variables.
44 datasets obtained through the experimental study were divided into two parts and 28 datasets were
used for training and 16 datasets were used for testing the models. The experimental results were
compared with the prediction values, and it was concluded that the models showed an ideal prediction
performance.
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For this reason, the use of nano powders as additives together with fly ash as mineral additives can
provide significant contributions to the various physical, mechanical, fluidity and especially workability
properties of cement-based grouts. The past studies mentioned above on grout mixtures have usually
studied the use of nano silica, nano alumina, and nano calcium carbonate as nanomaterial. Furthermore,
these studies generally were conducted with lower w/b ratios and focused on especially hardened features
of grout mixture. As shown from the past works, any detailed experimental work has not been detected
on how nano titanium oxide (n-TiO2) will affect the workability of grout mixtures as fluidity properties at
high w/b ratios. Also, no studies based on adding nano titanium oxide to fresh grout mix have been done
on the workability properties of cement-based grouts combined with fly ash as a mineral additive.
Therefore, the effects of nano titanium oxide (n-TiO2) additions at different amounts by mass (0.0%,
0.3%, 0.6%, 0.9%, 1.2% and 1.5%) on the bleeding and the workability properties (mars cone flow time,
mini slump spread diameter and plate cohesion) of cement-based grouts incorporated with fly ash as
mineral additive at different constitutes (0%-for control purpose, 5%, 10%, 15%, 20%, 25% and 30%)
were investigated by using a statistical modeling approach and analysis of experiments in this study.

2 Experimental Program

2.1 Materials
According to ASTM C150 standard CEM I-42.5R (Type-I) Portland cement (PC) and F-Class fly ash

(FA) as supplementary cementitious materials (SCMs) were used in all experimental works. Fly ash was
obtained from Isken Sugozu Termal Plant at Iskenderun-Turkey. Some physical and chemical properties
of PC and FA used in the experimental study are presented in Table 1. All the properties given in Table 1
were obtained by these supplier companies.

Since particle size distribution of binders (cement and SCMs) is one of the most important parameters
having a considerable effect on the workability properties of cement-based grouts, the particle size grain
distribution curves of PC and FA used in this study were drawn by using laser scattering technique with
the help of Master-sizer machine and all curves are shown in Fig. 1. According to Fig. 1, the gradation
distributions of PC and FA are very close to each other. All particle grain sizes of FA are below

Table 1: Some physical and chemical properties of Portland cement (PC) and FA

Chemical analysis (%) CEM-I 42.5 R (Cement) Fly ash (FA)

CaO 60.15 1.72

SiO2 20.46 62.21

Al2O3 7.78 21.15

Fe2O3 3.09 7.29

MgO 2.66 1.59

SO3 2.33 0.15

K2O 0.82 2.12

Na2O 0.22 0.94

TiO2 0.30 0.83

Physical analysis

Loss on ignition 2.55 2.01

Specific gravity 3.10 2.33
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100-micron sizes, just like PC. The particle distribution of the binder admixture has considerable effects on
the workability features of cement-based grouts.

In this experimental work, nano titanium oxide (n-TiO2) was used as Colloidal Nano Particular Powder
(CNPP) additive. The SEM view of n-TiO2 used in this work is shown in Fig. 2. Some elemental analysis and
physical features of n-TiO2 are presented in Tables 2 and 3. The nano titanium oxide (n-TiO2) used in this
work was supplied by a commercial firm called as Nanografi in Turkey, and these all properties were obtained
by this firm.

Figure 1: The particle size distribution curves of portland cement and fly ash (FA)

Figure 2: The SEM image of n-TiO2 as nano additive used in this study

Table 2: Material analysis results of n-TiO2 nanoparticle used in this experimental study

Elemental analysis Na Fe K Al

Nano Titanium Oxide (n-TiO2) (%) 0.0076 0.0046 0.0085 0.0055

FDMP, 2023, vol.19, no.1 139



2.2 Preparing the Fresh Mixtures and Mix Design
As commonly known that the w/b ratio has a remarkable influence on the workability properties of

cement-based grouts. During the preparation of all grout mixes, the w/b ratio was set to 1, 0 in this study.
To observe the effects of higher w/b ratio effect on the workability properties of grout mixes, this ratio
was selected. The effects of nano titanium oxide (n-TiO2) additions at various proportions by mass (0.0%,
0.3%, 0.6%, 0.9%, 1.2% and 1.5%) on workability of cement-based grouts replacement with fly ash as
mineral additive at different contents (0%-for control purpose, 5%, 10%, 15%, 20%, 25% and 30%) were
experimentally studied in this work. Table 4 presents mix design for the grout samples mixed with PC,
FA and n-TiO2. Total number of 42 grout mixes were obtained and tested as seen in this table.

