
This work is licensed under a Creative Commons Attribution 4.0 International
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/ee.2022.020011

ARTICLE

Distributionally Robust Optimal Dispatch of Virtual Power Plant Based on
Moment of Renewable Energy Resource

Wenlu Ji, Yong Wang*, Xing Deng, Ming Zhang and Ting Ye

Nanjing Power Supply Company of State Grid Jiangsu Electric Power Co., Ltd., Nanjing, 210019, China
*Corresponding Author: Yong Wang. Email: wangyongnjj@126.com

Received: 29 October 2021 Accepted: 12 January 2022

ABSTRACT

Virtual power plants can effectively integrate different types of distributed energy resources, which have become
a new operation mode with substantial advantages such as high flexibility, adaptability, and economy. This paper
proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-
ahead dispatch under uncertainties of renewable energy sources. The proposed distributionally robust approach
characterizes probability distributions of renewable power output by moments. In this regard, the faults of stochastic
optimization and traditional robust optimization can be overcome. Firstly, a second-order cone-based ambiguity
set that incorporates the first and second moments of renewable power output is constructed, and a day-ahead
two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-
ahead electricity markets. Then, an effective solution method based on the affine policy and second-order cone
duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order
cone programming problem, which improves the computational efficiency of the model. Finally, the numerical
results demonstrate that the proposed method achieves a better balance between robustness and economy. They
also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the
moment information of renewable power output.
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1 Introduction

Renewable energy sources, including wind farms and photovoltaic arrays, have experienced explo-
sive growth during the past few years. Besides, the transformation from centralized energy resources
to distributed energy resources has become an evitable trend, owing to the advantages of distributed
energy resources such as reliability, economy, flexibility, and environment friendly. However, serious
problems also exist for distributed energy resources, such as small capacity, geographical dispersion,
and stochastic power output, which present great challenges to the effective control of electric power
systems. These risks can be mitigated by an effective technology called virtual power plants. Virtual
power plants are aggregate portfolios to manage different types of distributed energy resources, such
as conventional generation units, renewable energy sources, storages, and load demands, through
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advanced communication, measurement, and control techniques [1,2]. Such aggregation enables
distributed energy resources with complementary advantages to improve the overall stability and
realize the scale merit. The resulting aggregation also enables distributed energy sources with adequate
dimensions to participate in electricity markets as an integrated entity, which provides the opportunity
for the owners of distributed energy resources to seek more profits [3]. In this context, virtual power
plants have been developed rapidly in recent years, making the utilization of distributed energy
resources more flexible, adaptive, and profitable [4].

The randomness and uncertainty of renewable power output in virtual power plants have posed
severe challenges to the safe and stable operation of electric power systems. Extensive researches have
focused on the optimization of virtual power plants under uncertainties. Among these researches,
stochastic optimization and robust optimization are two of the most popular methods. Reference
[5] established an optimal stochastic scheduling model for virtual power plants considering the
network security constraints and the wind speed uncertainty. Reference [6] formulated a three-
stage stochastic optimization model for virtual power plants considering the uncertainties of the
distributed energy resource production and load consumption. Reference [7] formulated the energy
trading model of virtual power plants as a two-stage stochastic programming problem, in order to
handle the uncertainty faced by virtual power plants. Reference [8] proposed a robust optimization
approach for day-ahead resource scheduling of virtual power plants, accommodating the uncertainty
of market prices, local demand, and renewable power output. Reference [9] proposed a day-ahead
stochastic adaptive robust scheduling approach for virtual power plants with the uncertainty of wind
power generation and electricity prices, which were modeled by confidence intervals and scenarios,
respectively.

Distributionally robust optimization has become a new approach to handle uncertainty in recent
years [10–12]. This method takes the probability distribution information of uncertain parameters
(such as the moment information) into consideration and establishes an ambiguity set to contain all
the possible probability distribution of uncertain parameters. Distributionally robust optimization
combines the advantages of stochastic optimization and traditional robust optimization, and thus
does not suffer the problem of sub-optimal solutions resulting from the over-dependence of stochastic
optimization on the accurate probability distribution, as well as conservative results of traditional
robust optimization because of neglecting probability distributions of uncertain parameters. Because
of these advantages, distributionally robust optimization has been successfully applied in different
fields of power systems, including unit commitment [13], optimal power flow [14], energy and
reserve co-dispatch [15], and integrated energy systems [16]. Reference [17] studied a day-ahead
unit commitment problem with stochastic wind power generations, where a distributionally robust
optimization approach was employed to address wind power forecast errors. In this regard, the
spatiotemporal correlation in wind power generations was captured appropriately. Reference [18]
proposed a distributionally robust optimization method for real-time economic dispatch considering
automatic generation control, which reduced the total cost of power generations and frequency
regulation. Reference [19] developed a distributionally robust generation expansion planning model,
so that the violation risk of operational limits arising from the uncertainties pertaining to wind power
output was reduced.

