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ABSTRACT

Aircraft engine design is a complicated process, as it involves huge number of components. The design process
begins with parametric cycle analysis. It is crucial to determine the optimum values of the cycle parameters that
would give a robust design in the early phase of engine development, to shorten the design cycle for cost saving
and man-hour reduction. To obtain a robust solution, optimisation program is often being executed more than
once, especially in Reliability Based Design Optimisations (RBDO) with Monte-Carlo Simulation (MCS) scheme
for complex systems which require thousands to millions of optimisation loops to be executed. This paper pre-
sents a fast heuristic technique to optimise the thermodynamic cycle of two-spool separated flow turbofan engines
based on energy and probability of failure criteria based on Luus-Jaakola algorithm (LJ). A computer program
called Turbo Jet Engine Optimiser v2.0 (TJEO-2.0) has been developed to perform the optimisation calculation.
The program is made up of inner and outer loops, where LJ is used in the outer loop to determine the design
variables while parametric cycle analysis of the engine is done in the inner loop to determine the engine perfor-
mance. Latin-Hypercube-Sampling (LHS) technique is used to sample the design and model variations for uncer-
tainty analysis. The results show that optimisation without reliability criteria may lead to high probability of
failure of more than 11% on average. The thrust obtained with uncertainty quantification was about 25% higher
than the one without uncertainty quantification, at the expense of less than 3% of fuel consumption. The pro-
posed algorithm can solve the turbofan RBDO problem within 3 min.
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1 Introduction

Aircraft engine design is a complex process as it involves tens of thousands of components [1]. It begins
with parametric cycle analysis, which includes the determination of compression and expansion ratios,
burner outlet temperature, bypass ratio, air-fuel ratio, etc. In early stage of the design development, there
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are too many uncertainties involved. Low fidelity models such as empirical models are used to predict the
design performance, due to many variables are not yet determined or available at this design stage.
Therefore, determining the optimum values of these parameters that would lead to a robust design in the
early phase of engine development is crucial, as it can shorten the design cycle and eventually lead to
cost saving and man-hour reduction. Failure to account for uncertainty can result in significant
shortcomings in performance when the engine is initially tested [2].

Over the years, various performance indicators have been proposed and used to evaluate the
performance of aircraft engines such as energy, exergy and propulsive efficiencies, specific thrust, and
fuel consumption [1,3–5]. While the world is growing concerns on the impact of aviation on the
environment, emissions have since become an important performance indicator [6,7]. The performance
indicators were often being used alone to form single-objective optimisation (SO) problems, or in
combination with other indicators to form multi-objective optimisation (MO) problems [1,4–8].
Optimisation problems that involve only single discipline is called single-discipline optimisation (SDO)
while multi-discipline optimisation (MDO) involves problems that involve multiple disciplines (e.g.,
thermodynamics, aerodynamics, structure, acoustic, etc.). MDO is inherently more difficult to solve than
SDO, due to large search space and inter-disciplinary coupling of components involved (see references
[3,7,9–14]. Evolutionary Algorithm (EA) methods such as Genetic Algorithm (GA) [1,3,5,7,8],
Differential Evolution (DE) [10], Particle Swarm Optimization (PSO) [4,15] are favoured over
deterministic optimisation methods such as gradient based optimisation [9,13] and Sequential Quadratic
Programming (SQP) [6], due to EA is more capable in handling discontinuous, non-differential, and
multi-modal functions [16].

However, optimisation in such way may lead to high sensitivity to failure when used in practical
situations, due to too many uncertainties involved in the early phase of design. This has called for the
needs to incorporate uncertainties in design optimisation to obtain robust optimum solutions. In [17],
Mavris et al. examined ways to apply probabilistic design methods in preliminary aeroengine design and
analytically determined the impacts of component performance on engine overall performance. To reduce
the computational burden incurred by MCS, the authors utilised Fast Probability Integration (FPI) method
to approximate Monte-Carlo analysis, in conjunction with Response Surface Method (RSM) to construct
the design space. Then, Tong [18] presented the application of probabilistic method to assess the
reliability of a new aeroengine system. Differ from [17], analytical equations were used to describe the
functional relationships between the design variables and response variables. Roth et al. [19] presented a
probabilistic based optimisation method that utilised GA and MCS to find optimum combination of
technologies for aeroengines. The authors concluded that such GA-MCS technique can applied to any
engine design problem for robust solution. Chen et al. [20] proposed a probabilistic model of turboshaft
engine to quantify the impact of uncertainty in engine performance based on Monte-Carlo probabilistic
design method. Their work demonstrated the uncertainties in component performance can significantly
impact the engine overall performance prediction and concluded that probabilistic design approach is
more credible and reliable in assigning the design space for a target engine performance. In recent year,
Cao et al. [21] presented a study on aeroengine conceptual design considering multi-mission reliability.
To save computation time, the authors employed Artificial Neural Network (ANN) to construct surrogate
models to replace MCS for reliability calculation. PSO was used to optimise the engine design.