Table 3: Some physical properties of n-TiO2 used in experimental study

Physical properties n-TiO2

Purity (%) 99.6

Color White

Average particle size (nm) 38

Specific surface area (m2/g) 35

Mass density (g/cm3) 0.4

Density (kg/m3) 4100

Weight loss on drying (%) 1.2

Loss on ignition (%) 3.2

pH 5.5–6.5

Table 4: All mix ratios and mix design parameters used for preparing the grout samples

Mix
ID

w/b FA
(%)*

PC (g)
**

FA
(g)

Water
(g)

n-TiO2

(g)
Mix
ID

w/b FA
(%)

PC
(g)

FA
(g)

Water
(g)

n-TiO2

(g)

M1 1.0 - 1500 - 1500 - M22 1.0 15 1275 225 1500 27

M2 1.0 - 1500 - 1500 9 M23 1.0 15 1275 225 1500 36

M3 1.0 - 1500 - 1500 18 M24 1.0 15 1275 225 1500 45

M4 1.0 - 1500 - 1500 27 M25 1.0 20 1200 300 1500 -

M5 1.0 - 1500 - 1500 36 M26 1.0 20 1200 300 1500 9

M6 1.0 - 1500 - 1500 45 M27 1.0 20 1200 300 1500 18

M7 1.0 5 1425 75 1500 - M28 1.0 20 1200 300 1500 27

M8 1.0 5 1425 75 1500 9 M29 1.0 20 1200 300 1500 36

M9 1.0 5 1425 75 1500 18 M30 1.0 20 1200 300 1500 45

M10 1.0 5 1425 75 1500 27 M31 1.0 25 1125 375 1500 -

M11 1.0 5 1425 75 1500 36 M32 1.0 25 1125 375 1500 9

M12 1.0 5 1425 75 1500 45 M33 1.0 25 1125 375 1500 18

M13 1.0 10 1350 150 1500 - M34 1.0 25 1125 375 1500 27

M14 1.0 10 1350 150 1500 9 M35 1.0 25 1125 375 1500 36
(Continued)
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Failure to apply the effective dispersion method may cause some obstacles encountered during mixing
of nano powders into cement-based grout samples [15]. To effectively obtain the most suitable dispersion
conditions during mixing nano powders into cement-based grouts, effective dispersion method should be
applied to samples [16,17]. Generally, the Ultra sonication method is applied to limit agglomeration and
to provide a more homogeneous mixing of nano powders in the grout mix [18,19]. Therefore, to
minimize n-TiO2 precipitation in free water and to ensure homogeneous dispersion in water by removing
these adhering nano powders from each other, the Ultra sonication method was applied in this study. The
view of the Ultrasonicator test machine used in this work is shown in Fig. 3.

Ultra-sonication method was applied to the aqueous medium for 180 min as soon as preparing all the
fresh grout mixes with mixing n-TiO2 into 200 ml free water volume. After the distillation process was

Table 4 (continued)

Mix
ID

w/b FA
(%)*

PC (g)
**

FA
(g)

Water
(g)

n-TiO2

(g)
Mix
ID

w/b FA
(%)

PC
(g)

FA
(g)

Water
(g)

n-TiO2

(g)

M15 1.0 10 1350 150 1500 18 M36 1.0 25 1125 375 1500 45

M16 1.0 10 1350 150 1500 27 M37 1.0 30 1050 450 1500 -

M17 1.0 10 1350 150 1500 36 M38 1.0 30 1050 450 1500 9

M18 1.0 10 1350 150 1500 45 M39 1.0 30 1050 450 1500 18

M19 1.0 15 1275 225 1500 - M40 1.0 30 1050 450 1500 27

M20 1.0 15 1275 225 1500 9 M41 1.0 30 1050 450 1500 36

M21 1.0 15 1275 225 1500 18 M42 1.0 30 1050 450 1500 45

Figure 3: The image of the ultrasonicator used in the work
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completed, this aqueous mix was poured into cement-based grout mixes. Thus, nano titanium oxide (n-TiO2)
was added to the grout mixes without any clumping and non-uniform dispersion.