In this paper, a distributionally robust optimization approach is employed to address the uncer-
tainty of renewable power output for the day-ahead scheduling problem of virtual power plants. Firstly,
a second-order cone-based ambiguity set that incorporates the first and second moments of renewable
power output is constructed to make full use of the probability distribution information, and a day-
ahead two-stage distributionally robust optimization model is proposed for virtual power plants. Then,
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a solution method based on the affine policy and second-order cone duality theory is employed to
equivalently reformulate the proposed model into a deterministic mixed-integer second-order cone
programming problem, in which the affine policy is used to approximate the second-stage decision
variables. Finally, a case study is employed to demonstrate the validity of the proposed model and
solution method.

2 Distributionally Robust Optimal Dispatch Model of Virtual Power Plant
2.1 Ambiguity Set Definition

The ambiguity set covers all the possible probability distribution of renewable power output.
In this study, the ambiguity set F is constructed with the predicted mean (first-order moment) and
variance (second-order moment), expressed as the following matrix/vector form:

F =
⎧⎨
⎩P ∈ P(RI)

∣∣∣∣∣∣
P[w ∈ W ] = 1

EP[w] = μ

EP[(w − μ)
2]≤σ

⎫⎬
⎭ (1)

with

W = {
w ∈ RI

∣∣ w≤w≤w̄
}

(2)

where w refers to the renewable power output PRES
w,t ; F is the ambiguity set of w; P is the probability

distribution of w; R stands for all possible probability distributions; I is the dimension of w; P(RI) refers
to all possible probability distributions of w; W means the uncertainty set of w, which is expressed by
Eq. (2); μ and σ refer to the expected value and variance of w, respectively; w̄ and w indicate the upper
and lower limits of w, respectively.

In Eq. (1), the first line indicates that the values of renewable power output fall within its
uncertainty set (2), which is similar to that of traditional robust optimization keeping the fluctuation
of renewable power output within its upper and lower limits. The second line means that the expected
value of renewable power output is equal to its predicted value, while the third line indicates that the
variance of the renewable power output is within the range of its predicted variance. The expected value
μ, the variance σ , the upper limit w̄, and the lower limits w of renewable power output are random
variables, which can be obtained by history data statistics or probabilistic forecasting methods, while
the renewable power output w is decision variables modeled by the ambiguity set.

In the ambiguity set (1), all the elements are in linear form except (w − μ)2 in the third line.
However, (w − μ)2 could be easily transformed into a second-order cone program. Therefore, the
ambiguity set F could be considered as a second-order cone program. Besides, the ambiguity set will
degenerate into an uncertainty set if the probability distribution of renewable power output is not
considered, and therefore the distributionally robust optimization approach will degenerate into a
traditional robust optimization approach.

The square term in the ambiguity set makes the model difficult to be transformed and solved. To
facilitate the transformation of the model, the auxiliary variable v is introduced to replace the square
term (w − μ)2 in the third line of the ambiguity set F, thus transforming F to the extended ambiguity
set G:

G =
⎧⎨
⎩P ∈ P(RI×I)

∣∣∣∣∣∣
P[(w, v) ∈ W̄ ] = 1

EP[w] = μ

EP[v]≤σ

⎫⎬
⎭ (3)
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with

W̄ =
{
(w, v) ∈ RI×I

∣∣∣∣ w≤w≤w̄
(w − μ)

2≤v≤v̄

}
(4)

where I × I refers to the dimension of (w, v); W is the extended uncertainty set, which is defined in
Eq. (4); v̄ refers to the upper limit of v.

2.2 Objective Function
In this study, a basic virtual power plant, which includes gas turbines, renewable energy sources

(including wind farms and photovoltaic arrays), and loads, are employed to explore the advantages of
the distributionally robust optimization approach. The schematic of the virtual power plant studied
in this paper is shown in Fig. 1.

