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ABSTRACT

In recent years, deep learning models represented by convolutional neural networks have shown incomparable
advantages in image recognition and have been widely used in various fields. In the diagnosis of sucker-rod pump
working conditions, due to the lack of a large-scale dynamometer card data set, the advantages of a deep convo-
lutional neural network are not well reflected, and its application is limited. Therefore, this paper proposes an
intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,
which is used to solve the problem of too few samples in a dynamometer card data set. Based on the dynam-
ometer cards measured in oilfields, image classification and preprocessing are conducted, and a dynamometer
card data set including 10 typical working conditions is created. On this basis, using a trained deep convolutional
neural network learning model, model training and parameter optimization are conducted, and the learned deep
dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer
cards. The experimental results show that transfer learning is feasible, and the performance of the deep convolu-
tional neural network is better than that of the shallow convolutional neural network and general fully connected
neural network. The deep convolutional neural network can effectively and accurately diagnose the working con-
ditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynam-
ometer card data sets.
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1 Introduction

Currently, most oilfields have entered the middle and late stages of development; hence, the production
benefits are increasingly low [1–4]. The sucker-rod pump is the main pumping system that provides
mechanical energy for oil production [5–8], but due to abnormal working conditions and inefficient
management, the energy consumption of production is large [9–10]. Therefore, the timely diagnosis and
analysis of the production system is important to ensure the safe operation of oil wells and the
maximization of the economic benefits of oilfield development [11–12]. Dynamometer card analysis is an
important means and effective measure to diagnose the working conditions of sucker-rod pumps [13–15].
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However, with the informatization construction of oilfields, dynamometer cards have realized online real-
time acquisition [16]. The traditional manual analysis method is difficult to popularize because it needs
considerable manpower and material resources and is affected by professional experience. Due to the
good nonlinear approximation ability of artificial neural networks, back propagation neural networks [17],
radial basis function neural networks [18], wavelet neural networks [19], extreme learning machines [20],
self-organizing neural networks [21,22] and other models have been applied to the working condition
diagnosis of sucker-rod pump wells and are gradually replacing traditional manual analysis methods.
However, limited by the mechanism of the model, these methods have the following problems: (1) The
input of the model is hundreds of load and displacement data measurements, which makes the internal
mapping structure of the model complex and seriously affects the diagnostic accuracy of the model [23];
(2) The working condition diagnosis is based on the shape feature of a dynamometer card, and the input
of load and displacement data makes the model unable to extract the shape feature of the dynamometer
card directly and effectively.

In recent years, with the continuous emergence of large-scale data sets and the continuous improvement
of computer GPU computing power, deep learning models represented by convolutional neural networks,
such as AlexNet [24], GoogLeNet [25], VGG-16 [26], ResNet [27] and DenseNet [28], have shown
incomparable advantages in image recognition. These excellent neural network models provide the basis
for the identification and diagnosis of dynamometer cards. A deep convolutional neural network needs a
large number of data samples for training to optimize millions of parameters to complete the accurate
classification of targets. However, due to the factors of data acquisition, dynamometer card classification
and quality control, it is very difficult to obtain a dynamometer card data set with millions of samples.
Therefore, the deep convolutional neural network model is applied to the ImageNet image data set for
pretraining, and the trained model is applied to the dynamometer card data set to optimize the parameters
so as to realize the intelligent diagnosis of the working conditions in sucker-rod pump wells. This method
can be applied to a dynamometer card data set with few samples without overfitting occurring. The
method expands the application range of deep convolutional neural networks and provides a new method
and idea for the working condition diagnosis of sucker-rod pump wells.

2 Materials and Methods

2.1 Establishment of the Dynamometer Card Dataset
2.1.1 Data Acquisition and Classification

The data set studied in this paper comes from the measured dynamometer cards of sucker-rod pump
wells in an oilfield. According to the graphic features and production experience, the dynamometer cards
are classified. There are many types of dynamometer cards. In this paper, only ten common types are
selected for analysis, as shown in Tab. 1. The obtained data set contains 7000 dynamometer cards, which
are divided into a training set, a verification set and a test set at a ratio of 8:1:1, that is, the training set
contains 5600 dynamometer cards, the verification set contains 700 dynamometer cards and the test set
contains 700 dynamometer cards.

