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ABSTRACT

This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition
(PSC) by reconfiguring PV arrays using Aquila optimizer (AO). AO is based on the natural behaviors of Aquila
in capturing prey, which can choose the best hunting mechanism ingeniously and quickly by balancing the local
exploitation and global exploration via four hunting methods of Aquila: choosing the searching area through high
soar with the vertical stoop, exploring in different searching spaces through contour flight with quick glide attack,
exploiting in convergence searching space through low flight with slow attack, and swooping through walk and
grabbing prey. In general, PV arrays reconfiguration is a problem of discrete optimization, thus a series of discrete
operations are adopted in AO to enhance its optimization performance. Simulation results based on 10 cases under
PSCs show that the mismatched power loss obtained by AO is the smallest compared with genetic algorithm,
particle swarm optimization, ant colony algorithm, grasshopper optimization algorithm, and butterfly optimization
algorithm, which reduced by 4.34% against butterfly optimization algorithm.
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Nomenclature
Variables

VD the entire output voltage of the PV array
Vap the maximum voltage of array at the pth row
ID the whole current flowing through each column of PV arrays
Ipq output current across the pth row and the qth column of PV array
P(C) the output power of the testing PV power plant at the Cth case of PSC
n the number of sub-systems of the testing PV power plant
f objective function
xpq the electrical connection state of PV arrays at the pth row and the qth column
Xij the ith candidate solution with dimension j
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XM(t) the mean value of current solutions at the tth iteration
Xbest(t) the highest-quality solution gained during the tth iteration
Levy(D) the levy flight distribution function
QF the quality function used to balance the search methods
xq the solution vector of arrays at the qth column
PPSC maximum output power of PV array under PSC
Pmax maximum output power of the testing PV power plant with 30 runs
Pmean mean output power of the testing PV power plant with 30 runs

Parameters

UB upper bound of search spaces
LB lower bound of search spaces
T maximum iteration number
VOC open-circuit voltage of PV array
ISC short-circuit voltage of PV array
PSTC maximum output power of PV array under standard condition

Indices

p index of row
q index of column
t index of iteration

Performance evaluation indices

FF fill factor
ΔPMMPL mismatched power loss
η(%) efficiency

Abbreviations

ACO ant colony algorithm
AO Aquila optimizer
BOA butterfly optimization algorithm
GA genetic algorithm
GOA grasshopper optimization algorithm
MPPT maximum power point tracking
OAR optimal PV array reconfiguration
PSC partial shading condition
PSO particle swarm optimization
TCT total-cross-tied

1 Introduction

Recently, excessive energy demand has caused severe environmental deterioration and rapid energy
exhaustion such as coal, oil, and natural gas, which requires a profound energy transformation due to
the energy crisis [1–3]. In particular, solar energy is widely deemed as one desirable candidate, which
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has been widely employed in PV power generation [4–7]. Nevertheless, fixed free-standing PV systems
are easily affected by various dynamic environmental conditions, which leads to mismatch loss and
power loss, uneven irradiance and temperature, together with partial shading condition (PSC) [8–10].
Among them, PSC is mainly caused by clouds, trees, buildings, dust accumulation, bird droppings,
and snow [11].

To solve these thorny obstacles caused by PSC, a wide range of solutions have been proposed
such as installing bypass diodes in parallel on PV panel [12] and implementing maximum power
point tracking (MPPT) techniques [13]. However, the connection of bypass diodes will engender
power mismatch due to multi-peak characteristics in PV panels [12]. Meanwhile, MPPT technique
is troublesome to apply in large-scale PV power stations because of the complicated execution and
control cost [13].