Virtual power plant 
control center

Wind farm

Photovoltaic array Load

Gas turbine

Electricity market

Figure 1: Schematic of studied virtual power plant

The distributionally robust formulation of virtual power plants corresponds to a two-stage
optimization problem, in which the gas turbine unit commitment decisions and day-ahead bidding
strategy in electricity markets are the first-stage decision variables. These decision variables should
be decided one day ahead when the renewable power output is unknown. Other dispatch variables
(including the gas turbine power output and power system dispatch decisions) are the second-stage
decision variables, which are decided after renewable power output is realized. The objective function
of the first stage model is expressed as:

min
x

∑
t

∑
e

(
CSU

e ue,t + CSD
e ve,t + CNL

e xe,t

) −
∑

t

λEM
t PEM

t + sup
P∈F

EP [Q(x, w)] (5)

where t represents dispatch periods; e represents gas turbines; CSU
e , CSD

e , and CNL
e refer to start-up, shut-

down, and fixed costs of gas turbine e; Unit commitment variables ue,t, ve,t, and xe,t indicate whether gas
turbine e is start-up, short-down, and on. If so, set at 1, otherwise, set at 0; λEM

t is the day-ahead market
energy price; PEM

t represents power traded (sold if positive or purchased if negative) in the day-ahead
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market; x = {xe,t, ue,t, ve,t, PEM
t } is the first-stage decision variable; Ep represents the expected value;

Q(x, w) is the operation costs of the virtual power plant with given first-stage decision variables and
renewable power output, which is the second-stage objective function expressed as follows:

Q(x, w) = min
y

∑
t

∑
e

FGT
e (PGT

e,t ) (6)

where FGT
e (·) is the generation cost function of gas turbine e; PGT

e,t refers to the active power output of
gas turbine e. y = {PGT

e,t , QGT
e,t , Pij,t, Qij,t, Vi,t} is the second-stage decision variable, the meaning of each

variable are detailed in the following session.

The power generation cost function of gas turbines is commonly a quadratic function, which can
be linearized by the piecewise linearization method [20] as follows:

FGT
e (PGT

e,t ) ≥ be,mue,t + ke,mPGT
e,t (7)

where m is the number of pieces; be,m and ke,m are the parameters of the linear function.

The first-stage objective function (5) consists of two parts. The first is the gas turbine unit
commitment costs minus the virtual power plant revenue in the electricity market, while the second
part is the expected value of the power generation cost of gas turbines calculated by Eq. (6) under the
worst probability distribution of the renewable power output.

2.3 Constraint
The constraints of the first stage model state the relationship of binary variables of gas turbines:

xe,t − xe,t−1 = ue,t − ve,t (8)

xe,τ ≥ ue,t ∀t ≤ τ ≤ t + tU
e − 1 (9)

1 − xe,τ ≥ ve,t ∀t ≤ τ ≤ t + tD
e − 1 (10)

where tU and tD stand for the minimum start-up and shut-down time of gas turbine e, respectively.

Eq. (8) is the logical constraint of binary variables, while Eqs. (9) and (10) refer to the minimum
start-up and shut-down time constraints of gas turbines.

The second-stage constraints include the gas turbine power output constraint and the distribution
network constraint. It is worth mentioning that the distribution network constraint is taken into
consideration here, in order to avoid power system problems such as bus voltage violation and branch
overload.

The power output constraints of gas turbines can be expressed as follows:

PGT
e xe,t ≤ PGT

e,t ≤ P̄GT
e xe,t (11)

QGT
e xe,t ≤ QGT

e,t ≤ Q̄GT
e xe,t (12)

PGT
e,t − PGT

e,t−1 ≤ RUGT
e xe,t−1 + SUGT

e ue,t (13)

PGT
e,t−1 − PGT

e,t ≤ RDGT
e xe,t + SDGT

e ve,t (14)

where QGT
e,t is the reactive power output of gas turbine e; RUGT

e and RDGT
e represent maximum ramp-up

and ramp-down rates of gas turbine e, respectively; SUGT
e and SDGT

e stand for maximum power output
when gas turbine e is start-up and shut-down.
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Eqs. (11) and (12) are the upper and lower limits of the active and reactive power output of gas
turbines, while Eqs. (13) and (14) stand for the ramp-up and ramp-down constraints of gas turbines.