2.1.2 Data Preprocessing
The obtained dynamometer card images cannot be directly used as the input images of a convolutional

neural network, so the images need to be preprocessed. Preprocessing can standardize the dynamometer card
images and improve the stability and accuracy of dynamometer card classification and recognition.
Dynamometer card diagnosis mainly identifies the shape features of dynamometer cards. Colour
information is useless for the shape recognition of dynamometer cards and to a certain extent increases
the complexity of the background. Therefore, this paper binarizes the original dynamometer card images
and cuts them to 96 × 96. Next, zero mean normalization is conducted to improve the optimization
efficiency of the algorithm and accelerate the convergence of the model. Finally, the number of samples
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is increased by rotating and mirroring images to reduce the overfitting problem in the deep learning process
so as to improve the generalization performance of the diagnosis model. After rotating and mirroring images,
the sample size can be expanded to 8 times the original size. The data preprocessing flow of dynamometer
cards is shown in Fig. 1.

Table 1: Classification of dynamometer cards

No. Working
condition
type

Dynamometer card Classification criteria Amount Onehot coding

1 Normal

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

A normal dynamometer card is in
the shape of a parallelogram, and
the load lines at the upper left
corner and the lower right corner
often have vibration ripples. In
addition, the dynamometer card
may deflect clockwise due to the
increase of the dynamic load.

1256 [1,0,0,0,0,0,0,0,0,0]

2 Fluid
pound

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

The dynamometer card is in the
shape of a scar, and the loading
line is parallel to the unloading
line. The lower the liquid level in
the pump is, the shorter the load
line of the downstroke.

1023 [0,1,0,0,0,0,0,0,0,0]

3 Gas
interference

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

The unloading line in the
dynamometer card is a curve that
bends outward. The more severe
the contraction of the load line in
the downstroke is, the greater the
influence of gas.

992 [0,0,1,0,0,0,0,0,0,0]

4 Travelling
valve leak

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

The loading process of the
polished rod is prolonged, and the
more severe the loading line
shrinkage is, the more serious the
leakage. The lower left corner of
the dynamometer card has a sharp
angle, and the upper right corner
is an arc.

665 [0,0,0,1,0,0,0,0,0,0]

5 Standing
valve leak

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

The unloading process of the
polished rod is prolonged, and the
more severe the unloading line
shrinkage is, the more serious the
leakage. The upper right corner of
the dynamometer card has a sharp
angle, and the lower left corner is
an arc.

640 [0,0,0,0,1,0,0,0,0,0]

(Continued)
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2.2 Transfer Deep Learning Network
2.2.1 AlexNet Network

The AlexNet network won the ILSVRC competition in 2012 with a large score. Its top-5 error rate was
only 17%, far lower than the 26% of the second place method. It is similar to the LeNet-5 network
architecture but larger and deeper than the LeNet-5 network. The model has 60 million parameters and
650000 neurons. It is composed of five convolutional layers (some convolutional layers are followed by
pooling layers) and three fully connected layers, as shown in Fig. 2.

Table 1 (continued).

No. Working
condition
type

Dynamometer card Classification criteria Amount Onehot coding

6 Pump
hitting up

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

There is a “small bulge” in the
upper right corner of the
dynamometer card.

446 [0,0,0,0,0,1,0,0,0,0]

7 Pump
hitting
down

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

There is a “small bulge” in the
lower left corner of the
dynamometer card.

529 [0,0,0,0,0,0,1,0,0,0]

8 Parted rod

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

The upstroke and downstroke
cannot be loaded and unloaded
normally, and the dynamometer
card is generally in the shape of a
horizontal narrow bar.

530 [0,0,0,0,0,0,0,1,0,0]

9 Plunger
pulling out
of barrel

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

The dynamometer card is in the
shape of an inverted kitchen
knife, and the polished rod load in
the upstroke suddenly decreases
rapidly.

468 [0,0,0,0,0,0,0,0,1,0]

10 Sand
production

0

1

0 1

N
or

m
al

iz
ed

 lo
ad

Normalized displacement

There are many irregular “small
spikes” in the dynamometer card.

451 [0,0,0,0,0,0,0,0,0,1]
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In order to improve the training speed, the AlexNet model introduces the ReLU modified linear element
activation function, which greatly shortens the learning period [29]. Second, in order to reduce overfitting,
the AlexNet model uses an elimination strategy (the elimination rate is 50%) and uses various offsets,
horizontal flips and other methods to randomly move training data. In addition, the local response
normalization function is also used in the AlexNet model to make different feature maps specialized,
promote their separation, force them to explore new functions, and finally improve their generalization.

