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ABSTRACT

Renewable energy sources (RES) such as wind turbines (WT) and solar cells have attracted the attention of power
system operators and users alike, thanks to their lack of environmental pollution, independence of fossil fuels, and
meager marginal costs. With the introduction of RES, challenges have faced the unit commitment (UC) problem
as a traditional power system optimization problem aiming to minimize total costs by optimally determining units’
inputs and outputs, and specifying the optimal generation of each unit. The output power of RES such as WT and
solar cells depends on natural factors such as wind speed and solar irradiation that are riddled with uncertainty.
As a result, the UC problem in the presence of RES faces uncertainties. The grid consumed load is not always
equal to and is randomly different from the predicted values, which also contributes to uncertainty in solving
the aforementioned problem. The current study proposes a novel two-stage optimization model with load and
wind farm power generation uncertainties for the security-constrained UC to overcome this problem. The new
model is adopted to solve the wind-generated power uncertainty, and energy storage systems (ESSs) are included
in the problem for further management. The problem is written as an uncertain optimization model which are
the stochastic nature with security-constrains which included undispatchable power resources and storage units.
To solve the UC programming model, a hybrid honey bee mating and bacterial foraging algorithm is employed to
reduce problem complexity and achieve optimal results.
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Unit commitment security-constrained programming; wind farms; uncertainty; honey bee mating algorithm;
bacterial foraging algorithm

Nomenclatures

Pt
i Generated power of generator i at time t

�t
1 Load uncertainty budget

Pt
w Generated power of wind farm w at time t

�t
2 Wind farm-generated power uncertainty budget

SP
n Generated power of ESS r at time t

Y Begin
r Initial energy of ESS r

Ss
rt Consumed power of ESS r at time t

Y Last
r Final energy of ESS r

Yr,t Capacity of ESS r at time t
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t Time
PL1 Power passing line l
n Bus
X t

i Presence or absence of generator i at time t
j Busbar
Ut

i Generator i turning on at time t
w Wind farm
V t

i Generator i turning off at time t
r ESS
St

i Cost of commissioning
i Non-wind power station
Gt

i OFF cost
1 Transfer line
Ct

i Cost per MWH of electricity generated by the non-wind power station
U(n) Set of units in bus n
Cp

r Cost per MWH of ESS discharging
W(n) Set of wind farms in bus n
Cs

r Cost per MWH of ESS charging
R(n) Set of ESS in bus n
MinUPi Minimum ON time
MinDWi Minimum OFF time
J(n) Set of loads in bus n
RDt

i Decreasing slope rate
N(w) Set of wind farms with wind uncertainty
RUt

i Increasing slope rate
N(d) Set of unit loads with uncertainty
pmin

i Minimum power generated by each non-wind power station
�t

1 Load uncertainty budget
pmax

i Maximum power generated by each non-wind power station
�t

2 Wind farm-generated power uncertainty budget
PLmax

i Maximum power passing the line
Y Begin

r Initial energy of ESS r
dt

j Load in bus j at time t
Y Last

r Final energy of ESS r
SS

r min Minimum ESS charging power
t Time
SP

r max Minimum ESS discharging power
n Bus
SS

r max Maximum discharging power
j Busbar
Y min

r Minimum ESS capacity
w Wind farm
Y max

r Maximum ESS capacity
ηs ESS charging efficiency
ηp ESS discharging efficiency
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1 Introduction

Reduction of system operating costs is a critical economic program in power systems. As such,
programming for unit commissioning and decommissioning is of utmost importance. Generally, two
objectives of “ensuring safe operation” and “facilitating economic operation” are of significance. The
unit commissioning/decommissioning problem was designed and implemented based on the grid’s
security principles in the traditional power system operation. In this case, grid operation was not
necessarily the most economical mode of operation. In the restructured environment, security can
be facilitated by using various services available to the market and the electricity consumption price
can be reduced by the economic use of the electricity market [1].

Due to uncertainties related to the load prediction error, unexpected generator decommissioning,
and transfer line outages during real-time operation, operators have to deviate from the pre-determined
decisions by the unit commitment (UC) program and take costly modification measures, e.g., rapid
generator commissioning or load disconnection to maintain system security [2]. The rising fossil
fuel prices, their limited supply, and their resulting pollution, clarify the necessity of replacing them
with new and clean energy sources. Solar energy systems are a major RES due to their availability,
low maintenance costs, lack of mobile components, bio-friendliness and longevity. The increased
penetration of RESs that have fluctuating power generation, e.g., solar and wind energy, introduces
more uncertainty to the system and poses new challenges for the grid manager and generation
programming. There is a dire need for a UC process to manage system uncertainty [3]. Currently, the
electricity generation industry uses reserve constraints for the UC problem to deal with uncertainty.
Reserve requirements are often highly conservative, making it economically inefficient. Moreover,
standards for determining reserve levels are based on the expected demand. This means that the
solution for the UC problem with reserve constraints may not supply the demand in real time due
to the serious deviation from the prediction demand [4].

Due to the uncertainty in dispersed energy sources, the existence of an energy storage system
(ESS) beside the RES is an efficient solution to attaining a proper level of confidence. In regular
low-voltage grids, ESSs are mainly employed by the end-users for peak shaving or protection against
short-term breaks in resources. With the emergence of MGs and the development of ESSs, the role of
this equipment has become more and more prominent. As an ESS, DG sources such as wind farms
generate fluctuating loads due to the variable nature of wind [5]. These fluctuations negatively affect
the power quality, voltage, and system frequency. The use of ESSs along with photovoltaic (PV) and
wind farms can make this variable output power more uniform. To this end, various ESS technologies
and their connecting methods have been proposed. A very popular method for dealing with power
system uncertainty is stochastic programming. Different studies on power station UC and uncertainty
are reviewed below [6].