The distribution network constraints is be described with the linearized DistFlow branch
model [21]:∑
e∈SGT

j

PGT
e,t +

∑
w∈SRES

j

PRES
w,t + Pij,t =

∑
l∈SB,d

j

Pjl,t + PL
j,t + PEM

t ∀j ∈ SPCC (15)

∑
e∈SGT

j

PGT
e,t +

∑
w∈SRES

j

PRES
w,t + Pij,t =

∑
l∈SB,d

j

Pjl,t + PL
j,t ∀j /∈ SPCC (16)

∑
e∈SGT

j

QGT
e,t + Qij,t =

∑
l∈SB,d

j

Qjl,t + QL
j,t (17)

Vj,t = Vi,t −
(
Pij,trij + Qij,txij

)
/V 0 (18)

− P̄ij ≤ Pij,t ≤ P̄ij (19)

− Q̄ij ≤ Qij,t ≤ Q̄ij (20)

V i ≤ Vi,t ≤ V̄i (21)

where w represents renewable energy units; i, j, and l stand for buses; SGT
j and SRES

j are the gas turbine
and renewable energy unit set at bus j; SB,d

j is the set of downstream buses connecting to bus j; SPCC is the
set of connection points between the distribution and main networks; PRES

w,t is the power output of the
renewable energy unit w. Pij,t and Qij,t refer to active and reactive power flow of branch i-j, respectively;
PL

i,t and QL
i,t are active and reactive loads of bus i, respectively; Vi,t is voltage magnitude of bus i; rij

and xij stand for resistance and reactance of branch i-j, respectively; V 0 is voltage magnitude at the
slack bus.

Eqs. (15) and (16) indicate active power balance constraints. Eq. (17) represents reactive power
balance constraint. Eq. (18) refers to the relation between nodal voltage magnitudes and branch power
flows. Eqs. (19)–(21) stand for the upper and lower limits for active branch power flow, reactive branch
power flow, and bus voltage magnitudes.

3 Solution Method
3.1 Affine Policy

The distributionally robust optimization model is a typical NP-hard problem, for which the
optimal solution of the second-stage decision variables cannot be found until traversing all realizations
of uncertain parameters. The affine policy can effectively overcome this computational obstacle. Under
the policy, the second-stage decision variables affinely depend on uncertain parameters. In order to
match with the extended ambiguity set G, the decision variable y in the second stage is constrained
to be an affine function of the uncertain variable w and the auxiliary variable v, which is expressed as
follows:

y(w, v) = y0 + Yww+Yvv (22)

where y0, Yw, and Yv are linear coefficients of the affine function, representing the decision variables.
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Taking PGT
e,t as an example, the linear affine function is represented as:

PGT
e,t (ww,t, vw,t) = PGT,0

e,t +
∑

w

PGT,w
e,w,t ww,t+

∑
w

PGT,v
e,w,t vw,t (23)

The linear affine functions of other second-stage decision variables (including QGT
e,t , Pij,t, Qij,t, and

Vi,t) are similar as that of PGT
e,t , and are omitted here due to the space limitation.

3.2 Abstract Formulation
For notational brevity, the day-ahead distributionally robust optimization model of virtual power

plants is represented as the following matrix/vector form:

min
x

cTx + sup
P∈G

EP [Q(x, w)] (24)

s.t. Ax ≤ b (25)

with

Q(x, w) = min
y

dTy (26)

s.t. Ex + Gy + Mw ≤ h (27)

where A, E, G, M, b, c, d, and h are coefficient matrices and vectors of the optimization model.

Eqs. (24) and (25) are the matrix/vector forms of the objective function and constraints in the
first stage, respectively; Eqs. (26) and (27) are the matrix/vector forms of the objective function and
constraints in the second stage, respectively. It should be noted that in Eq. (24), the ambiguity set F
has been replaced by the extended ambiguity set G.