Although metaheuristic method such as GA and PSO is known to be robust in searching for optimum
solution, optimisation that involves large number of calculations for RBDO with MCS schemes is
prohibitively slow. In view of this, this research is dedicated to close the loop, by introducing an efficient
optimisation method with MCS scheme to optimise the energy efficiency and reliability of two-spool
turbofan engines considering the variable and model uncertainties in the early design stage.
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2 Modelling of Turbofan Engines

Turbofan Model. The turbofan engine model used in this work is identical to the one presented by Tai
et al. [8], as illustrated in Fig. 1. It is a two-spool separated flow turbofan engine, consists of a high-pressure
spool where high-pressure turbine (HPT) is connected to high-pressure compressor (HPC), and a low-
pressure spool where low-pressure turbine (LPT) is connected to fan and low-pressure compressor (LPC).
The cooling air fractions ɛ1 and ɛ2 are bled from the HPC, for cooling of HPT and LPT, respectively. The
mathematical models and algorithms that describe the thermodynamic cycle of a turbofan engine are
identical to the one developed by Tai et al. [8], where zero-dimensional thermodynamic model described
in [22] was used to calculate the turbofan performance. Liquid kerosene with chemical equation
C12H23.5 was assumed in this study. The lower heating value (hL) of the kerosene is 43124 kJ/kg.

Uncertainty Quantification. In conventional design optimisation formulation, only one value from
each variable is used for performance evaluation. However, in RBDO formulation, a set of Ns number of
variations from each variable is required for use in performance and reliability evaluations. The way of
modelling the variations is called uncertainty quantification.

Uncertainty in component technology can be modelled with probability distribution function [2]. In this
study, triangular probability function had been employed to model the technology level of an aeroengine
component, where the most likely value was represented by the mode, and the upper and lower bounds
described the best and worst scenarios respectively. The same type of probability distribution was used to
model the uncertainty of design variables. The detailed descriptions of both the technology level and
design variables are presented in Tabs. 1 and 2, respectively.

Figure 1: Schematic diagram of the two-spool separated flow turbofan engine used in this study
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Table 1: Uncertainty quantification of turbofan components

Random variables Y Minimum Mode Maximum

1. Total pressure ratio:

Intake, πd 0.950 0.980 0.995

Burner, πb 0.920 0.940 0.960

Fan nozzle, πnf 0.970 0.980 0.995

Core nozzle, πnc 0.970 0.980 0.995

2. Component efficiency:

Burner, ηb 0.940 0.990 0.995

Low-pressure shaft, ηmL 0.950 0.990 0.995

High-pressure shaft, ηmH 0.950 0.990 0.995

3. Polytropic efficiency:

Fan, ef 0.820 0.860 0.890

LPC & HPC, ec 0.840 0.880 0.900

LPT & HPT, et 0.830 0.870 0.890

Table 2: Upper and lower bounds and uncertainty quantification of design variables

Design variables X Unit Design
lower bound

Design
upper bound

Deviation from
design point

Intake mass flow rate, m0
_

kg/s 80 150 �5%

Engine bypass ratio, α -/- 0.3 8 �5%

Bleed air fraction, ɛ -/- 0 0.1 �5%

HPT cooling air fraction, ɛ1 -/- 0 0.1 �5%

Fan pressure ratio, πfan -/- 1 2 �5%

LPC pressure ratio, πLPC -/- 2 6 �5%

HPC pressure ratio, πHPC -/- 2 6 �5%

Burner outlet total temperature, Tt,4
°K 1400 2000 �5%

As all variables are independent of each other, the combination of them formed a high-dimensional joint
probability distribution. LHS had been used to sample Ns number of variations from the distribution at each
optimisation iteration. The convergence of optimisation results with respect to Ns is presented in Section 4.