In [7], a robust two-stage optimization model was introduced to solve UC problems by considering
variable wind power generation. In [8], a robust optimization approach was proposed to adapt to
wind output uncertainty. In [9], the difference between multi-band robust optimization and Seng-
Cheol robust optimization was analyzed. This study also improved the multi-band robust optimization
parameter setting method based on the wind power sample. The results were tested on an IEEE 39-
bus power system with three wind farms. In [10], UC scheduling on integrated fuel and natural gas
systems was examined. Natural gas storage in the gas network support problem was done during peak
hours via reducing pipeline congestion. A hydrogen energy storage system was integrated with novel
flexible technologies, including power-to-gas (P2G) and demand response program (DRP), in order
to reduce the RES costs of operation and transfer the peak load demand to peak hours. In [11], a
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sensitivity analysis was performed to evaluate the effect of increasing thermal load on the combined
heat and power (CHP) unit operation as its thermal and electrical output. A plug-in electric vehicle
(PEV) charging station was integrated with this problem to examine its effects on grid performance
since PEVs introduced an unplanned and undetermined load to this system. In [12], the advantages of
combining the stochastic programming framework with reserve constraints were examined.

In [13], water reserve pump units were used to control the uncertainty of wind units based on
the robust optimization in the UC problem. In [14], a general ESS, i.e., any device storing and
transferring energy, was utilized. Several simplifying assumptions were included for the ideal ESS
in its technical and economic performance. In [15], the use of electric energy storage systems as a
proper strategy was introduced for reducing fluctuations and using renewable dispersed generators
in the MG. In [16], uncertainties were dealt with by vastly adopting two-stage robust optimization
methods for power system operations and programming problems. In [17], the large-scale wind power
integration problem and the significant challenges it causes for the safe and economic performance of
the power system were dealt with. To tackle wind power uncertainty, this paper proposed a two-stage
stochastic UC model, in which the wind power prediction error was described via the mixed multi-
dimensional Gaussian model. In [18], the unit programming problem was examined in the presence
of wind farms and a power system storage system. In [19], a modified formula was presented for the
battery-thermal UC problem that combined BESS with thermal units to compensate for wind power
generation uncertainty. In [20], the commitment of a hydrogen storage system and DR was dealt with
to mitigate the problems related to wind power integration in the system.

In [21], an optimality decomposition algorithm is used to solve security-constrained OPF problem
in present of wind power is proposed. In order to reduce the calculation time, in process state a filtering
approach is applied to the algorithm. The proposed strategy is applied in different load, generation
and network configurations scenarios to illustrate the proposed strategy in this paper. Using power
system dividing approach for unit commitment model in present of wind turbines to achieve reliable,
secure and optimal generation units is proposed in [22]. Uncertainties in wind generations and load
prediction are considered in this model. For reliability study, a powerful intelligence method is applied.
In [23], an optimal dynamic economic emission dispatch problem model is proposed in present of
wind turbine, electric vehicles, thermal electric generation is proposed to minimize cost and emission
of system. This paper is model the problem based on nonlinear problem and optimized with new fuzzy
based optimization model. In [24], an optimal market-based model based on system of system concept
for the secure and economic hourly generations is proposed. decentralized modelling, uncertainty
considering, prediction model, scenario reduction and security constrains considering are the main
contributions of this paper. Also, another decentralized model for R-SCUC problem is proposed in
[25]. In this model the uncertain model is modeled by probability distribution function and weibull
probability distribution for load and wind predictions, respectively.

The present study solved the security-constrained UC problem in the presence of wind farms
and ESS having load and wind-generated power uncertainties via a novel optimization method. The
grid load and power generated by the wind farms were included in the problem as uncertainties. Our
proposed method aimed to present UC programming for the previous-day market that minimized the
total costs under the worst-case scenario of uncertainty in real time. The main novelties of the proposed
strategy could be written as follows:

� New model strategy defining for UC problem in modern power systems containing undispatch-
able power resources and storage system;
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� Uncurtains factors modelling of undispatchable power resource in present UC problem
using PDF;

� Adopted a novel method to perform security-constrained UC programming in the presence of
a wind farm and ESS with load and wind farm-generated power uncertainty;

� Minimizing grid operation cost for worst load condition of system;
� Applying two stage optimization algorithms to reach the global best solution of the UC

problem.

2 Problem Model
2.1 Deterministic Model

The deterministic model of the SCUC problem was extensively studied in [26]. The objective
function minimizing the total cost of operation includes the cost of energy generation, ON/OFF and
charge/discharge of the ESS.

min
u,y,p,Ss ,Sp

[
T∑

t=1

(∑
i

(
ut

i × St
i + vt

i × Gt
i + Ct

i × Pt
i

)+
∑

r

(
CS

r × SS
rt + CP

r × SP
rt

))]
(1)

The SCUC problem constraints include system load balance,∑
i

(
Pt

i

)+
∑

r

(
Sp

rt − Ss
rt

)+
∑

w

(
P−t

w

) =
∑

j

(
d−t

j

)
(2)

minimum and maximum power generated by each unit,

Pmin
i X t

i ≤ Pt
i ≤ Pmax

i X t
i (3)

wind farm capacity,

Pmin
w ≤ P−t

w ≤ Pmax
w (4)

minimum and maximum ESS charge/discharge power,

SS
r min ≤ SS

rt ≤ SS
r max (5)