3.3 Model Reformulation
The supremum (sup) problem in the objective function (24), which is an infinite-dimensional

problem, is difficult to solve. To deal with this, we first express the supremum problem as the following
semi-infinite optimization problem, according to the definition of the extended ambiguity set G(3):

sup
P∈G

EP [Q(x, w)] = max
∫

W̄

dTy(w, v)df (w, v) (28)

s.t.
∫

W̄

df (w, v) = 1 : α (29)
∫

W̄

wdf (w, v) = μ : β (30)
∫

W̄

vdf (w, v) ≤ σ : γ (31)

f(w, v) ≥ 0 (32)

where f (w, v) is the joint probability density function of w and v; α, β, and γ are dual variables of the
constraint Eqs. (29)–(31), respectively.

Eqs. (29)–(31) correspond to the formulas in the first to third lines in the ambiguity set G(3);
Eq. (32) highlights the non-negativity of f (w, v).

Then, the strong duality theory is applied to transform the semi-infinite optimization problem
(28)–(32) to a finite-dimensional dual problem. Replacing the supremum problem in the original
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problem (24)–(27) with the obtained finite-dimensional dual problem, we can have the equivalent form
of the original problem as follows:

min cTx + α + β
T
μ + γ Tσ (33)

s.t. Ax ≤ b (34)

γ ≥ 0 (35)

α + β
Tw + γ Tv ≥ dTy(w, v) ∀(w, v) ∈ W̄ (36)

Ex + Gy(w, v) + Mw ≤ h ∀(w, v) ∈ W̄ (37)

Finally, the second-order cone duality theory is used to convert the robust constraints (36) and
(37) into their dual problems (see Appendix A for detailed conversion processes), and the final form
of the distributionally robust optimization model can be expressed as follows:

min cTx + α + β
T
μ + γ Tσ (38)

s.t. Ax ≤ b (39)

γ ≥ 0 (40)

α − dTy0 ≥ wTδ + w̄T
ε − 2μTη − 1T

κ + 1T
π + v̄T

ρ (41)

δ + ε − 2η = YT
wd − β (42)

− κ − π + ρ = YT
v d − γ (43)∥∥∥∥ η

κ

∥∥∥∥ ≤π (44)

δ ≤ 0, ε ≥ 0, ρ ≥ 0 (45)(
h − Ex − Gy0

)
k
≥ wTδk + w̄T

εk − 2μTηk − 1T
κk + 1T

π k + v̄T
ρk (46)

δk + εk − 2ηk= (GYw + M)
T
k (47)

− κk − π k + ρk= (GYv)
T
k (48)∥∥∥∥ ηk

κ k

∥∥∥∥ ≤π k (49)

δk ≤ 0, εk ≥ 0, ρk ≥ 0 (50)

where δ, ε, η, κ , π , ρ are the dual variables deriving from the dual transformation of robust constraint
(36); 1 is the vector with all elements being 1; (·)k represents the kth row of the matrix/vector; δk, εk, ηk,
κk, π k, ρk are the dual variables deriving from the dual transformation of the kth constraint of (37).

In this way, the original distributionally robust optimization model (24)–(27) can be equivalently
transformed into the deterministic mixed-integer second-order cone programming problem (38)–(50).

4 Case Study
4.1 Test System Description

A virtual power plant composed of three gas turbines, one wind farm, one photovoltaic array,
and loads in the distribution network is tested here. The parameters of gas turbines are shown in
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Table B1, Appendix B. The wind farm is assumed to include two 1.5-MW wind turbines (Goldwind
GW 77/1500 [22]), whose cut-in, cut-out, and rated wind speeds are 3, 22, and 11 m/s, respectively, and
fitting coefficients are a0 =0.50, a1 =−0.31, a2 =0.059, a3 =−0.0025. The photoelectric transformation
efficiency of the photovoltaic array is 15.7% [23] and the total surface area of the photovoltaic
array is 25000 m2. Historical data of wind speed and solar irradiance for Jan. 2021 [24] are used
to calculate expected values of wind and photovoltaic power output (see Appendix C for detailed
calculation processes). The expected values of wind power output, photovoltaic power output, and
loads are shown in Fig. B1, Appendix B. The IEEE 33-bus distribution system is considered here and
its structure is shown in Fig. 2. The three gas turbines, wind farm, and photovoltaic array are located
at nodes 22, 18, 33, 12, and 25, respectively. The parameters of the IEEE 33-bus system can be found in
[25]. The electricity market price [26] is shown in Fig. B2, Appendix B. The commercial solver MOSEK
in the GAMS platform is used to solve finally mixed-integer second-order cone programming problem,
with the relative gap set to 0.1%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