Nowadays, PV array reconfiguration has been envisaged as a highly competitive strategy to harvest
maximum power output under different PSCs, which basic principle is to rearrange the shadows in
the same column of PV arrays through physical relocation (PR) [14], electrical rewiring (ER) [15]
and electrical array reconfiguration (EAR) [16] to equalize the effect of any concentrated PSC. PV
array reconfiguration can generally be categorized into fixed and dynamic reconfigurations according
to whether the electrical interconnection alters. Nowadays, plenty of static reconfiguration methods
have been proposed based on PR, ER, or both, e.g., fixed reconfiguration [17], column index method
[18], special connection method [19], and odd-even configuration [20]. The obvious determination
of static reconstruction is that it cannot respond effectively to the dynamic changes of the shadow.
On the contrary, dynamic reconfiguration can effectively cope with various shadows. Thus far, many
topologies have been widely used on dynamic reconfiguration, like series-parallel, total-cross-tied
(TCT) [21], Suduku, and so on.

In recent years, an optimal PV array reconfiguration (OAR) via various meta-inspiration algo-
rithms is proposed, such as genetic algorithm (GA) [22], particle swarm optimization (PSO) [23],
ant colony algorithm (ACO) [24], grasshopper optimization algorithm (GOA) [25], and butterfly
optimization algorithm (BOA) [26], which can seek the optimal power output from multiple MPPs
under unequal solar irradiation for TCT topology. However, these meta-inspiration algorithms tend
to easily fall into the low-quality local optimum due to inherent defects of strong randomness.

Therefore, this work devises a new Aquila optimizer (AO) to extract the maximum power of PV
power plants under PSC in real-time. For validation, a complete 15 × 15 TCT PV array reconfiguration
model is implemented and tested in simulation. The main novelties of this work are outlined as follows:

• An AO based real-time maximum power harvesting strategy from PV arrays under PSC by
reconfiguring PV arrays is proposed.

• Compared to the original AO [27], the proposed approach carries out a series of discrete
operations to address the discrete problem of PV array reconfiguration, which considerably enhances
its application feasibility in solving any discrete optimization problem.

• 10 cases under PSCs are designed to simulate possible shadows caused by clouds, trees,
buildings, dust accumulation, bird droppings, and snow. Besides, the effectiveness of AO on PV array
reconfiguration is tested under such 10 shadows.

The rest sections are organized as follows: Section 2 presents the mathematical model of TCT PV
array reconfiguration; Section 3 introduces AO and the discrete design of AO; Section 4 provides the
design of AO based OAR; Section 5 shows the results and discussion of simulation; and Section 6 gives
the conclusions.
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2 TCT PV Array Reconfiguration Modelling
2.1 TCT-Connected PV Arrays

TCT-connected PV arrays are connected in parallel in each row, while these rows are connected
in series. Because the voltages at both ends of each row are equal, the entire output voltage of the PV
array is able to be modeled as

VD =
F∑

p=1

Vap (1)

where Vap is the maximum voltage of array at the pth row.

The law of Kirchhoff current indicates that the whole current flowing through each column of PV
arrays can be described as

ID =
F∑

q=1

(
Ipq − I(p+1)q

) = 0, p = 1, 2, . . . , 9, A, . . . , F (2)

where Ipq means output current across the pth row and the qth column of PV array.

2.2 Performance Evaluation
To evaluate the performance of OAR under PSC using AO, three indices (fill factor, mismatched

power loss, and efficiency) are introduced, as follows:

Fill factor (FF): which is represented as the ratio of maximum output power under PSC (PPSC) to
the product of the open-circuit voltage (VOC) and short circuit current (ISC).

FF = PPSC

VOC × ISC

(3)

Mismatched Power Loss (ΔPMMPL): which is described as the difference between maximum output
power under the standard condition (PSTC) and PPSC. The standard condition is defined as the solar
irradiation of 1000 W/m2 and the operation temperature of 25°C.