2.2.2 GoogLeNet Network
The GoogLeNet network won the 2014 ILSVRC competition [30] by reducing the top-5 error rate to

7%. Overall, GoogLeNet is a 27-layer deep learning network with approximately 500000 parameters,
which is deeper than the AlexNet network (22 layers), but the number of parameters to be optimized is
only 1/12 that of the AlexNet network. In order to avoid vanishing gradients, the model uses two
different cost functions at different depths. In terms of width, the model proposes the Inception
architecture, which can express information at multiple scales. The Inception architecture is shown in Fig. 3.

Figure 1: Preprocessing of dynamometer cards

Figure 2: AlexNet network architecture
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Technically, the GoogLeNet model uses a fixed filter to conduct multiscale analysis [31], which is used
for the learning of the inception structure. Additionally, GoogLeNet uses the 1 × 1 convolution method to
increase the network depth and reduce the feature dimension. Finally, GoogLeNet uses the multilevel
analysis method [32] and integrates the feature information of different depths to improve the recognition
accuracy. Compared with the AlexNet network, the GoogLeNet network is deeper and wider, the results
have been further improved, and the number of parameters is lower.

2.3 Experimental Design
2.3.1 Hardware and Software Platform

The hardware and software platform used in this experiment is the following: Win10 64 bit, Intel i7-
10700, CPU @ 4.80 GHz, 16 GB of memory, an SSD, and Python 3.2.3 Spyder.

2.3.2 Network Design of the CNN3 Model, CNN2 Model and FC Model
In addition to the above two deep convolutional neural networks, other network models, including

shallow convolutional neural networks (CNN3 model and CNN2 model) and a fully connected neural
network model (FC model), are designed for training. In these models, in addition to the input layer and
output layer, the CNN3 model also includes two convolutional layers, two pooling layers and one fully
connected layer, and the softmax function is used in the output layer. The network architecture of the
CNN3 model is shown in Fig. 4. Correspondingly, the CNN2 model has one convolutional layer and one
pooling layer less than the CNN3 model. The network architecture of the CNN2 model is shown in Fig. 5.

In addition, the FC model has only one fully connected layer in addition to the input layer and the output
layer. The network architecture of the FC model is shown in Fig. 6.

2.3.3 Model Training
Based on the AlexNet model and GoogLeNet model, which are pretrained using the ImageNet data set,

we change the 103 nodes of the softmax output layer into 10 nodes, which are used to classify dynamometer
cards under different working conditions. Then, training, verification and testing are conducted using
different dynamometer card data sets. The parameters of the model network are set using a continuous
optimization process. The final parameters are as follows: The initial learning rate is 0.001, the
momentum factor is 0.9, the attenuation parameter is 0.0005, and the other parameters remain unchanged.
Moreover, the shallow convolutional neural networks (CNN3 model and CNN2 model) and fully
connected neural network model (FC model) are also trained using the dynamometer card data set. The
training processes are shown in Figs. 7 and 8.

Figure 3: Inception architecture of the GoogLeNet network
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Figure 4: CNN3 network architecture

Figure 5: CNN2 network architecture

Figure 6: FC network architecture
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Through training, the GoogLeNet model converges after 175 learning epochs, and the convergence time
is 145276 s. The AlexNet model converges after 142 learning epochs, and the convergence time is 117862 s.
The CNN3 model converges after 185 learning epochs, and the convergence time is 9745 s. The
CNN2 model converges after 180 learning epochs, and the convergence time is 9281 s. Finally, the FC
model converges after 115 learning epochs, and the convergence time is 6078 s.

3 Results and Discussion

3.1 Results Analysis
3.1.1 Comparison of the Diagnostic Performance

The relevant experimental parameters of the number of epochs to achieve convergence, convergence
time, training loss, training accuracy, verification loss and verification accuracy in the five model
experiments are collected. The detailed results are shown in Tab. 2.