Gas 
turbine 1

Photovoltaic
array

Main 
grid

Wind 
farm Gas 

turbine 2

Gas 
turbine 3

Figure 2: IEEE 33-bus distribution test system

4.2 Comparison with Different Optimization Approaches
1) Optimization results

The proposed distributionally robust optimization approach is compared with the stochastic opti-
mization and traditional robust optimization approaches. The relative standard deviation (obtained by√

γ /μ) of the stochastic and distributionally robust optimization model is set to 0.3 [27]. In order to
generate scenarios of renewable power output for the stochastic optimization approach, we assume
that renewable power output follows Gaussian distribution and use the Monte Carlo method to
generate 5000 initial scenarios of renewable power output according to the expected value and relative
standard deviation. Then, the scenario reduction method (see Appendix D for detailed illustrations
and steps) is applied to reduce 5000 initial scenarios to 500 representative scenarios. As for the robust
optimization approach, the upper and lower limits of renewable power output are employed for solving
the model.

The traded energy (sold if positive or purchased if negative) of the virtual power plant in electricity
markets and costs for the three optimization approaches are shown in Fig. 3 and Table 1, respectively.

The stochastic, traditional robust, and distributionally robust optimization approaches focus on
the expected distribution, the worst-case distribution, and the worst-case of uncertainties, respectively.
As such, the decisions of the stochastic optimization approach are most radical among these three
methods, expressed as the virtual power plant tends to sell more energy and purchase less energy
in electricity markets, which can be observed in Fig. 3. Such a strategy can obtain a lower total
cost under ideal conditions where probability distributions of renewable power output are estimated
precisely (see Table 1). However, less energy purchased may bring serious load shedding problems to
the virtual power plant under a few unforeseen scenarios with low renewable power output (detailed
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analyses can be found below). The traditional robust optimization approach, in contrast, is the
most conservative method, in which the virtual power plant tends to sell less energy and purchase
more energy. This conservative strategy yields a relatively high total cost. The distributionally robust
optimization approach can mitigate the over-conservative problem of the traditional one by further
capturing the distribution information of renewable power output, which finally reduces the total cost
of the virtual power plant by 31.39%.
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Figure 3: Traded energy for different optimization approaches

Table 1: Costs for different optimization approaches

Optimization approach Gas turbine cost Electricity market
revenue

Total cost

Stochastic 1015.07 199.54 815.53
Traditional robust 1225.07 −12.48 1237.55
Distributionally robust 961.59 112.51 849.08

We further test the performance of stochastic, traditional robust, and distributionally robust
optimization approaches by out-of-sample analyses. In order to do this, we first solve the three
models to obtain the first-stage decision variables (i.e., the gas turbine unit commitment decisions
and day-ahead bidding strategy), and then solve the second-stage model for the given first-stage
decision variables under 500 out-of-sample scenarios. Note that the solution results of the stochas-
tic optimization approach in Table 1 are obtained under the predetermined distribution (i.e., the
Gaussian distribution). However, the actual probability distribution is normally different from the
predetermined distribution because of estimation or forecast errors. In this regard, load shedding may
emerge in the virtual power plant when a few unforeseen scenarios occur in practice. For ensuring
the solvability under all out-of-sample scenarios, we further add a load shedding variable in the power
balance constraint (15), and the product of the load shedding variable and a penalty cost (4000 $/MWh
[28]) in the objective function (5).

The expected load shedding and total cost for the three approaches under a discrepant distribution
(uniform distribution as a comparative example) are listed in Table 2. We can see that the stochastic
optimization method suffers serious load shedding problems in this case with inaccurate estimations
of probability distributions. This problem, however, is effectively avoided in the distributionally robust
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optimization approach, because descriptive statistics instead of detailed probability distributions are
employed to cover the vagueness of the distribution information in this approach.

Table 2: Expected load shedding and total costs for different optimization approaches

Optimization approach Expected load shedding coast Expected total cost

Stochastic 169.40 990.43
Traditional robust 0 878.67
Distributionally robust 0 850.49

Generally, the distributionally robust optimization approach is the intermediation of the stochas-
tic and traditional robust approach, which can guarantee a relatively low total cost and prevent serious
load shedding simultaneously. That is, the distributionally robust optimization approach represents a
good trade-off between robustness and economy, and thus should be favored by virtual power plant
operators.