ΔPMMPL = PSTC − PPSC (4)

Efficiency (η%): which is defined as the ratio of PPSC to PSTC, it can be calculated by

η(%) = PPSC

PSTC

(5)

3 Aquila Optimizer

AO is designed by simulating the natural behavior of Aquila in capturing prey. Aquila’s pointed
hook-shaped beak and sharp claws can help them quickly catch all kinds of prey, such as hares,
marmots, squirrels, and other ground animals. Most Aquila can choose the best hunting method
ingeniously and quickly according to the situation.
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3.1 Principle of Aquila Optimizer
3.1.1 Solutions Initialization

Initial population of AO is randomly produced within the upper bound (UB) and lower bound
(LB) according to the specific questions. It can be described by

Xij = rand × (
UBj − LBj

)
, i = 1, 2, . . . , N j = 1, 2, . . . , Dim (6)

where Xij means the ith candidate solution with dimension j; N is population number; Dim is the
dimension of the specific question; rand means a random number; LBj and UBj denote to the jth
lower bound and upper bound, respectively.

3.1.2 Mathematical Model of Aquila Optimizer

AO modeling is mainly realized by simulating Aquila’s behavior when they are hunting: (1)
choosing the searching area through high soar with the vertical stoop, (2) exploring in different
searching spaces through contour flight with quick glide attack, (3) exploiting in convergence searching
area through low flight with slow attack, and (4) swooping through the walk and grabbing prey. AO
can switch between exploration and exploitation based on the condition: t ≤ 2

3
× T .

Step 1: Expanded exploration (X1)

Aquila explores widely the searching area by high soar, as shown in Fig. 1a. This behavior is
expressed as

X1 (t + 1) = Xbest (t) × (1 − t
T

) + (XM (t) − Xbest (t) × rand) (7)

where t means the current iteration and T denotes the total iterations; X1 (t + 1) denotes the solution at
the (t+1)th iteration; Xbest (t) means the highest-quality solution gained during the tth iteration; rand
randomly chooses from [0,1]; XM (t) represents the mean value of current solutions at the tth iteration,
which is written by

XM (t) = 1
N

N∑
i=1

Xi (t) (8)

Step 2: Narrowed exploration (X2)

AO explores the area where the target prey appears to be ready for attacking, as described in
Fig. 1b. This behavior is presented as

X2 (t + 1) = Xbest (t) × Levy (D) + XR (t) + (y − x) × rand (9)

where X2 (t + 1) indicates the solution at the (t+1)th iteration; XR (t) selects randomly from [1, N] at
the tth iteration; D means the dimension of search space; and the function that expresses levy flight
distribution is written by

Levy (D) = s × u × σ

|v| 1
β

(10)

where s = 0.01, u and v denote random numbers between 0 and 1. σ is calculated by



1536 EE, 2022, vol.119, no.4

X(t+1)

(1+t)/T

Xbest(t)

Levy(D)

X(t+1)
X(t)

XR (t) y-x

Xbest(t)
Xbest(t)

X(t)

XM(t) Xbest(t)

a

X(t)

G1

G1

X(t+1)

Xbest(t)

X(t)

X(t+1)

Xbest(t)

G2

G2

(a) (b) (c)

(d) (e) (f)

Figure 1: The behavior of the Aquila: (a) High soar with the vertical stoop; (b) Contour flight with
quick glide attack; (c) Spiral shape; (d) Low flight with a slow attack; (e) Walk and grab prey; (f) The
effects of the quality function (QF), G1, and G2 on the behavior of the AO

σ =

⎛
⎜⎜⎜⎜⎜⎝

Γ(1 + β) × sin
(

πβ

2

)

Γ(
1 + β

2
) × β × 2

⎛
⎜⎝β − 1

2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ (11)

where β = 1.5, x and y that expresses the spiral shape in the search are expressed as

y = r × cos(θ) (12)

x = r × sin(θ) (13)

where

r = r1 + U × D1 (14)

θ = −ω × D1 + θ1 (15)

θ1 = 3 × π

2
(16)

where r1 is a value between 1 and 20, which is used to fix the number of searching cycles; U = 0.00565.
D1 is integer number; and ω = 0.005. The spiral behavior of AO is shown in Fig. 2c.