SP
r min ≤ SP

rt ≤ SP
r max (6)

hourly ESS capacity [27],

Yr,t = Yr,t−1 + ηsSs
rt −

1
ηP

SP
rt (7)

Yr0 = Y Begin
r (8)

YrT = Y Last
r (9)

Y min
r ≤ Yrt ≤ Y max

r (10)

logical relationship between units’ ON/OFF status and their turning ON/OFF,

xt−1
i − xt

i + ut
i ≥ 0 ∀t ∈ T , i ∈ Ng (11)

xt
i − xt−1

i + vt
i ≥ 0 ∀t ∈ T , i ∈ Ng (12)

units’ minimum ON/OFF time,

∀T ∈ [t + 1, min {t + MinUpi − 1, T}] t ∈ [2, T ] (13)
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xt
i − xt−1

i ≤ xT
i (14)

xt−1
i − xt

i ≤ 1 − xT
i (15)

∀T ∈ [t + 1, min {t + MinDWi − 1, T}] t ∈ [2, T ] (16)

units’ generated power increase/decrease slope and

− RDt
i ≤ Pt

i − Pt−1
i ≤ RUt

i (17)

transfer line capacity.

− PLmax
l ≤

N∑
n=1

SFl,n

(∑
i∈U(n)

Pt
i +

∑
w∈W(n)

P̄t
w +

∑
r∈R(n)

(
SP

rt − SS
rt

)∑
j∈J(n)

d̄t
j

)
≤ PLmax

l (18)

2.2 SCUC Problem Formulation
Predicted values for the demanded load and wind farm-generated power for the deterministic

model of the SCUC problem can be incorrect. Herein, uncertainty intervals
[
d̄t

j − d̂t
j , d̄t

j + d̂t
j

]
and[

P̄t
w − P̂t

w, P̄t
j + P̂t

w

]
are used to denote their hourly variations dt

j . Moreover, Pt
w denotes a set of loads

and power station-generated power that can be realized and may assume any value in the uncertainty
interval.

dt
j ∈
[
d̄t

j − d̂t
j , d̄t

j + d̂t
j

]
Pt

w ∈
[
P̄t

w − P̂t
w, P̄t

j + P̂t
w

]
(19)

A set of constraints is introduced for optimization model conservatism control.

Dt
(

d̄t, d̂t, �t
)

=
⎧⎨
⎩
∑
j∈Nd

dt
j − d̄t

j

d̂ t
j

≤ �t
1 dt

j ∈
[
d̄t

j − d̂t
j , d̄t

j + d̂t
j

]⎫⎬
⎭ (20)

wt
(

P̄t, P̂t, �t
2

)
=
⎧⎨
⎩
∑
j∈Nd

Pt
w − P̄t

w

P̂t
w

≤ �t
2P

t
w ∈
[
P̄t

w − P̂t
w, P̄t

w + P̂t
w

]⎫⎬
⎭ (21)

Parameters �t
1 and �t

2 respectively denote load uncertainty budget and wind farm-generated
power, and assume a value from 0 to Nd (the number of loads with uncertainty) and Nw (the number of
win units with uncertainty). When �t

1 = 0 and �t
2 = 0, the load variable with uncertainty and the wind

farm-generated power assume the same deterministic value (Dt =
{

d̄t
j

}
) and (wt = {

P̄t
w

}
). In fact, the

larger �t
1 and �t

2 increase, the larger the set of uncertainties Dt and wt would become; this means more
deviations are assumed for load and wind farm-generated power from their deterministic value, which
makes the proposed optimization results to be highly conservative and protecting the system against
a high level of uncertainty. When �t

1=Nd
and �t

2 = Nw, then, Pt
w and dt

j have the greatest deviation from
the deterministic value. Now, the two-stage SCUC problem is formulated as follows in the presence of
a wind farm and ESS with load and wind farm-generated power uncertainties [12]:

min
x,u,v

{
T∑

i=1

(∑
i

(
ut

i × St
i + vt

i × Gt
i

)+ max
d,pw

min
p,Ss ,SP

[∑
i

Ct
i × Pt

i +
∑

r

(
Ct

r × Ss
rt + Ct

r × SP
rt

)])}
(22)
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In Eq. (15), due to the existence of Min-Max, the duality theorem is adopted to convert the
problem into the Max-Max one by transforming Min into Max. Subsequently, max

λ,π ,∅,δ,μ,�,ψ ,σ
max

d,pw
is

converted into max
λ,π ,∅,δ,μ,�,ψ ,σ ,d,pw

.

Therefore, the SCUC problem will be as follows in the presence of the wind farm and ESS.

min
x,u,v

{
T∑

i=1

[∑
i

(ut
i × St

i + vt
i × Gt

i) + max
λ,π ,∅,δ,μ,�,ψ ,σ ,d,pw

λt×
∑

j

dt
j

+
Ng∑
i=1

(π1,it × Pmin
i × xt

i − π2,it × Pmax
i × xt

i)

+
∑

l

(∅1,lt + ∅2,lt) ×
∑

n

SFIn × (
∑
j∈J(n)

dt
j −

∑
w∈W(n)

Pt
w) −

∑
l

(∅1,lt∅2,lt)

×PLmax
l

]−
T∑

t=2

[∑
i

(RDt
i × δ1,it + RUt

i × δ2,it)

]