3 Optimisation Formulation

Reliability Based Design Optimisation. In general, the mathematical formulation of RBDO can be
described as follows:

minimise
lX

J ðlX lYÞ (1)

subject to Pfi ¼ P fGi ðX; YÞ � 0g � P̂fi ; i ¼ 1 � � �Ng

XL � X � XU ; YL � Y � YU

where, X ∈ℝn is the design vector (e.g., the input design variables that define the aeroengine), Y ∈ℝm is
vector of random variables (see Tab. 1), and μX and μY are the means of X and Y, respectively. J(⋅) is the
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objective function andG(⋅) is the function that defines failure. The formulation of J(⋅) is presented in Section.
All Ng number of hard constraints were treated as G(⋅) and its detailed formulation is presented in this
Section. P̂f is the allowable probability of failure pre-defined by the designer. In this study, P̂f was set at
zero to maximise the functioning of the engine during the optimisation process. The following integral
evaluates the probabilistic constraint:

PfGiðX; YÞ � 0g ¼
Z

� � �
Z
GiðX;YÞ�0

fx; yðX ;YÞdX; dY (2)

where, fx, y (⋅) is the joint probability distribution of X and Y. As there is no simple analytical way to
evaluate Eq. (2), Monte-Carlo Simulation (MCS) based on Latin Hypercube Sampling (LHS) method has
been used to approximate the solution.

Objective Function. The combinatorial objective function J(⋅) was designed according to Filatovas
et al. [23], to obtain Pareto optimal solutions for k number of objective functions f (⋅):

min
x

max
i¼1;���;k

wi
fiðxÞ � zui
�zi � zui

� �
þ q

Xk
i¼1

wifiðxÞ
�zi � zui

" #
(3)

where, subscript i denotes the ith objective, w is the weight factor, ρ > 0 is called augmentation coefficient.
�zi is the aspiration level for ith objective, and zui is the non-existent utopian solution to the ith objective. There
are a total of k = 4 objectives to be minimised for this study, as follows:

f ¼ ½f1; f2; f3; f4� ¼ 1

Ns

XNs

i¼1

ð1� gth;iÞ;
XNs

i¼1

Ci;
XNs

i¼1

ðF sp � F iÞ;
XNs

i¼1

GiðX; YÞ
" #

(4)

where, f1 to f3 evaluate the mean values of the design’s thermal efficiency (ηth), thrust specific fuel
consumption (C), and thrust (F ), for Ns design variations obtained from LHS. f4 is essentially the
approximated solution to Eq. (2). The augmented coefficient ρ = 1 was selected in this study. The values
for the rest of the parameters except for w are presented in Tab. 3. Based on the turbofan data compiled
by Svoboda [24], the following equation derived by Tai et al. [8] was used to determine the aspirated
value for thrust specific fuel consumption (Csp) from the desired engine thrust (F sp):

Csp ¼ 0:0816�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0772F sp � 958:3

p
10000

(5)

gtheory ¼ 1� pð1�cÞ=c
max (6)

gcarnot ¼ 1� Tt;0
Tt;4max

(7)

Table 3: Objective function parameter values

Target objective
fi

Aspiration level
�zi

Utopian solution
zui

f1 1� gtheory 1� gcarnot
f2 0:8Csp 0:5Csp
f3 ð2:0� 1:2ÞF sp 1� 10�8

f4 1� 10�3 1� 10�8
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Penalty Function. There are a total of six constraints to this optimisation problem, denoted G1 to G6

expressed in Eqs. (8)–(13). The purpose of G1 in the present formulation is to ensure the optimisation
solutions meet the design thrust requirement. Constraints G2 to G6 prohibit the optimisation solutions to
violate the maximum design limits for overall pressure ratio (πoverall), burner outlet total temperature
(Tt,4), HPT and LPT inlet total temperatures (Tt,41 and Tt,45, respectively), and bleed air fractions for HPT
and LPT (ɛ1 and ɛ2, respectively).

