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ABSTRACT

Accurate prediction of wind turbine power curve is essential for wind farm planning as it influences the expected
power production. Existing methods require detailed wind turbine geometry for performance evaluation, which
most of the time unattainable and impractical in early stage of wind farm planning. While significant amount of
work has been done on fitting of wind turbine power curve using parametric and non-parametric models, little to
no attention has been paid for power curve modelling that relates the wind turbine design information. This paper
presents a novel method that employs artificial neural network to learn the underlying relationships between 6 tur-
bine design parameters and its power curve. A total of 198 existing pitch-controlled and active stall-controlled
horizontal-axis wind turbines have been used for model training and validation. The results showed that the
method is reliable and reasonably accurate, with average R2 score of 0.9966.
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1 Introduction

Modelling of wind turbines is important in windfarm planning for accurate prediction of power
production [1]. In early stage of the windfarm development low fidelity models such as empirical and
regression models are used to predict the wind energy production, due to many variables such as the
turbine diameter, hub-height, power curve characteristics, etc., are yet to be determined in the early stage
of planning. Therefore, it is important to develop a low fidelity model with reasonable accuracy for use in
early stage of windfarm planning to improve the robustness, such way to reduce the design looping and
time required in the development stage. While there exists a lot of methods for wind turbine power curve
modelling in the literatures [2–4], such methods are only suitable for modelling one specific type of wind
turbine at a time to predict the power output at given wind speeds.
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Fig. 1 depicts the power curve of a typical pitch-controlled Horizontal-Axis Wind Turbine (HAWT). The
wind velocity which the wind turbine started to produce energy is cut-in speed, uc. As wind speed increases,
the energy production increases until the rated power, Pr is reached. The wind speed that corresponds to the
rated power is known as rated speed, ur. For pitch controlled HAWT, the rotor blade angle is controlled to
keep the power output at Pr for wind speed above ur. When the wind speed exceeded the cut-out speed (uo),
the wind turbine is shut down to avoid damage. On the other hand, active stall-controlled HAWT resembles
pitch-controlled HAWT as both HAWTs are equipped with pitch-able blades to produce constant power at
high wind speeds. The difference between pitch-controlled and active stall-controlled mechanisms occurs
in the operation of HAWT at high wind speeds. While pitch-control mechanism decreases the angle-of-
attack of the blades to reduce the lift force at high wind speeds, active stall-control mechanisms increases
the angle-of-attack to stall the blades [5].

Conventional methods based on Blade Element Momentum (BEM) theory [6,7] require detailed
geometry of the HAWT for performance prediction. Such physics-based methods involve dividing up the
blade into a finite number of elements and calculating the flow at each one and subsequently performing
numerical integration along the blade span to obtain the performance characteristics. Brake State Models
(BSM) are often used together with BEM to obtain the axial and tangential induction factors (denoted by
a and a0, respectively) [8–12]. Given the detailed geometrical and aerodynamic information of a wind
turbine, BEM can produce reasonably accurate performance prediction with about 20% uncertainty in
blade load estimation [13]. However, such information may not be available in the early stage of wind
farm planning as the geometry data are often kept confidential by turbine manufacturers.

In recent years, parametric and non-parametric regression methods have received a lot of attention for
wind turbine power curve modelling for on-site condition monitoring of wind turbines. Parametric models
such as polynomials [14–16] and logistic equations [17,18] have been used to fit the nonlinear region of
the power curve (see Fig. 1) based on manufacturers or on-site wind power output data. Non-parametric
methods such as Artificial Neural Network (ANN) [19,20], fuzzy logic [21], and data mining [22]
methods have also been widely investigated. However, such methods are site-specific and do not express
the relationship between the turbine design information and its power outputs.

To the authors’ knowledge, there is no method that would produce a power curve for a given set of basic
wind turbine design information such as turbine diameter, rated speed, etc. In view of this, this work is
dedicated to close the loop by formulating a modelling architecture that relates the design information

Figure 1: Typical characteristics of a pitch/active stall controlled HAWT power curve
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and its power production using ANN. The remaining of the paper is organized as follows: a brief review of
ANN and assumptions used in developing the model are described in Section 2, followed by results and
discussion in Section 3, and conclusions are presented in Section 4.

2 Power Curve Modelling Architecture

Fig. 2 depicts the Multi-Layer Perceptron (MLP) ANN architecture for this study. ANN is a
mathematical model that mimics the function of biological neural systems [20,23]. It consists of an input
layer of six input units, three hidden layers with five neuron units each, and an output layer of twenty-six
output units for power curve profile (i.e., normalised power curve) from velocity 0 to 25 m/s with 1 m/s
interval. All the units (i.e., neurons) are fully connected in a feed-forward fashion. A total of fifteen
hidden neurons were chosen in this study following the general rule-of-thumb that the number of hidden
neurons should be in between twice the number of input layer and 2/3 of input plus output layers [24,25].
Three hidden layers was chosen to evenly distribute the total number of hidden neurons.