+
T∑

t=2

[∑
r

μ1,rt × SP
r min −

∑
r

μ2,rt × SP
r max

+
∑

r

�1,rt × Ss
r min −

∑
r

�2,rt × Ss
r max +

∑
r

σ1,rtymin
r −

∑
r

σ2,rtymax
r

]

+
∑

r

(ψrT × Y Last
r − ψr0 × Y Begin

r )

}
(23)

If:

∀i ∈ Ng, t = 1(
λt + π1,it − π2,it + δ1,i(t+1) + δ2,i(t+1) +

∑
l

(∅1,It − ∅2,It

)
SFIn

)
≤ Ci (24)

∀i ∈ Ng, t > 1, t < T(
λt + π1,it − π2,it +

∑
l

(∅1,It − ∅2,It

)
SFIn + δ1,i − δ1,i(t+1) − δ2,i + δ2,i(t+1)

)
≤ Ci (25)

∀i ∈ Ng, t = T(
λt + π1,it − π2,it + δ1,i − δ2,i +

∑
l

(∅1,It − ∅2,It

)
SFIn

)
≤ Ci (26)

∀r ∈ Nr, t ∈ T(
λt +

∑
l

(∅1,It − ∅2,It

)
SFIn + μ1,rt − μ2,rt − 1

ηP

× ψrt

)
≤ CP

r (27)

∀r ∈ Nr, t ∈ T
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(
−λt −

∑
l

(∅1,It − ∅2,It

)
SFIn + �1,rt − �2,rt − ηS × ψrt

)
≤ CS

r (28)

∀r ∈ Nr, t > 1, t < T

− ψrt + ψr(t+1) + σ1,rt − σ2,rt ≤ 0 (29)

∀r ∈ Nr, t = T

− ψrt + σ1,rt − σ2,rt ≤ 0 (30)

π1,it, π2,it, ∅1,lt, ∅2,lt, δ1,it, δ2,it, �1,rt, �2,rt, μ1,rt, μ2,rt, σ1,rt, σ2,rt ≥ 0 λt, ψrtfree (31)⎛
⎜⎜⎝

∑
j∈Nd

dt
j − d̄t

j

d̂ t
j

≤ �t
1

dt
j ∈
[
d̄t

j − d̂t
j , d̄t

j + d̂t
j

]
⎞
⎟⎟⎠ (32)

⎛
⎜⎝

∑
j∈Nj

Pt
w − P̄t

w

P̂t
w

≤ �t
2

Pt
w ∈
[
P̄t

w − P̂t
w, P̄t

w + P̂t
w

]
⎞
⎟⎠ (33)

3 Problem Solving Method

A hybrid honey bee mating optimization (HBMO) and bacterial foraging algorithm is used to
solve the aforementioned problem. The hybrid algorithm is described below.

3.1 HBMO Algorithm
The HBMO is a novel optimization algorithm inspired by the actual mating process of honey bees.

As a general optimization method based on inset behavior, this algorithm relies on the mating behavior
of male bees with the queen bee. Honey bees’ behavior is an interaction of genetics, the physiological
and ecological environment, the social conditions of the hive, or a combination of these factors [28].

A beehive often houses a queen with long life to lay eggs, from 0 to several hundreds of male bees
(drones), and about 10,000–60,000 workers. In some honeybee species, the queen(s) plays the main
reproductive role and lays eggs. The queen lays about 1500 eggs in 24 h. Drones are the fathers of
the beehive. They are exclusively male and must mate with the queen. The brood from fertilized eggs
grow to be queens or workers and the brood from non-fertilized eggs grow to be drones. Workers have
the largest number of tasks in a hive, e.g., nurturing the brood, taking care of the queen and drones,
cleaning the hive, regulating beehive temperature and collecting nectar.

The queen commences the special mating dance. In this flight, drones follow the queen to mate
with her in space. In each mating flight, the queen mates with 7–20 drones on average. In each mating,
sperms enter and are collected in the spermatheca. The mating flight can be likened to a set of
displacements in space and time (the environment), wherein the queen flies at different points and with
variable speed, hits drones at that point and moment and randomly mates with them. Evidently, the
queen has a certain energy level at the outset of the mating flight, which is reduced and approximates
zero at the end of the path, i.e., when the queen returns to the hive [29].
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Therefore, the HBMO algorithm can be summarized in the following basic steps:

1) Queen’s mating: The algorithm begins with the mating flight, wherein the queen (best solution)
randomly selects its mates among the drones to fill her spermatheca and, eventually, produce
the new brood. In this stage, the queen (the best solution) mates with any drone based on the
following rolling probabilistic function:

prob (Q, D) = e
−�(f )

S(t) ≥ q0 (34)

where prob (Q, D) is the probability of adding the sperm of drone D to the spermatheca volume of
queen Q with the probability of successful mating. �(f ) is the difference between the queen’s and
drone’s fitness function, S (t) is the queen’s speed at time t and q0 is a random value (0, 1). The queen’s
speed and energy are reduced after each mating based on the following equation:

S (t + 1) = α × S (t) (35)

E (t + 1) = E (t) − γ (36)

where α is a coefficient between 0.1 and 1 for the queen’s speed reduction and γ is a coefficient between
0.1 and 1 for the queen’s energy reduction following each mating. At the end of the mating flight, the
queen’s energy and speed decrease to such an extent that they can be assumed zero.

2) Producing the new brood generation (new solutions): The new brood (test solution) is generated
by replacing the drones’ genes with the queen’s genes based on the following:

child = parent1 + β (parent2 − parent1) (37)

Here, β is a random value (0, 1).