G1 ¼ 1
0

�
if F � F sp

otherwise
(8)

G2 ¼ 1
0

if poverall � pmax
otherwise

�
(9)

G3 ¼ 1
0

�
if Tt;4 � Tt;4max
otherwise

(10)

G4 ¼ 1
0

�
if Tt;41 � Tt;41max
otherwise

(11)

G5 ¼ 1
0

�
if Tt;45 � Tt;45max
otherwise

(12)

G6 ¼ 1
0

�
if E1 þ E2 � Emax
otherwise

(13)

The failure function G1(X, Y) in Eqs. (1) and (2), defined by the six hard constraints in Eqs. (8)–(13), is
as follows:

G1ðX; YÞ ¼ 1�
Ym
j¼1

Gj (14)

This way, Eq. (14) returns 0 if all the constrains are met and 1 otherwise. Therefore, f4 in Eq. (4) is
simply the ratio of failure runs to total number of Ns runs for an engine configuration of interest.
Following the work by Tai et al. [8], the constraint values for minimum thrust (F sp), maximum
compression ratio (πmax), maximum burner outlet total temperature (Tt;4max), maximum turbine inlet total
temperatures (Tt;41max and Tt;45max), and maximum cooling air fraction (ɛmax) are set at 15 kN, 40, 2000 K,
1700 K, 1250 K, and 0.10, respectively. The hypothetical engine is designed to operate at 10366 m
altitude and cruise Mach number of 0.85.

4 Luus-Jaakola Algorithm for RBDO

Luus-Jaakola optimisation algorithm is easy to apply as it does not require additional auxiliary variables
or transformations [25]. This makes the direct search optimisation procedure comparatively fast compared
with other direct search methods such as GA [26]. This feature is important for use in RBDO as many
variations of a design are generally required to compute its reliability. Modified from the original version
presented in [25] and [26], the optimisation procedure is summarised as follows, with double asterisk
marks (**) to indicate the modified codes:

1. Set number of design samples Ns.

2. Generate Ns number of design vector d using LHS. **
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3. Set the number of iterations for external and internal loops (next and nint).

4. Choose a region size contraction factor γ and region collapsed parameter ɛ (= 10−4 in this study).

5. Initialise the input vector x* and search size vector r(0).
6. For i = 1 to next:

a) For j = 1 to nint:
i. x(j) = x∗ + D(j)r(j); where D is a diagonal matrix with element values chosen randomly between

[−1, + 1].
ii. For each element in x(j), truncate the value if the element bound constraint is violated.
iii. Using x(j) as mean, generate Ns number of input vectors X(j) using LHS. **
iv. Evaluate the objective function J (d, X).
v. If J(j) < J∗: store x∗ = x(j).
vi. Update r(j+1) = γr(j).

b) Choose new search region size r(i+1) = |x∗(i) − x∗(i−1)|.
c) If rðiþ1Þ

i = 0: Set rðiþ1Þ
i = ε.

d) After five external loops, if J does not change for three consecutive loops, reduce ε by half.

e) Terminate the program if ε < 10−8.

7. Interpret the results.

Running on a 64-bit Windows 10 equipped with Intel(R) Core(TM) i5-3330 CPU at 3.00 GHz, the
optimisation procedure requires only about 3 min for number of samples Ns = 500. The parameters next,
nint, and γ are 50, 100, and 0.95, respectively.

5 Results and Discussion

A total of 3 optimisation cases have been studied in this work. Case 1 is a single objective optimisation
problem designed to compare the performance of the proposed optimisation algorithm with genetic
algorithm. Case 2 presents a multi-objective optimisation case study without considering variable and
model uncertainties, while Case 3 is a multi-objective optimisation case with variable and model
uncertainties considered. For Cases 2 and 3, their optimised design variables were re-sampled and re-
evaluated for 10000 times to obtain their respective probability of failure and objective score. Presented
in Fig. 2 is the plot of success probability (Psuccess) and objective score against Ns for Case 3, to study the
number of sample required in RBDO that would yield reasonably reliable results. The results show that
more than 500 LHS samples were required to give reliable results with Pf < 1%. For the cases without
uncertainty modelling, the mode values were used (see Tab. 1).