Step 3: Expanded exploitation (X3)

AO exploits the range where preys appear, and then approaches and attacks it, as shown the
Fig. 1d. This behavior is presented as

X3 (t + 1) = (Xbest (t) − XM (t)) × α − rand + ((UB − LB) × rand + LB) × δ (17)
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where X3 (t + 1) means the solution at the (t+1)th iteration; α and δ are the parameters used to adjust
exploitation (α = δ = 0.1).

Step 4: Narrowed exploitation (X4)

Fig. 1e describes the behavior that AO attacks the prey in the last location, which is presented as

X4 (t + 1) = QF × Xbest (t) − (G1 × X (t) × rand) − G2 × Levy (D) + rand × G1 (18)

where X4 (t + 1) is the solution of the (t+1)th iteration; QF is applied to balance search methods, which
is written by Eq. (19); G1 generated by Eq. (20) denotes various motions that Aquila tracks the target
in the process of exploitation; G2 produced by Eq. (21) denotes the flight slope that Aquila tracks the
target in the process of exploitation; X (t) is the current solution at the tth iteration; Fig. 2f provides
the influences of QF , G1, and G2 on the behavior of the AO.

QF (t) = 2 × rand − 1
t(1−T)2

(19)

G1 = 2 × rand − 1 (20)

G2 = 2 × (1 − t
T

) (21)

Figure 2: The irradiation distribution of the 15 × 15 PV arrays under 10 cases of PSCs

3.2 Discrete Design of Aquila Optimizer
Reconfiguring PV arrays is a problem of discrete optimization. To apply the excellent optimization

performance of AO for solving this problem, a series of discrete designs are performed on AO, as
follows:
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3.2.1 Discretization for Initial Population

Obviously, the method of population initialization shown in Eq. (10) is not suitable for PV
array reconfiguration. Hence, An N matrix is introduced to represent the initial population of OAR
modeling, which can be written as

N = {[C ]1 , [C ]2 , [C ]3 , . . . , [C ]npop} (22)

where C is a 15 × 15 matrix created by Eq. (23) to indicate the initial electrical connection state of PV
arrays. npop is the number of population.

At the process of PV array reconfiguration, each PV array only exchanges with another PV array
in the same column. Thus, the optimization variables should satisfy the following constraints:{

xpq ∈ {1, 2, . . . , 9, A, . . . , F} , p = 1, 2, . . . , 9, A, . . . , F; q = 1, 2, . . . , 9, A, . . . , F
∪F

p=0xpq = {1, 2, . . . , 9, A, . . . , F} , q = 1, 2, . . . , 9, A, . . . , F (23)

where xpq denotes the electrical connection state of PV arrays at the pth row and the qth column. To
satisfy the constraints in Eq. (22), a Matlab function ‘randperm (n)’ is introduced, as follows:{

C q = randperm (15) , q = 1, 2, . . . , 9, A, . . . , F
C = [

C 1, C 2, . . . , C q, . . . , C 9, CA, . . . , CF

] (24)

where ‘randperm (15)’ means to randomly sort 15 data in a column; C q represents the qth column of
the C .

3.2.2 Discretization for Optimization Process

AO switches between exploration and exploitation according to the situation to choose the best
hunting method ingeniously and quickly. To make the optimization method suitable for PV array
reconfiguration, the sequence of solutions optimized by Eqs. (7)–(21) will be chosen to reassign the
electrical connection state of each column of PV arrays, as follows:

spq = rank(xpq, xq) (25)

where xq = [X1, X2, . . . , Xi, . . . , X9, XA, . . . , XF] is the solution vector of arrays at the qth column;
rank

(
xpq, xq

)
denotes the order of xpq among all solutions xq, which is designed in ascending order.