3) Nurturing and promoting the brood’s generation: In this stage, workers nurture and promote
the brood’s generation based on the following:

Broodk
i = Broodk

i ± (δ + ε) Broodk
i

δ ∈ [0, 1] , 0 < ε < 1 (38)

where δ is generated randomly between 0 and 1, while ε is a constant number.

4) Queen selectivity: After arranging the brood as the new solutions based on the degree of
promotion in the generation relying on the workers’ fitness function, the best ones are selected
to replace the queen in the next mating flight if they have better fitness than the current queen.
Otherwise, the current queen (the best solution) starts mating to produce the new brood (new
solutions).

5) Stopping the algorithm: If the conditions of the algorithm are met, the current queen is selected
as the final solution. Otherwise, a new generation of drones is generated and the stages before
satisfying the stop condition are iterated.

In the following, to improve the performance of this algorithm, the local search method is applied.

3.2 Bacterial Foraging Algorithm
This algorithm is based on the idea that, in nature, animals with poor foraging methods have a

higher risk of extinction than those with successful foraging strategies. After many generations, animals
and weak foraging methods are eliminated or transformed into better forms. E. coli that lives in the
human intestine has a four-stage foraging method: chemotactic, swarming, reproduction, elimination,
and dispersal [30].
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1) Chemotactic

Bacteria begin to move and swim in this stage. In fact, depending on their tail rotation, they hop
and begin moving in a certain direction (tumble). If the amount of food is higher in the new path, the
bacterium begins swimming in the same direction (swimming).

Assume that we are looking for the minimum of J (θ) , θ ∈ �p. Let θ be the bacterium’s location
and J (θ) the amount of food in location θ . Assume that J (θ) > 0, J (θ) = 0, J (θ) < 0 respectively
denote that the bacterium has good, neutral or bad food in location θ . To perform tumbling, a
vector with unit length known as ∅ (i) is generated. This vector is used to define the new direction
for bacterium’s post-tumbling chemotactic. The new location of the bacterium is defined as:

θ i (j + 1, k, l) = θ i (j, k, l) + C (i) ∅ (i) (39)

where θ i (j, k, l) represents the bacterium’s location at the jth chemotactic stage, the kth reproduction
and the lth elimination and dispersal. C (i) is the bacterium’s chemotactic size in the direction of
chemotactic ∅ (i). If the size of J (i, j, k, l) at θ i (j + 1, k, l) is less than its size at θ i (j, k, l), another
chemotactic step with size C (i) is taken in the direction ∅ (i) and the bacterium begins to swim in
direction ∅ (i). This swimming continues until the size of J(θ ) is reduced to the maximum permissible
number of swimming stages Ns. This indicates the bacterium will continue moving in the same direction
until it finds a better food environment in that direction.

2) Swarming

When a bacterium finds a better path for food, it attracts the other bacteria and reaches the main
source of food more quickly. Swarming leads to the bacteria’s mass movement towards the food.

If P (j, k, l) = {θ i (j, k, l) i = 1, 2, . . . , s} is assumed as the set of bacteria’s locations, swarming is
modeled as:

jcc (θ , P (i, j, l)) =
S∑

i=1

ji
cc

(
θ , θ i (j, k, l)

)

=
S∑

i=1

[
−dattractexp

(
−ωattract

P∑
m=1

(
θm − θ i

m

)2

)]

+
S∑

i=1

[
−drepellantexp

(
−ωrepellant

P∑
m=1

(
θm − θ i

m

)2

)]
(40)

where jcc (θ , P (i, j, l)) is a time-dependent function depending on the movement of all the bacteria
and is added to the value of the cost function, J (i, j, k, l). Therefore, bacteria try to find food, escape
places without food, attract each other and, at the same time, do not get too close to each other; s is
the total number of bacteria; p is the number of parameters that must be optimized and regarded as
the bacterium’s location coordinates in the p-dimensional space. Moreover, ωattract, dattract, ωrepellant and
drepellant are the coefficients, for which proper values must be selected depending on the problem.

3) Reproduction

A half of the bacteria that fail to find proper food are eliminated; in the other half consisting
of healthy bacteria, each bacterium is divided into two which are located in the bacterium’s previous
place. This keeps the population of bacteria constant.
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4) Elimination and dispersal

The life of the bacterium population changes gradually as they consume food or suddenly due to
other factors. Events can kill or disperse the bacteria. Dispersion may initially disrupt the chemotactic
towards food, but can also positively affect it as it may place the bacteria near good food sources.
Elimination and dispersion prevent the bacteria from entrapment in local optima. In each state of
elimination and dispersal, any bacterium in the population runs the ped risk of elimination and
dispersal. To keep the number of bacteria constant, a new bacterium is randomly placed in the search
space if one bacterium is eliminated.

3.3 The Hybrid Method
To promote efficiency, a combination of these two algorithms is used. The procedure of the hybrid

method is as follows:

Stage 1: HBMO algorithm searches the search space and presents the best solution.

Stage 2: The best solution obtained in Stage 1 is sent to the bacterial foraging algorithm.

Stage 3: The bacterial foraging algorithm starts to perform optimization around the best solution
sent from Stage 1.

Stage 4: The best solution obtained from the previous stage is sent to the HBMO to once again
find the best solution with more precision.

Stage 5: If the stop condition is met, the algorithm converges, the iteration ends and the best
solution is proposed. This hybrid method covers both the search space and the exploration space. The
proposed model is presented in Fig. 1.

No

Yes

Start

Initial set to start optimization based on 
HYBRID HBMO/BFA

Calculate objective function
for each particle

Update of queen based on

the archived solutions 

Stopping 
criteria?