2) Computational times

The computational times for stochastic optimization, robust optimization, and distributionally
robust optimization models are shown in Table 3. The stochastic optimization approach suffers from
a large computational burden because of scenario enumerations. By comparison, the calculation time
of the distributionally robust optimization approach is reduced by 80.95%, since heavy calculations
arising from scenario enumerations are avoided. Besides, the computational time of the distributionally
robust optimization model is less than 20 s, which is much less than the time threshold of the day-ahead
dispatch problem. This is because the proposed solution method converts the complex distributionally
optimization model into a deterministic mixed-integer second-order cone programming problem, and
thereby greatly reducing the difficulty of model solving. This verifies the effectiveness of the proposed
solution method.

Table 3: Computational times for different optimization approaches

Optimization approach Computation time (s)

Stochastic 90.52
Traditional robust 1.58
Distributionally robust 17.24

4.3 Performance of Moment
The moment information of renewable power output is incorporated in the ambiguity set to depict

its probability distribution features. This section explores the impact of the moment information on the
optimization results. Here, the relative standard deviation is used to reflect the change of the variance.
The total traded energy in the electricity market and the objective function value (total cost) of the
virtual power plant as shown in Fig. 4, after solving the robust optimization model under different
relative standard deviations.
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Figure 4: Traded energy and objective functions with different relative standard deviations

The traded energy of the virtual power plant in the electricity market gradually increases with
the decreasing relative standard deviation. This is because the decreasing of the relative standard
deviation means that the decreased fluctuation of the renewable power output. In this regard, the
virtual power plant only needs to buy less energy (or sell more energy) in electricity markets to cope
with the risks caused by the fluctuation of renewable power output, which reduces the total cost of
the virtual power plant. This means that the adaptability of the dispatch strategy to the fluctuation
of renewable power output is improved in the distributionally robust optimization approach. That is,
the distributionally robust optimization approach enables the operator to adjust the dispatch strategy
based on the moment information of the renewable power output so as to reduce the total cost. This
adjustment capability cannot be achieved in the traditional robust optimization approach.

5 Conclusions

In this study, we consider the impact of the uncertainty of renewable power output on virtual
power plant dispatch, and propose a day-ahead distributionally robust optimization dispatch model
for the virtual power plant. The solution results show that:

1) Compared with stochastic and traditional robust optimization methods, the proposed dis-
tributionally robust optimization method can better balance the robustness and economy of
dispatch decisions.

2) The proposed distributionally robust optimization approach can adjust the dispatch strategy of
the virtual power plant according to the moment information of the renewable power output,
and thus the total cost of the virtual power plant is reduced.

3) The solve difficulty of the distributionally robust optimization model is effectively reduced by
the proposed solution method, which results in that the proposed model can be solved in a
short time.
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Appendix A

This appendix provides the transformation from robust constraint (36) to (41)–(45). Robust
constraints (37) can also be transformed into (46)–(50) by a similar process. Put affine function (22)
into robust constraint (36), we obtain:

α + β
Tw + γ Tv ≥ dT

(y0 + Yww+Yvv) ∀(w, v) ∈ W̄ (A1)

Then, (A1) is rewritten into the following equation under the worst scenario:

α − dTy0 ≥ max
(w,v)∈W̄

[(
YT

wd − β
)T

w + (
YT

v d − γ
)T

v
]

(A2)

In (A2), the uncertain variable w and auxiliary variable v are within the constraints of the extended
uncertainty set W̄ (4), in which all elements are linear constraints except for (w − μ)2 ≤ v. Rewrite the
(w − μ)2 ≤ v into the following second-order cone form:∥∥∥∥ 2 (w − μ)

v − 1

∥∥∥∥ ≤v + 1 (A3)

Introduce the auxiliary variables τ , ψ , ζ into the set W̄ (4) and we have the constraints of the set
(4) as:
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w ≥ w : δ (A4)

w ≤ w̄ : ε (A5)

2 (w − μ) = τ : η (A6)

v − 1 = ψ : κ (A7)

v + 1 = ζ : π (A8)∥∥∥∥ τ

ψ

∥∥∥∥ ≤ζ : θ (A9)

v ≤ v̄ : ρ (A10)

where δ, ε, η, κ , π , θ , ρ are the dual variables of the corresponding constraint formula; 1 means a
vector with all elements being 1.