4 Design of Aquila Optimizer Based OAR

Since the physical position of all arrays in TCT configuration is fixed, an OAR model via electrical
switches is introduced to reconfigure the position of arrays. Firstly, a discrete design for AO is
performed for OAR model to obtain the optimal electrical connection state. After that, the physical
position of PV arrays is rearranged via electrical switches in conformity with the obtained electrical
connection state.

4.1 Objective Function
The primary goal of PV power plant is to extract the maximum output power under PSC, and its

objective function is expressed as

f = max P (C) = max (n × ID (C) × VD (C)) (26)

where P(C) is the output power of the testing PV power plant at the Cth case of PSC; n is the number
of sub-systems of the testing PV power plant.
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4.2 Execution Procedure
On the whole, the entire executive procedure of OAR based on AO is provided in Table 1.

Table 1: Executive procedure of OAR based on AO

1: Input the real-time predictive weather conditions;

2: Initialize the parameters and population by Eqs. (22)–(24) of OAR based on AO;
3: Set t = 1;
4: Calculate the objective function f (X (t)) of all the searching individuals by Eqs. (1) and (2)

and Eq. (26);
5: For t = 2: T
6: Update the mean value of the current solution X M(t);
7: Update the x, y,G1,G2, Levy(D), etc.;
8: If t � (2/3) ∗ T then
9: If rand � 0.5 then
10: Update the current solution X 1 using Eqs. (7) and (25);
11: If f (X 1(t + 1)) < f (X (t)) then
12: X (t) = (X 1(t + 1))
13: If f (X 1(t + 1)) < f (X best(t)) then
14: X best(t) = X 1(t + 1)
15: End If
16: End If
17: Else:
18: Update the current solution X 2 using Eqs. (9) and (25);
19: If f (X 2(t + 1)) < f (X (t)) then
20: X (t) = (X 2(t + 1))
21: If f (X 2(t + 1)) < f (X best(t)) then
22: X best(t) = X 2(t + 1)
23: End If
24: End If
25: End If
26: Else:
27: If rand < 0.5 then
28: Update the current solution X 3 using Eqs. (17) and (25);
29: If f (X 3(t + 1)) < f (X (t)) then
30: X (t) = (X 3(t + 1))
31: If f (X 3(t + 1)) < f (X best(t)) then
32: X best(t) = X 3(t + 1)
33: End If
34: End If
35: Else:
36: Update the current solution X 4 using Eqs. (18) and (25);
37: If f (X 4(t + 1)) < f (X (t)) then
38: X (t) = (X 4(t + 1))
39: If f (X 4(t + 1)) < f (X best(t)) then

(Continued)
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Table 1 (continued)

1: Input the real-time predictive weather conditions;

40: X best(t) = X 4(t + 1)
41: End If
42: End If
43: End If
44: End If
45: End For
46: Output the electrical connection state of OAR X best;
47: Re-execute AO from step 1 to step 46 at the next case of shadow.

5 Case Studies
5.1 Operating Conditions Setting

In this work, AO is applied to a test PV power station under 10 cases of PSCs (see Fig. 2) to
validate its application reliability. PV power station is composed of 20 identical subsystems while each
subsystem is formed by 15 × 15 TCT arrays. Note that the 10 cases of PSCs are based on the simulation
of shading effects caused by clouds, trees, buildings, dust accumulation, bird droppings, and snow, in
which different color blocks represent different irradiation intensity, i.e., white block is 1000 W/m2,
pale-yellow block is 900 W/m2, light blue block is 800 W/m2 and others shown in Fig. 2. Table 2 gives
the electrical characteristics of each PV array. Moreover, five algorithms (e.g., GA [22], PSO [23], ACO
[24], GOA [25], and BOA [26]) are used for performance comparison with that of AO. T and N of all
algorithms are unified to be 200 and 50, respectively to guarantee a fair and reliable comparison.
Because the proposed method is based on meta-heuristic algorithm, each run will inevitably produce
different results. To avoid this drawback to the greatest extent and obtain the global optimal solution,
30 runs of AO are undertaken on Matlab/Simulink 2017b using a personal computer with an Intel(R)
Core (TM) i5-8400 CPU @ 2.80 GHz and 12 GB RAM. The applied solver is ode23 with the variable-
step size of 10-3 s.