End

Iter=Iter+1

BFA

Updating the queen, drones & workers

Figure 1: The flowchart of suggested hybrid HBMO/BFA technique
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4 Numeric Results

In this section, the robust security-constrained UC programming problem in the presence of wind
farm and ESS obtained in the previous section is implemented on two test systems: a six-bus test grid
and a 24-bus IEEE transfer grid; the capabilities of the proposed model are also examined.

4.1 Six-Bus Test Grid
The security-constrained UC programming by using optimization in the presence of wind farm

and ESS for 24 h is implemented on a six-bus grid (specifications in Appendix A and single-line
diagram in Fig. 2. This grid has three generators, seven lines and six buses, and serves as a small grid for
better understanding the concepts. Fig. 2 depicts the single-line diagram of this grid. Loads in buses
3, 4 and 5 make up respectively 20%, 40% and 40% of the total load of the grid that is 216 MW. The
hourly load is obtained by multiplying the total load by load percentage (Table 1).

G1

1 2

6

3

54

G2

G3

L1

L2 L3

Figure 2: Single-line diagram of six bus grid

Table 1: Hourly load percentage for the six-bus grid

Load percentage (%) Hour Load percentage (%) Hour

80.7 13 58.3 1
81.2 14 55 2
82.9 15 52.8 3
85.2 16 51.5 4
85.3 17 51.6 5
85.3 18 51.6 6
81.9 19 57.7 7
79.1 20 59.2 8
79.1 21 76.2 9
77.5 22 76.2 10
65.3 23 76.2 11
65.2 24 78.2 12
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Due to the load uncertainty, the percentage of variations in Table 2 is assumed for the load of this
test grid.

Table 2: Hourly load variation percentage for the six-bus grid

Variation percentage (%) Hour Variation percentage (%) Hour

10 13 10 1
15 14 15 2
18 15 18 3
20 16 10 4
10 17 20 5
15 18 10 6
18 19 15 7
10 20 18 8
20 21 10 9
10 22 20 10
20 23 10 11
10 24 20 12

A 20 MW wind farm is added to the examined grid on bus 4. The hourly wind-generated power
is calculated by multiplying 20 MW by the wind percentage in Table 3. However, since the WT output
has variations, the same load variation percentage is assumed for the hourly deterministic wind power
variations.

Table 3: Hourly wind percentage for the six-bus grid

Wind percentage (%) Hour Wind percentage (%) Hour

95 13 67 1
95 14 63 2
93 15 60 3
94 16 59 4
99 17 59 5
100 18 60 6
100 19 74 7
96 20 86 8
91 21 95 9
83 22 96 10
73 23 96 11
63 24 95 12
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An ESS is also added to bus 5 (Table 4).

Table 4: Information on the six-bus ESS

ESS charging efficiency 0.9
ESS charging efficiency 0.9
Minimum charging power (MW) 0
Minimum charging power (MW) 35
Minimum discharging power (MW) 0
Minimum discharging power (MW) 35

The maximum and minimum hourly capacity of the ESS is 90 and 0 MW, respectively. The cost
per MWh of ESS charging is $0.5 and the cost per MWh of ESS discharging is $0.1.

4.2 Results of the SCUC Model without the Wind Farm and ESS
The security-constrained UC programming problem is first solved without the wind farm and

ESS by using optimization for the load uncertainty budget of �t
1 = 0 (deterministic case) and �t

1 = 1,
�t

1 = 2 and �t
1 = 3. Fig. 3 displays the load variation interval, deterministic load and load for different

values of the uncertainty budget parameter. Table 5 lists the cost of operation for different values of
the uncertainty budget parameter. Based on Fig. 3, by increasing �t

1, more deviation is made from the
predicted load value; therefore, solving the SCUC problem will yield more conservative results and the
system will be protected against further variations in load uncertainty. In �t

1 = 3, the SCUC problem
is programmed for the worst-case load determinism conditions (maximum load that may occur in
real time).
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Figure 3: Load uncertainty variation interval and its value per different �t
1 s

By raising �t
1, the system confidence is promoted, but the costs of operation also rise due to the

need for more units to cover a wider range of uncertainties (Table 5).
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Table 5: Cost of operation for different �t
1 s

Cost of operation ($) �t
1

91,385.853 0
98,458.413 1
105,978.134 2
110,311.517 3

4.3 Results of the SCUC Model in the Presence of the Wind Farm and without ESS
In this case, we assume the wind farm exists in the grid without the ESS. Based on the wind

farm-generated power uncertainty, the SCUC problem is solved for the worst-case scenario of load
uncertainty (�t

1 = 3) and wind uncertainty parameter of �t
2 = 0 (deterministic), �t

2 = 0.5 and
�t

2 = 1. Fig. 4 displays the variation interval, deterministic circuit and wind farm-generated power
for different values of the wind uncertainty budget parameter. Table 6 lists the cost of operation for
different values of the wind uncertainty budget parameter. By increasing the wind uncertainty budget
from 0 to 0.5 as the result of a decrease in wind farm power generation, the total cost is increased from
98,501.532 to 99,238.942. By setting the wind uncertainty budget to 1, the wind farm power generation
is minimized. Thus, by increasing �t

2, the cost of operation also rises and more accurate programming
is achieved; therefore, the use of the model reduces the grid’s confidence when incorporating wind
farms. To promote grid confidence and power quality for users, we will utilize an ESS in addition to
the model when using the wind farm.
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Figure 4: Wind-generated power uncertainty variation interval and its value for different �t
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Table 6: Cost of operation for different �t
1 s and �t

2 s

Cost of operation ($) �t
2 �t

1

98,501.532
99,238.942
100,103.712

0
0.5
1

3
3
3
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4.4 Results of the SCUC Model in the Presence of the Wind Farm and ESS
The SCUC problem is solved in the presence of a wind farm and ESS with load and wind farm-

generated power uncertainties by using the model for the worst-case uncertainty scenario (�t
1 = 3 and

�t
2 = 1). The load and wind farm-generated power are based on Figs. 3 and 4. The cost of operation

of the grid without the ESS is 100,105.718, but it is reduced to $99,103.917 in the presence of the ESS.