Similar mixing methodology was applied to obtain the grout samples at same conditions during
preparing the mixtures. These samples were mixed by using a standard rotary laboratory mixer with a
5-liter volume capacity. To obtain the grout mixes, FA and PC as binder were first mixed with water for
1 min at 240 rpm speed. The mixer was then stopped and both binders were mixed by hand for 1 min to
obtain a more homogeneous mixture. The samples were then mixed again with the mixer for 3 min at
240 rpm speed. In the last step, the aqueous medium containing n-TiO2 and 200 ml of water prepared by
Ultra sonication was added to the cement-based grout matrix and mixed with the mixer also for one more
minute. During preparing samples and conducting tests, the ambient temperature and humidity were kept
constant at 23 ± 3°C and 55%–65%, respectively.

2.3 Obtaining Workability and Bleeding Values
After the grout samples were mixed the workability and bleeding tests of the grout mixes were

conducted. The preparation of the grout samples and the workability and bleeding tests on these samples
were completed in an average of 12 min. While marsh cone flow, mini slump diameter and plate
cohesion tests were being conducting in concept of workability tests, bleeding values of the grout
mixtures were also measured as stability tests. The equipment views of marsh cone, mini slump cone and
plate cohesion are detailly shown in Fig. 4.

Figure 4: The view of workability tests conducted in the study
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The mini slump diameter is generally estimated by the mini slump test defined as spreading of aqueous
grout matrix on a flat plate. Height, bottom, and upper diameters of mini slump cone are 38 mm, 19 mm, and
57 mm, respectively [45]. The marsh cone flow test was applied as another workability test for grout mixes in
this study. The main principles of this test based on measuring the elapsed time during flowing of fresh grout
mix having a specific volume through this cone. This cone has 1500 ml volume, and its internal orifice
diameter is 5 mm [22–23,25]. For all grout samples in this test, this swamp cone was filled with flow-
plugged 1250 ml grout mixes. After the bottom outlet was opened, the time elapsed as soon as the flow
of the grout started was measured and the total time for the 1000 ml grout sample to flow was recorded.
To compare the results, only the flow time of water was tested, and the total flow time was measured as
24 s per 1000 ml volume. The last one as workability test is the Lombardi plate cohesion test completed
in this study. The cohesion value, which is an important parameter directly related to the yield stress of
grout mixtures, can be measured with the Lombardi plate cohesion test apparatus. Although there is no
international standard defined for this test, it has been used in many past studies to define the cohesion of
cement-based grouts [22–23,25,46]. The principle of this test can be defined as immersing a metallic
plate to fresh grout samples and measuring the mass of grouts adhered on both side surfaces of the plate
that has dimension of 300 × 300 × 3 mm. Stability of cementitious grouts can be measured by controlling
the precipitation of 1000 ml grout sample in a standard glass cylinder with a cross section diameter of
60 mm within 2 h (bleeding test) (see Fig. 5). The volumetric bleeding (ΔV/V), described as the volume
of clean water (ΔV) separated from the top of the suspension, is disunited by the original grout volume
(i.e., V = 1000 ml) and saved to appraise the stability of a suspension. As stated in previous studies, if the
bleeding rate that occurs after 2 h is below 10%, the mortar mixture is generally defined as a stable
suspension [47,48]. The high sedimentation rate is characteristic of pure grout and has big practical
outcome because if sedimentation of solids consists of during injection, the treated cavities and injection
pipelines can become blocked, and the grout cannot flow any further.

Figure 5: The bleeding test for stability control. (a) At the beginning of the test, (b) At the end of the test
after 2 h
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3 Development of the ANN Model

To predict the workability properties of cement-based grouts containing n-TiO2 nanoparticle added fly
ash, a feed-forward (FF) back-propagation (BP) multi-layer perceptron (MLP) ANN network model has been
developed. MLP model, which is frequently preferred in ANNs, includes one input layer, at least one hidden
layer and one output layer [49–51]. Input parameters to be used in the model are defined in the input layer.
There is a computing element called a neuron in the hidden layer [52]. In the output layer, it is provided to
obtain the predicted values. In the MLP network, each layer is linked to the next layer. The first step in the
development of ANNs is to enter the data to be used for optimizing the data and training the model. After
entering the data into the system, the training phase of the model is completed, and the forecast performance
is analyzed. After determining the ANN model with the highest prediction performance, estimation values
are obtained at the output layer. A flowchart for the development of an ANN model is shown in Fig. 6.