It is worth mentioning that the constraint Eqs. (A6)–(A9) collectively represent the constraint
Eq. (A3), i.e., (w − μ)2 ≤ v in the extended ambiguity set W̄ .

Eq. (A2) satisfies the constraints (A4)–(A10). Thus, (A2) can be transformed into the following
dual problem using the second-order cone duality theory:

α − dTy0 ≥ wTδ + w̄T
ε − 2μTη − 1T

κ + 1T
π + v̄T

ρ (A11)

δ + ε − 2η = YT
wd − β (A12)

− κ − π + ρ = YT
v d − γ (A13)∥∥∥∥ η

κ

∥∥∥∥ ≤π (A14)

δ ≤ 0, ε ≥ 0, ρ ≥ 0 (A15)

Appendix B

Table B1: Parameters of gas turbines

No. Start-up/Shut-
down costs
($)

Fixed cost ($/h) Maximum/
Minimum
active power
output (MW)

Maximum/
Minimum
reactive power
output (MVar)

First-/
Second-piece
generation cost
slope ($/MWh)

Unit 1 3/3 325.69 1.2/0.2 1/−1 12/16
Unit 2 2/2 −217.83 0.8/0.3 0.65/−0.65 15/20
Unit 3 1/1 206.16 1.4/0.4 1.1/−1.1 21/28
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Figure B2: Electricity market prices

Appendix C

This appendix provides the calculation steps of expected values of wind and photovoltaic power
output, which are illustrated as follows:

Step 1: Expected values of wind speed and solar irradiance are calculated by their historical data
for January 2021.

Step 2: Wind power output is calculated by wind speed according to the wind power conversion
curve:

PW
w,t =

⎧⎪⎪⎨
⎪⎪⎩

0,

PWR
w

(
a3v3

w,t + a2v2
w,t + a1vw,t + a0

)
PWR

w ,

vw,t < vCI
w , vw,t > vCO

w

vCI
w < vw,t < vR

w

vR
w < vw,t < vCO

w

(C1)

where PW
w,t is the power output of the wind turbine w; PWR

w is the rated power output of the wind turbine
w; vw,t is the wind speed of the wind turbine w; vCI

w , vCO
w , and vCR

w are the cut-in, cut-out, and rated wind
speed of the wind turbine w, respectively; a3, a2, a1, and a0 are the fitting coefficients.
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Step 3: Photovoltaic power output is calculated by the solar irradiance-power conversion function:

PS
s,t = ηsSsIs,t (C2)

where PS
s,t is the power output of the photovoltaic array s; ηs is the photoelectric transformation

efficiency of the photovoltaic array s; Ss is the surface area of the photovoltaic array s; Is,t is the solar
irradiance.

Appendix D

This appendix provides the illustrations and steps of the scenario reduction method. Note that
scenarios of renewable power output generated by the Monte Carlo method are very huge, which
brings an expensive computational burden for solving the stochastic optimization model. Thus, it is
essential to obtain a subset of renewable power output scenarios with a limited number of scenarios
and without losing the generality of the original set. The scenario reduction method is such an effective
method that can reduce the scenario number and maximally retain the fitting accuracy of samples.

Assume that the number of renewable power output scenarios generated by the Monte Carlo
method is N, with 1/N probability of each scenario (i.e., ps = 1/N). The steps of the scenario reduction
method are detailed as follows:

Step 1: Set an objective number of scenarios n, and specify the initial number of reduced scenarios
n∗ = N.

Step 2: Calculate the Kantorovich distance D between each pair of scenarios (si, sj), where D is the
absolute value of power output difference between scenarios si and sj, i.e., D(si, sj) = ∣∣PRES

i,t − PRES
j,t

∣∣.
Step 3: For each scenario sk, select the scenario sl with the minimum distance

D(sk, sl) = min D(sk, sm), k �= m, and calculate the product of distance and scenario probability
as PD(sk, sl) = D(sk, sl)pl.

Step 4: Select and delete the scenario o with minimum PD(so, sl) = min PD(sk, sl). Update the
number of reduced scenarios as n∗ = n∗ − 1 and the probability of scenario l as pl = pl + po.

Step 5: If n∗ = n, present reduced scenarios and their probabilities; otherwise, reorder scenarios
and return to Step 2.
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