Based on Fig. 5, this cost reduction when using the ESS is due to charging the ESS by cheap
power stations during non-peak hours and discharging it during peak hours. Thus, the use of the ESS
reduces the cost of operation, promotes system confidence and improves the power quality, which are
important issues.
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Figure 5: ESS charge/discharge power and grid load (�t
1 = 3 and �t

2 = 1)

4.5 The 24-Bus Test Grid
Herein, the model proposed in Section 2 is applied to a larger grid. To this end, a 24-bus IEEE

grid is selected (costs of units and single-line diagram in [31] and cost of units’ commissioning in [32]).
In the deterministic state, the hourly load for each bus is attained by multiplying the load by the hourly
load percentage (the load and load percentage given in Table 7). Based on the uncertainty assumed for
the load, its variation percentage for this grid is similar to the six-bus grid.

Table 7: Hourly load percentage and load for each bus of the 24-bus grid

Load percentage Load (MW) Hour and bus

37 100 1
33 60 2

(Continued)
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Table 7 (continued)

Load percentage Load (MW) Hour and bus

30 140 3
29 50 4
29 41 5
30 70 6
44 100 7
56 155 8
65 160 9
66 135 10
66 0 11
65 0 12
65 260 13
65 180 14
63 310 15
64 90 16
69 0 17
70 323 18
70 181 19
66 118 20
61 0 21
53 0 22
43 0 23
33 0 24

4.6 Results of the SCUC Model without the Wind Farm and ESS
Based on Fig. 6, by increasing �t

1, a larger part of the load uncertainty interval is covered, so that
at �t

1 = 17, the worst-case scenario of load uncertainty is assumed. As a result, the grid is promoted
against load uncertainty and system confidence. However, this promotion in system confidence is
associated with a rise in costs (Table 8). In other words, the problem’s optimality is diminished. One
can select �t

1 such that the intended gird confidence and optimality can be attained.

Table 8: Cost of operation for different �t
1 s

Cost of operation ($) �t
1

202,619.228 0
280,609.808 10
295,646.902 17



2098 EE, 2022, vol.119, no.5

400

600

800

1000

1200

1400

1600

1800

2000

2200

The upper limit of the load range     

1
=17

1
=10

1
= 1

Definite amount of load
    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42

Time (Hour)

L
oa

d 
(M

W
)

Figure 6: Load uncertainty variation interval and its value per different �t
1 s

4.7 Results of the SCUC Model in the Presence of Wind Farm and without ESS
In this case, we assume that only a wind farm is added to the grid in the worst-case load uncertainty

scenario (�t
1 = 17). Table 9 lists the information on the wind farms in the standard IEEE 24-bus grid.

As the scheduling interval is 24 h, a coefficient known as wind percentage is presented in Table 10.
Each power station’s hourly generated electric power is calculated via multiplying the power station’s
nominal power by the wind percentage. As uncertainty is assumed for the electric power generated by
the wind farms, the generated electric power variation percentage is assumed to be the same as the
load variations.

Table 9: Information on the wind farms of the 24-bus grid

Generated power (M) Bus number Power station number

10 2 1
20 4 2
30 8 3
60 12 4
15 18 5

Table 10: Hourly wind percentage for the 24-bus grid

Wind percentage (%) Hour Wind percentage (%) Hour

95 13 67 1
95 14 63 2
93 15 60 3
94 16 59 4
99 17 59 5
100 18 60 6
100 19 74 7
96 20 86 8

(Continued)
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Table 10 (continued)

Wind percentage (%) Hour Wind percentage (%) Hour

91 21 95 9
83 22 96 10
73 23 96 11
63 24 95 12

Based on Fig. 7, by increasing �t
2, the value obtained for the wind farm-generated power in the

security-constrained UC programming problem approaches the lower limit of the wind farm-generated
power prediction interval. At �t

2 = 5 (maximum �t
2 that is equal to the number of wind farms, the

output of which has uncertainty), the worst case of wind farm-generated power uncertainty is assumed.
Consequently, the grid against the wind farm-generated power uncertainty and the system confidence
has increased (in other words, the probability of power supply deficit through wind farms in real time
is much reduced). Nevertheless, this promotion in system confidence is associated with a rise in costs
(Table 11). Increasing �t

2 is associated with a decline in wind farm-generated power; as a result, power
is supplied from more expensive thermal power stations. In other words, the problem’s optimality is
diminished. One can select �t

2, such that the intended gird confidence and optimality can be attained.
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Table 11: Cost of operation per �t
1 and �t

2

Cost of operation ($) �t
2 �t

1

252,100.438 0 17
254,461.204 1 17
256,958.218 3 17
257,812.541 5 17

4.8 Results of the SCUC Model in the Presence of the Wind Farm and ESS
To observe the effect of ESS, this equipment is assumed for the power system in this grid (Table 12).