Each neuron is modelled as depicted in Fig. 3 known as perceptron. Mathematically, the process of
jth neuron in layer ith releases signal y when reacts to input signal x1; x2; � � � ; xmf g is as follows:

z ¼
Xm
k

w ið Þ
kj xk þ b ið Þ

j (1)

y ¼ � zð Þ ¼ max 0; zð Þ (2)

where, w ið Þ
kj is the weight assigned to the k

th input signal, b is a constant known as bias, and� �ð Þ is activation
function. In the present study, Rectified Linear Unit (ReLU) activation function has been employed due to its
ability to solve vanishing gradient problems and faster in computation [26,27]. Learning of input-output
signals was realised using Back-propagation algorithm. Adaptive Moments (Adam) optimisation [28] has
been used to minimise the objective function, ‘ (i.e., the objective function) by iteratively adjusting the
weights during the learning phase:

‘ ¼ 1

n

Xn
i¼1

Yi � Ŷ i

� �2 þ �
Xm

j¼1
w2
j (3)

The first term of the objective function is Mean Squared Error (MSE) of the model and targeted outputs
for all n number of outputs. The second term of the loss equation is penalty function known as L2-
regularization, which consists of a regularisation constant � for all m number of weights. In conjunction

Figure 2: The MLP ANN architecture used for present study

EE, 2021, vol.118, no.3 509



with Back-propagation algorithm, L2-regularization helps to improve the model generalisation by penalising
large weight values during the learning phase. In this study, � ¼ 0:001 has been used. On top of that, early
stopping is activated when ‘ stopped to improve for 100 successive epochs, such way to prevent overfitting
and improve model generalisation.

A total of one hundred and ninety-eight existing pitch-controlled and active stall-controlled wind
turbines consisted of two and three blades have been considered in this study. The wind turbines are split
into 7:3 ratio by random for ANN training and testing, respectively. All wind speeds of the wind turbine
power curves (udat) at their published air density (qdat) obtained from [29–31] were corrected to wind
speeds (ustd) at standard air density of qstd ¼ 1:225 kg/m3 using Eq. (4). Then, the power curves with
corrected wind speeds (Pcor) were normalised against their respective ur using Eq. (5) to yield the power
curve profiles (p) for ANN training.

ustd ¼ udat
qdat
qstd

� �1
3

(4)

p ¼ Pcor

Pr
(5)

To further improve the model generalization of ANN, a total of ten independent ANN models have been
created, as depicted in Fig. 4. The final output of predicted power curve is the averaged output of all the ten
independent ANN models. Based on the features of a typical pitch controlled and active stall controlled
HAWT power curve, a total of six parameters, i.e., Pr, ur, uc, uo, rotor diameter (D), and number of
blades (nb) have been selected as model inputs. The modelling is realised with TensorFlow, a Google’s
open-source modelling framework for ANN and deep learning [32,33].

Figure 3: Illustration of perceptron model of neuron a ið Þ
j

Figure 4: The overview of ensemble ANN model for the present study
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3 Results and Discussion

Fig. 5 shows the cross-validation plot of calculated power versus actual power for all the 198 HAWTs. A
total of 18 power curves have been sampled for comparison purposes, with 6 best fitted power curves as
presented in Fig. 6, 6 averagely fitted curves in Figs. 7 and 6 worst fitted results in Fig. 8. The figures
show that the proposed method is reliable and reasonably accurate to capture the power curve trends.

R2 was used to quantify the performance of the proposed method. The R2 value for the cross-validation
plot (Fig. 5) is 0.9966, indicating the proposed method is reasonably accurate in general. Out of the 198 wind
turbines, the maximum R2 is 0.9996 for Vensys 70 1.5 MW wind turbine (see Fig. 6d) and the minimum
value is 0.5825 for Ecotecnia 80 1.6 wind turbine (see Fig. 8b). The average value of R2 shows that the
proposed method is accurate. The proposed method tends to predict constant power in the speed range of
ur < V � uo, which is typical for most pitch controlled HAWT.

However, a close examination on Figs. 8a, 8b, 8d and 8f revealed that the proposed method
performs poorly for HAWTs that possess soft cut-out control strategy which gradually ramping down
energy production at high wind speeds to avoid overloading on turbine blades [34]. This attributes to
only a few HAWTs with such derating feature were included in the ANN training, therefore lack of
information available for the proposed method to learn the underlying relationships between the input and
output variables. For the speed range between uc and um, the proposed method can capture the trends
reasonably well.

Figure 5: Cross-validation plot of calculated and actual data for a total of 198 wind turbines
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Figure 6: Sample of best-fit power curves
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Figure 7: Sample of average-fit power curves
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Figure 8: Sample of worst-fit power curves
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4 Conclusions

In this work, a simple MLPANN method for power curve estimation has been proposed. The proposed
method receives 6 basic wind turbine design information (Pr, uc, ur, uo, D, and nb) to predict its power curve
from 0 m/s to maximum 25 m/s. Although it is not a perfect fit to the actual power curve data, validation of
the method against all 198 existing wind turbines from 5 kW to 8 MW showed that the method is reasonably
accurate and reliable in general, with average R2 score of 0.9966. However, the proposed method performs
poorly for HAWTs equipped with soft cut-out control strategy that gradually ramping down energy
production before uo, due to lack of HAWTs with such feature had been used in ANN training.

In conventional wind turbine design, detailed geometry of the wind turbine has to be generated before its
aerodynamic properties and power curve can be evaluated using physics-based methods such as BEM or
high-fidelity numerical simulations such as Computational Fluid Dynamics. In the present study,
historical data of wind turbines have been used to generate a low fidelity model using ANN. Unlike the
existing parametric and non-parametric power curve modelling methods for on-site condition monitoring
of wind turbines, the method proposed in this study is the best-known method to estimate the power
curve without having to account for detailed wind turbine geometry and its aerodynamic properties,
hence it provides a quick means for applications such as wind turbine design optimisation as well as
windfarm planning and windfarm optimisation.
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