The diagnostic accuracies of different network models are shown in Fig. 9. Among the models, the
transfer GoogLeNet network model has the highest accuracy rate of 0.92; the transfer AlexNet network
model has the second highest accuracy rate of 0.89; the CNN3 network model and CNN2 network model
have the third and fourth highest rates, respectively; and the FC model has the lowest accuracy at only
0.78. The results show that the prediction accuracy of the deep convolutional neural network model is
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Figure 7: The training accuracy and loss
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Figure 8: The verification accuracy and loss
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higher than that of the shallow convolutional neural network and the traditional fully connected neural
network model.

Cause analysis: According to the experimental results, the verification error of the deep convolutional
neural network model conforms to the trend of the training error and has little fluctuation, which indicates
that the model is in a good state and can effectively extract the characteristics of dynamometer cards
under different working conditions. The verification error of the shallow convolutional neural network
model basically conforms to the trend of the training error, but the difference is large, and the verification
fluctuates violently. The loss of the model is also high. Therefore, although the model can converge, the
accuracy is not high. Considering that this may be caused by the small capacity of the model,
the complexity of the model can be improved, and the fitting ability of the model can be enhanced. While
the fully connected neural network model can converge well, the error and loss are high, and the feature
extraction ability is poor.

In addition, considering the imbalance of sample categories, it is necessary to determine the stability of
different models. The AUC is the area under the ROC curve, and the value is between 0.5 and 1. The closer
its value is to 1, the better the stability of the model. Therefore, we assume that one type of working condition
is positive and the other is negative. Then, the average AUC of different models is calculated to determine the
performance of different models. The results are shown in Tab. 3. As shown in Fig. 10, the AUC of the
transfer GoogLeNet model is 0.88, the AUCs of the transfer AlexNet model and CNN3 model follow,
and the AUC of the traditional fully connected neural model is lower than 0.7.

Table 2: Experimental results

Model Number of epochs to
achieve convergence

Convergence
time

Training
loss

Training
accuracy

Verification
loss

Verification
accuracy

GoogLeNet 175 145276 s 0.06 92.7% 0.09 92.1%

AlexNet 142 117862 s 0.12 89.6% 0.17 89.2%

CNN3 185 9745 s 0.32 83.9% 0.45 83.4%

CNN2 180 9281 s 0.49 82.7% 0.59 82.1%

FC 115 6078 s 0.65 79.2% 0.71 78.8%

0.92
0.89

0.83 0.82

0.78

0.5
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0.7
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GoogLeNet AlexNet CNN3 CNN2 FC

A
C

C

Figure 9: ACCs of different models
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3.1.2 ROC Curve
The ROC curve is also known as the sensitivity curve. It takes the true positive rate (TPR) as the ordinate

and the false positive rate (FPR) as the abscissa. The ROC curve focuses on positive and negative samples at
the same time, so it is more robust to the imbalance of sample categories, which is also one of the main
indexes to measure the stability of the model. The closer the ROC curve is to the upper left corner, the
better the performance of the model. The average ROC curves of the three diagnostic models with
dynamometer card diagnostic performance better than 0.80 are shown in Fig. 11. Among the curves,
green is the GoogLeNet model, red is the AlexNet model, and blue is the CNN3 model. Overall, the
diagnosis performance of the GoogLeNet model is better than that of the AlexNet model and
CNN3 model, which shows that transfer learning is feasible.

3.1.3 Field Application Analysis
To further verify the practicability and accuracy of the transfer deep convolutional neural network

models (GoogLeNet model and AlexNet model), 300 oil wells in the Shengli Oilfield in China were
diagnosed and analysed. The results are shown in Tab. 4. The table shows that the average diagnostic

Table 3: Calculation results of the AUC

Case Positive Negative AUC

GoogLeNet AlexNet CNN3 CNN2 FC

Case 1 Normal Other nine working conditions 0.94 0.90 0.88 0.85 0.76

Case 2 Fluid pound Other nine working conditions 0.92 0.89 0.87 0.82 0.71

Case 3 Gas interference Other nine working conditions 0.88 0.86 0.82 0.79 0.68

Case 4 Travelling valve leak Other nine working conditions 0.89 0.83 0.78 0.76 0.74

Case 5 Standing valve leak Other nine working conditions 0.84 0.88 0.80 0.79 0.60

Case 6 Pump hitting up Other nine working conditions 0.85 0.76 0.75 0.69 0.58

Case 7 Pump hitting down Other nine working conditions 0.89 0.81 0.74 0.74 0.62

Case 8 Parted rod Other nine working conditions 0.91 0.85 0.86 0.68 0.66

Case 9 Plunger pulling out of barrel Other nine working conditions 0.86 0.75 0.83 0.69 0.58