Nanoparticle concentration (φnp) and fly ash concentration (φFA) in the input layer of the ANN model,
which has been developed to predict the workability properties of cement-based grouts containing n-TiO2

nanoparticle added fly ash, Marsh cone flow time, mini slump spreading diameter and plate cohesion
meter values are defined and Marsh cone flow time, mini slump spreading diameter and plate cohesion
meter values are predicted in the output layer. The configuration structure of the developed MLP network
model is shown in Fig. 7.

Figure 6: A flowchart for the development of an ANN model

Figure 7: The configuration structure of the developed MLP network model
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Ideally grouping and optimizing the data set used in the training of ANNs is an important parameter
affecting the prediction performance of ANNs [53]. 70% (30) of the data used in the MLP network
model, which has been developed with 42 experimental data, has been used for training, 15% (6) for
validation and 15% (6) for the test phase. In data grouping, the model obtained from the literature and
reported to provide high performance has been preferred [54–56]. There is no accepted model for
determining the number of neurons to be used in the hidden layer of MLP networks [57,58]. For this
reason, the predictive performances of the network models developed with different neuron numbers have
been analyzed and the model with 5 neurons in the hidden layer has been preferred. The basic structure
of the developed MLP network is shown in Fig. 8.

Levenberg-Marquardt training algorithm, one of the algorithms with high prediction performance, has
been used as the training algorithm [59,60]. Tan-Sig and Purelin functions has been used as transfer function.
The transfer functions used in ANN are given below [61,62]:

fðxÞ ¼ 1

1þ expð�xÞ (1)

purelin ðxÞ¼ x (2)

Mean Squared Error (MSE), coefficient of determination (R) and error rate values have been chosen to
analyze the predictive performance of ANNs. The mathematical formulas used to calculate performance
parameters are given below [63]:

MSE ¼ 1

N

XN
i¼1

ðXexpðiÞ � XANNðiÞÞ2 (3)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

PN
i¼1 ðXexpðiÞ � XANNðiÞÞ2PN

i¼1 ðXexpðiÞÞ2

vuut (4)

Error Rate ð%Þ ¼ Xexp � XANN

Xexp

� �
� 100 (5)

4 Test Results and Discussions

In this experimental study, the workability and bleeding properties of cement-based grout mixes
combined with FA and n-TiO2 as colloidal nano powder were investigated, and some prediction models
were developed with Artificial Neural Network (ANN). Marsh cone flow time, mini slump spreading
diameter and Lombardi plate cohesion of the grout samples were measured, and all result are presented in
Figs. 9–15.

Figure 8: The basic structure of the developed MLP network
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Figure 9: The mini slump diameter results obtained from the grout mixtures prepared by addition of n-TiO2

and FA

Figure 10: The mini slump diameter changes obtained from the grout mixtures prepared by addition of
n-TiO2 and FA in 3D view

Figure 11: The marsh cone flow time changes of the grout samples prepared with addition of FA and n-TiO2
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Figure 12: The marsh cone flow time changes of the grout samples prepared with addition of FA and n-TiO2

in 3D view

Figure 13: The plate cohesion changes of the grout samples prepared with addition of FA and n-TiO2

Figure 14: The plate cohesion meter changes of the grout samples prepared with addition of FA and n-TiO2

in 3D view
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When the results obtained from the samples prepared by addition of n-TiO2 as CNPP is examined for
mini slump test, an increase on mini slump spreading diameters can be observed with respect to rising
amount of FA in the samples (see Fig. 9). The use of FA as a mineral additive in grout samples resulted
in improvements in the workability behavior of the grout samples as expected [35,64–70].