Figure 2: Sampling convergence study
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The objective of Case 1 was to maximise the thermal efficiency ηth, without the thrust constraint G1. The
objective weights w1 and w4 were 0.8 and 0.2, respectively, while the remaining of wi’s were zeros. With the
proposed Luus-Jaakola algorithm, the minimum objective score obtained was 3.3538. The engine’s ηth was
32.93% and its C and F were 0.0851 kg/h/N and 7.97 kN, respectively. For validation purposes, the single
objective optimisation problem was solved using a simple real-coding GA scheme with the following
parameter settings:

1. Roulette wheel selection of chromosomes for crossover operation, and

2. population size, generation size, crossover rate and mutation probability were 25, 2000, 0.85, and
0.06, respectively.

The values of objective score, ηth, C and F obtained with the GA scheme were 4.3906, 32.43%,
0.0852 kg/h/N, and 9.49 kN, respectively. Both optimisation solutions did not meet the design thrust
requirement. The results show that the proposed LJ algorithm can give optimum solution when compared
with the simple GA scheme. For computation speed, the proposed algorithm required only about 20 s to
reach optimum solution, while the simple GA scheme required about 1.5 min. Therefore, the proposed
algorithm is more efficient for use in RBDO problems.

Case 2 seeked to optimise 3 conflicting objectives (i.e., ηth, C and F ), without considering the variable and
model uncertainties. The 3 objectives were re-organised in minimisation forms as f1, f2, and f3. The thrust
constraint G1 was omitted in this case. The weight settings were 0.70, 0.05, 0.05, and 0.20 for w1 to w4,
respectively. The ηth obtained via the proposed algorithm was 32.93%. The optimisation problem was solved
again using the GA scheme. The global optimum score by GA was 4.0841, slightly worse than the objective
score of 4.0377 obtained by the proposed algorithm. The ηth obtained via the GA scheme was 32.61%, also
marginally worse than the proposed scheme. This confirms that the proposed algorithm can produce
optimum solution. Both the optimisation solutions fulfilled all the engine operating constraints (i.e., G2 to
G4), but failed to meet the thrust constraint (G1) with 9.78 kN and 9.52 kN byGA and LJ algorithms, respectively.

The optimisation problem for Case 3 was similar to Case 2, but with G1 included. The weights w1 to w4

for this case were 0.4, 0.05 and 0.05, and 0.5, respectively. As shown in Fig. 2, the reliability of optimisation
solution increased with the number of samples used. The chart was produced with the averaged values of
5 optimisation runs for each Ns of interest. The chart reveals that Ns ≥ 500 is required by the proposed
RBDO algorithm to produce solutions with failure probability of less than 1%. For the RBDO solution
with Ns = 1 (without considering uncertainty), the average failure probability was 11.22%. The F
obtained with uncertainty quantification was about 25% higher than the one without uncertainty
quantification, at the expense of less than 3% of C. The performance of the optimised design with
Ns = 500 and objective score closest to the average value is shown in Fig. 3.

Figure 3: Performance of aeroengine optimised with 500 LHS samples
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With uncertainty quantification, the ηth for Case 3 was slightly less than Case 2, about 23.96%. However,
its probability of not meeting F sp was only 0.83% when subjected to 10000 re-evaluations with uncertainty.
The fuel consumption of the design was about 0.0909 kg/h/N, about 5.8%–6.5% higher than the
design solutions in Case 2. Both optimisation Cases 1 and 2 exceeded the desired Csp of 0.0693 kg/h/N
by 22.0%–29%. While both the solutions in Case 2 did not meet the thrust requirement, the solution of
Case 3 exceeded the requirement by 19.0% on average. Although all the uncertainties were modelled as
triangular random variables, the results presented in Fig. 3 are of log-normal distributed. The detail
results of Cases 1, 2, and 3 are tabulated in Tab. 4.

Fig. 4 shows the convergence plots of the proposed method for Case 3 with different LHS sample sizes
used in the optimisation processes. The objective scores presented in Figs. 4a to 4d were obtained with the
number of samples reported in their respective optimisation process. Note that the final objective score shown
in Fig. 4a is the lowest among the four solution candidates. This is due to only 100 samples were used in the
optimisation calculation. When subjected to 10000 LHS samples, the Psuccesswas only 97% (see Fig. 2). This
indicates that the design is sensitive to failure, although the objective score of the design is the lowest (i.e., the
best) among the four solution candidates. In Fig. 4b, the sample size was increased to 200 samples and the
resultant final objective score was also increased, from 11.56 for 100 sample size to 11.65. The Psuccess for
this solution was 99% according to Fig. 2. When the sample size is increased to 500 samples and
subsequently to 1000 samples, Figs. 4c and 4d show there is improvement in the objective score, from