The maximum and minimum hourly capacities of the ESS are 100 and 0 MW, respectively. The cost per
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MWh of ESS charging is $0.5 and the cost per MWh of ESS discharging is $0.1. The initial and final
energies of the ESS are assumed to be 0. The ESS charge/discharge power and grid load is presented
in Fig. 8.

Table 12: Information on the 24-bus grid ESS

ESS number 1 2 3 4 5 6

Bus number 4 8 12 16 18 22
ESS charging efficiency 0.9 0.9 0.9 0.9 0.9 0.9
ESS charging efficiency 0.9 0.9 0.9 0.9 0.9 0.9
Minimum charging power (MW) 0 0 0 0 0 0
Maximum charging power (MW) 45 45 45 45 45 45
Minimum discharging power (MW) 0 0 0 0 0 0
Maximum discharging power (MW) 45 45 45 45 45 45
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Figure 8: ESS charge/discharge power and grid load (�t
1 = 3 and �t

2 = 1)

Table 13 presents the hourly charge/discharge level of the ESS for the worst case of load uncer-
tainty and wind farm-generated power. Negative values in this table indicate charging (consumption),
and positive values denote discharging (generation) of the ESS.

The use of the ESS has reduced costs from $257,829.495 to $250,748.726 for the worst case of load
and wind farm-generated power uncertainty. This cost reduction is due to ESS charging in non-peak
and discharging in peak hours. ESS also improves system confidence and power quality, which are
important issues.
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Table 13: ESS generated (discharged) and consumed (charged) power for the 24-bus grid

ESS number for
(= 5�t

2 = 17�t
1

)
Hour ESS number for

(= 5�t
2 = 17�t

1

)
Hour

6 5 4 3 2 1 6 5 4 3 2 1
0 0 0 42.57 −45 0 13 0 0 0 0 0 0 1
0 0 0 0 0 0 14 0 0 0 −45 −45 −45 2
0 0 −21.11 0 0 11.92 15 −39.90 0 0 45 −21.11 0 3
0 0 0 0 0 0 16 0 0 0 0 0 −21.11 4
0 0 0 0 0 0 17 −45 0 0 −21.11 45 45 5
0 0 0 0 45 17.99 18 0 0 0 0 0 0 6
0 0 −45 −36.97 45 45 19 6.42 0 0 0 0 0 7
0 0 0 24.60 −1.69 0 20 0 0 0 0 0 0 8
0 0 −45 5.34 1.36 15.08 21 0 0 0 0 0 0 9
17.34 0 45 0 0 0 22 0 −8.92 0 45 45 0 10
45 7.22 45 0 0 0 23 0 0 0 −30.75 −30.75 0 11
0 0 0 0 0 0 24 0 0 0 16.36 16.36 0 12

To show the efficiency of proposed model, we applied classic BFA and HBMO for solving
this problem. In this comparison, the proposed hybrid model is compared with two basic models.
Accordingly, the HBMO could calculate the cost from $264,674.22 and reduce it by considering
the ESS to $257,662.14. this value is $264,975.41 and reduce it to $258,674.63 by considering ESS.
Consequently, this comparison shows the superiority of proposed hybrid algorithm in comparison
with basic models.

5 Conclusion

RES such as WT and solar cells have attracted the attention of power system operators and users
alike due to their lack of environmental pollution, independence of fossil fuels, and low marginal costs.
With the introduction of RES, challenges have faced the solution of the UC problem as a traditional
power system optimization problem aiming to minimize total costs by optimally determining units’
inputs and outputs, and specifying the optimal generation of each unit. The output power of RES
such as WT and solar cells depends on natural factors such as wind speed and solar irradiation that are
riddled with uncertainty. As a result, the UC problem in the presence of RES faces uncertainties. The
grid consumed load is not always equal to and is randomly different from the predicted values, which
also contributes to uncertainty in solving the aforementioned problem. To model load uncertainty as
well as wind and solar power station uncertainty, stochastic solving methods and probabilistic methods
can be adopted by allocating proper probability density functions (PDF) to the uncertainty factors.
The present study adopted a novel method to perform security-constrained UC programming in the
presence of a wind farm and ESS with load and wind farm-generated power uncertainty. The proposed
model minimized the grid operating cost for the worst case of load uncertainty. For this purpose, new
approach is presented in this paper based on an uncertain optimization model that is the stochastic
with security-constrains consisting of undispatchable power resources and storage units. By using a
hybrid HBMO and bacterial foraging algorithm, the optimal unit commissioning/decommissioning
and the optimal generation of each unit were determined. The proposed approach may trap in local
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minima while, combination of this algorithm could solve this problem and get suitable outcome in
comparison with other models. The simulation results revealed that the ESS equipment in the power
system improved power quality and confidence and reduced the peak and costs.
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Appendix A

The specifications of lines and generators of the six-bus grid are given in Tables 14 and 15.

Table 14: Information on the lines of the six-bus grid

Maximum power passing the line X (pu) To bus From bus Line number

200 0.170 2 1 1
100 0.037 3 2 2
100 0.258 4 1 3
100 0.197 4 2 4
100 0.037 5 4 5
100 0.140 6 5 6
100 0.018 6 3 7

Table 15: Information on the generators of the 6-bus grid

3 2 1 Unit number

6 2 1 Bus number
40 28 20 Cost per MWH
100 100 220 Pmax
10 10 100 Pmin
1 2 4 Minimum ON time
1 3 4 Minimum OFF time
100 100 100 Cost of commissioning
5 5 5 Cost of turning off
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