On the other hand, increase amount of n-TiO2 in the grout mixtures has made mini slump flow diameter
of the samples slightly decrease. However, it cannot be mentioned about considerable reduction as can be
seen in Fig. 10. The meaning of this slight reduction on the mini slump flow diameter of the samples can
be explained as increase of cohesion in the sample and decrease of fluidity of the samples at a specific
rate [9,10]. As can be seen in Table 3, the specific surface areas determined for n-TiO2 measured as
35 m2/g. The slight decrease in the mini slump diameter values of the n-TiO2 added grout mixes with the
increase in the amount of nano material, and the fact that the mini slump diameter values of the n-TiO2

added grout mixes are not significantly affected by the increase in the content of nanomaterials.

As in the mini slump spreading diameter experiment, it has been determined that the FA contribution
increases the fluidity as the expected behavior, and this behavior causes a decrease in the marsh cone
flow times for all mixtures (see Figs. 11 and 12). It was observed that the increase in the n-TiO2 amount
in grout matrix does not change the marsh cone flow time of mineral-added cement-based grouts so much
in general trend. Although the effect seems to be less, the increase in n-TiO2 content in grout mixtures
caused a slight increase in the marsh cone flow time of the grout mixes. This increase can be explained
as an increase in the cohesion value of the grout mixes due to the very low specific surface area of
n-TiO2. It can be also explained as n-TiO2 have very high density as shown in Table 3. According to this
table, its density is shown as 4100 kg/m3. Since n-TiO2 is added by weight to the mixtures in the
preparation of the grout samples, the volumetric effect of this nano powder in the mixture may affect the
flow time changes.

As can be clearly seen from Figs. 11 and 12, it was determined that the mini slump spreading diameter
and marsh cone flow time behave in harmony with each other with the addition of n-TiO2 of the FA added
grout mixtures.

As seen in Fig. 13, although the increase in the ratio of n-TiO2 addition to the grout mixtures caused a
small increase in the plate cohesion values of the samples, this increase cannot be considered as very
remarkable increase on the fluidity features of these samples. This slight increase can be explained as an
increase in the cohesion value of the grout mixes as same as marsh cone flow time and mini slump
diameter values of the grout samples due to the very high specific surface area and very low density of
n-TiO2 [9–11]. This similar behavior was also observed in the past studies related with using of different
nano powder as additive in grout mixtures [1–2,4,67].

Figure 15: The volumetric bleeding changes of the grout samples prepared with addition of FA and n-TiO2
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In addition, as it is clearly seen from Fig. 14, FA substitution in the grout mixtures causes decrease of
plate cohesion values of the samples. Although the increase in the nano titanium oxide additive increases the
cohesion value, the FA additive limits this increase. In other words, the cohesion-increasing effect of nano
titanium oxide is limited by adding FA [9–11]. This limitation in the cohesion values can be considered as an
improvement in the workability behavior of the respective grout mixes [68–70].

Bleeding tests were carried out on the grout mixtures prepared within the scope of this experimental
study. As a result of the experiments, bleeding values expressing the stability of the mixtures were
determined. Volumetric bleeding ratios of all mixtures are shown in Fig. 15. As can be seen in Fig. 15,
the bleeding values of all mixtures with and without n-TiO2 remained below 900 ml (above 10%
volumetric bleeding rate). In all FA additives, decreases in volumetric bleeding rates are observed due to
the increase in the nano titanium oxide additive ratio. It has also been found that the FA additive causes a
decrease in volumetric bleeding rates (see Fig. 15). It is clearly observed that the use of both FA and
nano titanium oxide as additives causes an improvement in bleeding values in the cement-based grout
mixes.as shown from Fig. 15, among all mixtures, the lowest volumetric bleeding rate (14%) was
achieved at 25% FA and 1.5% n-TiO2 additives. Bleeding rate above 10% is not a highly desirable
situation in terms of the stability of the grouts [71]. As commonly known the fluidity of the mixtures is
seriously affected by these bleeding behaviors. The reason why the bleeding values are so high can be
explained by using the water-binding ratio (w/b = 1), which is considered high. This water-binder ratio is
a value generally used in the permeation and jet grouting methods in ground improvement applications.
The main purpose of selection this water to binder ratio in this study was considered as investigating
these types of ground improvement applications.

Fig. 16 shows the training performance of the ANN model. It is seen that the MSE values in the graph
are high at the beginning of the training phase of the ANN model and decrease in the later epochs. In the 4th
epoch of the training phase, the optimum performance has been reached and the training process of the ANN
model has been terminated with the achievement of the ideal performance values for all three data sets. This
situation indicates that the training phase of the ANN model is ideally completed.