Case 10 Sand production Other nine working conditions 0.82 0.77 0.87 0.79 0.57

Average 0.88 0.83 0.82 0.76 0.65

0.88

0.83 0.82

0.76

0.65

0.5
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A
U

C

Figure 10: AUCs of different models
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accuracy of the GoogLeNet model is 90.6% and that of the AlexNet model is 88.7%, indicating that the deep
convolutional neural network model based on transfer learning has higher diagnostic accuracy and
performance. Therefore, GoogLeNet can be used as the method and basis for the intelligent diagnosis of
sucker-rod pump wells.

3.2 Discussion
(1) In the actual production of oilfields, there are many types of dynamometer cards, and the intelligent

diagnosis model of the working conditions can only diagnose the 10 oil well working conditions listed in this
paper. However, the research ideas and methods of this paper can be used as a reference to establish
dynamometer card data sets under more types of working conditions and conduct training so as to expand
the scope of working condition diagnosis. In addition, actual dynamometer cards may contain a variety of
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Figure 11: Average ROC curves of different models

Table 4: Diagnosis results

Working conditions Well
count

Proportion GoogLeNet model AlexNet model

Accurate diagnosis
well count

Accuracy Accurate diagnosis
well count

Accuracy

Normal 159 53% 144 90.6% 142 89.3%

Fluid pound 36 12% 32 88.9% 31 86.1%

Gas interference 26 8.7% 23 88.5% 23 84.6%

Parted rod 15 5% 14 93.3% 13 86.7%

Pump hitting up 10 3.3% 9 90% 9 90%

Pump hitting down 9 3% 9 100% 8 88.9%

Travelling valve leak 17 5.7% 15 88.2% 15 88.2%

Standing valve leak 13 4.3% 12 92.3% 11 84.6%

Plunger pulling out of barrel 3 1% 3 100% 3 100%

Sand production 12 4% 11 91.6% 11 91.7%

Total 300 100% 272 90.6% 266 88.7%
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working condition information, but this working condition diagnosis model can only diagnose a certain main
working condition type. Therefore, dynamometer cards under such multiple working conditions can be
trained as a new type so as to realize the multicondition diagnosis of dynamometer cards.

(2) The diagnostic accuracy of the intelligent diagnosis model can be further improved. First, the data
from the feature extraction is not only from used dynamometer cards but also combined with the production
data of oil wells, such as daily fluid production, dynamic liquid level, and other data. These features or
information can feed back the working conditions of oil wells from different levels and angles so as to
make a more comprehensive and accurate diagnosis. Second, a comprehensive system of classifiers can
be constructed, and the voting mechanism can be used to count the diagnosis results of different
classifiers so as to realize more accurate classification of dynamometer cards. Finally, the quality and
quantity of data can be improved by expanding the sample size of the dynamometer card or using data
preprocessing methods such as image clipping, image quality enhancement and image flipping so as to
improve the diagnostic accuracy of the working condition intelligent diagnosis model.

4 Conclusions

(1) Through the classification and preprocessing of dynamometer card data measured in oilfields, a
dynamometer card data set including ten typical working conditions is established and used to
train and optimize the working condition diagnosis model of sucker-rod pump wells.

(2) This paper proposes a transfer learning-based intelligent diagnosis method of the working
conditions of sucker-rod pump wells, which can handle the small sample dynamometer card data
set. Using the dynamometer card data set and the trained deep convolutional neural network
model, model training and parameter optimization are conducted, and the learned features of the
dynamometer card are transferred and applied so as to realize the intelligent diagnosis of the
working conditions. The experimental results show that transfer learning is feasible and can
provide methods and ideas for the intelligent diagnosis of the working conditions of sucker-rod
pump wells. However, it is worth noting that a large number of parameters to be optimized will
lead to the need for considerable time and computing resources for transfer deep learning.

(3) The field application results show that the deep convolutional neural network model based on
transfer learning has higher diagnostic accuracy and can identify and diagnose dynamometer
cards under different working conditions efficiently and accurately, which greatly improves the
timeliness of oil well analysis and is conducive to improving the production efficiency and
benefits of oilfields.
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