Table 4: Performance of solution candidates with aligned units

Design Space Case 1 Case 2 Case 3 Unit

GA LJ GA LJ LJ no UQ LJ w/o UQ

Input _m0 147.71 125.63 149.99 150.00 150.00 149.71 kg/s

α 8.00 8.00 7.86 8.00 7.93 4.62

β 0.00 0.00 0.00 0.00 0.02 0.00

ɛ1 0.20 0.20 0.20 0.20 0.06 0.20

ɛ2 0.00 0.00 0.00 0.00 0.11 0.00

πfan 1.26 1.25 1.26 1.25 1.43 1.79

πLPC 5.34 2.00 5.51 2.00 4.23 4.06

πHPC 5.94 16.00 5.71 16.00 3.97 5.52

Tt,4 1406.16 1400.00 1402.23 1400.00 2000.00 1533.85 °K

Output πHPT 0.2710 0.1458 0.2794 0.1458 0.5081 0.3441

πLPT 0.1203 0.2225 0.1168 0.2225 0.1732 0.1144

Tt,41 1233.26 1209.67 1235.28 1209.67 1420.79 1427.74 °K

Tt,45 879.35 756.04 888.12 756.04 1242.16 1100.23 °K

Results Pf 100.00 100.00 100.00 100.00 11.22 0.83 %

ηth 32.43 32.93 32.61 32.93 23.76 23.96 %

F 9.49 7.97 9.78 9.52 14.29 17.85 kN

C 0.0852 0.0851 0.0846 0.0851 0.0885 0.0909 kg/h/N
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11.645 to 11.59. The probability of success for the 2 solution candidates are around 99.90% and 99.95%
when subjected to 10000 LHS samples. In short, the results presented in Fig. 4 indicate the proposed
method can produce optimisation solution with low sensitivity of failure, provided the number of LHS
samples is large enough.

6 Conclusions

In the field of thermodynamic cycle optimisation, the traditional deterministic design optimisation is
widely used. Although uncertainty is an inherent property existing in early engine development stage, the
deterministic design could yield unreliable solutions. Optimisation considering uncertainty factors in
thermodynamic cycles is rare in studies for the time being. Integrating MCS in the popular metaheuristic
methods to realise RBDO in aeroengine design is prohibitive due to time constraint and limited
computation resource. Therefore, this paper aims to propose a faster RBDO method for two-spool
separated flow turbofan engine cycle optimisation using Luus-Jaakola algorithm and LHS MCS scheme.

Figure 4: Convergence of solution to Case 3 with different sample sizes. (a) 100 samples (b) 200 samples (c)
500 samples (d) 1000 samples
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The proposed algorithm was validated against a simple genetic algorithm scheme to verify its ability to
obtain global optimum solutions. When tested with single objective and multi-objective case studies without
uncertainty modelling, the results showed that the proposed algorithm is reliable and about 4 to 10 times
faster than a simple GA in searching for optimum solutions. When subjected to uncertainty, the solution
without considering uncertainty and thrust constraint yielded 41% of not meeting the design
specifications. Sampling convergence study revealed that more than 500 samples are required to reach
robust results with probability of failure of less than 1% with the proposed method. Increasing the
number of samples can lead to more robust solutions, with the cost of longer solution time.

For the turbofan model used in this study, the RBDO formulation in study revealed that thrust constraint
is important to ensure the thrust design requirement is met. Incorporating thrust in the objective function
alone is not enough to ensure the final solution to meet the design requirement. With uncertainty
modelling and thrust constraint, the ηth obtained was only 23.96% with Pf < 0.1%, compared with
23.76% and Pf > 11% without uncertainty quantification. The C and F obtained with uncertainty
quantification were 0.0919 kg/h/N and 17.85 kN, about 2.7% and 25% higher than the one without
uncertainty quantification.

The proposed algorithm can achieve satisfactory optimisation solutions within reasonable time frame for
the turbofan RBDO problem formulated in this study. The use of surrogate modelling in RBDO to save
computation time such as the one presented in [21] is very interesting. In the future version of TJEO
program, integrating surrogate models in the proposed method is expected to further reduce the
computation time needed to yield robust optimum solutions.
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