Figure 16: The training performance of the ANN model
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The training status of ANN model can be seen in Fig. 17. It is seen that the gradient values decreased
during the training period. However, the errors started after the 5th epoch and have been repeated 6 times.
Error histogram showing the differences between the predicted values and target data obtained from the ANN
model is given in Fig. 18. It is seen that the error values obtained for all three data sets are located close to the
zero-error line and the numerical values are also low. The data obtained from the error histogram show that
the training phase of the developed ANN model has been completed with low error values.

In Fig. 19, the predicted values obtained from the ANN model and the experimental data, which are the
target data, are shown for each data point. When the figure is considered, it is seen that the data points
obtained from the ANN model and the data points representing the target data are located very close to
each other. This proximity obtained at each point indicates that the predicted values obtained from the
ANN model are in good agreement with the experimental data.

Figure 17: The training status of ANN model

Figure 18: Error histogram of ANN model
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Experimental data are located on the x-axis of Fig. 20, and ANN predictions are located on the y-axis.
When the data points in the graphs are considered, it is seen that they are generally close to the equality line.
This location of the data points shows that the error rates between ANN predictions and experimental data are
at low values. In Fig. 21, the error rates between the predicted values obtained from the ANN model and the
experimental data are given. When the error rates given separately for each data point used in the training of
the MLP model are examined, it is seen that they are generally at low values and are located close to the zero-
error line. However, it is also seen that the average error line also has a trend very close to the zero-error line.
The ANN model can predict the marsh cone flow time value of cement-based grout containing n-TiO2

nanoparticle added fly ash with an average error rate of −0.19%, the mini slump spreading diameter value
with an average error rate of 0.04% and the plate cohesion meter value with an average error rate of
0.15%. Performance parameters of the developed ANN model are given in Table 5.

Figure 19: Predicted values obtained from the ANN model and the experimental data
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Figure 20: Experimental data vs. ANN prediction

Figure 21: (Continued)
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5 Conclusions

Marsh cone flow time, mini slump spreading diameter and plate cohesion meter values have been
measured experimentally to analyze the workability properties of cement-based grouts containing n-TiO2

nanoparticle added fly ash. The use of FA as a mineral additive in grout samples resulted in
improvements in the workability behavior of the grout samples as expected. On the other hand, increase
amount of n-TiO2 in the grout mixtures has made mini slump flow diameter of the samples slightly
decrease. The FA contribution behavior causes a decrease in the marsh cone flow times for all mixtures.
The increase in the n-TiO2 amount in grout matrix does not change the marsh cone flow time of mineral-
added cement-based grouts so much in general trend. Although the increase in the ratio of n-TiO2

addition to the grout mixtures caused a small increase in the plate cohesion values of the samples, this
increase cannot be considered as very remarkable increase on the fluidity features of these samples. The
FA additive causes a decrease in volumetric bleeding rates. It is clearly observed that the use of both FA
and nano titanium oxide as additives causes an improvement in bleeding values in the cement-based
grout mixes.

Using the experimental data obtained, an ANN model has been developed. Nanoparticle concentration
(φnp) and fly ash concentration (φFA) input parameters have been defined in the input layer of the MLP
network, which has been developed with a total of 42 experimental data, and Marsh cone flow time, mini
slump spreading diameter and plate cohesion meter values have been predicted in the output layer. In the
hidden layer, 30 of the data used in the development of the ANN model, which has been developed with
5 neurons, have been used for training, 6 for validation and 6 for testing. The predictive values obtained

Figure 21: Error rates for ANN model

Table 5: Performance parameters of ANN model

MSE R Error rate (%)

Marsh cone flow time 3.82E-02 0.99984 −0.19

Mini slump spreading diameter 2.51E-02 0.04

Plate cohesion meter 3.28E-02 0.15
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from the ANN model have been compared with the experimental data, which are the target data, and the
predictive performance of the ANN model has been analyzed. The findings obtained in the study showed
that the developed ANN model can predict Marsh cone flow time, mini slump spreading diameter and
plate cohesion meter values with very low error rates and high accuracy of cement-based grouts
containing n-TiO2 nanoparticle added fly ash.
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