Table 2: Electrical characteristics of each PV array

Parameter Value

Number of strings in parallel 10
Number of modules in series each string 5
Number of cells each module 60
Maximum output power each module 224.98 W
Open circuit voltage each module 36.24 V
Short-circuit current each module 8.04 A
Voltage of maximum power point each module 30.24 V
Current of maximum power point each module 7.44 A
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5.2 Result Analysis
Table 3 provides the optimization results of OAR under 10 cases of PSCs in 30 runs of six

algorithms. Here, Pmax and Pmean are the maximum and mean values of output power in 30 independent
runs. From Table 3, it can be seen that AO acquires the optimal Pmax and Pmean (in bold). In addition,
three evaluation indices (FF, ΔPMMPL and η) are introduced to further validate the performance of
AO. The calculation of the three indicators depends on the total Pmean of 10 cases of PSCs. One can see
clearly that AO can get the largest FF and η as well as the smallest ΔPMMPL compared with other five
algorithms. Particularly, FF and η obtained by AO are 1.67% and 1.68% higher than those of BOA,
respectively, while ΔPMMPL has a 4.34% decrease.

Table 3: Optimization results of OAR under 10 cases of PSCs in 30 runs of six algorithms

Case GA PSO ACO GOA BOA AO

Pmax

(MW)
Pmean

(MW)
Pmax

(MW)
Pmean

(MW)
Pmax

(MW)
Pmean

(MW)
Pmax

(MW)
Pmean

(MW)
Pmax

(MW)
Pmean

(MW)
Pmax

(MW)
Pmean

(MW)

1 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56 45.56
2 35.10 34.65 35.43 34.92 35.44 35.00 35.43 34.82 35.10 34.63 35.77 35.03
3 38.13 37.21 38.13 37.67 38.13 37.59 37.80 37.65 38.13 37.19 38.47 37.73
4 37.12 36.68 37.12 36.40 37.12 36.78 36.78 36.41 37.12 36.38 37.12 36.82
5 39.48 38.53 39.48 39.45 39.48 39.48 39.82 39.42 39.48 38.51 39.82 39.48
6 39.82 39.41 39.82 39.50 40.16 39.61 39.82 39.47 39.82 39.39 40.16 39.72
7 34.42 32.88 34.42 33.23 34.42 33.88 34.42 33.34 34.42 32.85 35.10 34.00
8 36.78 35.70 36.78 36.22 36.78 36.30 37.12 36.26 36.78 35.65 37.12 36.30
9 26.66 25.62 26.66 26.38 26.66 26.54 26.66 26.38 26.66 25.57 26.66 26.57
10 36.45 35.33 36.45 35.75 36.79 35.84 36.45 35.84 36.45 35.31 36.79 35.87

FF (Total) 0.5515 0.5569 0.5592 0.5570 0.5507 0.5599

MMloss
(Total)
(MW)

144.635 141.125 139.625 141.055 145.165 139.125

η% 71.43 72.12 72.42 72.13 71.32 72.52

The optimal solution of the 15 × 15 PV arrays reconfigured by AO is provided in Fig. 3, where
concentrated shadows of all PV arrays in Fig. 2 are re-distributed to different rows. It dramatically
increases the output power of PV plants. Neglecting the voltage drop of bypass diode, the maximum
output power obtained by AO under the 4th case of PSC is 28.08% higher than that without
optimization, as described in Fig. 4. Furthermore, the number of power peaks in the P-V curve can
be significantly reduced by using AO. Fig. 5 gives the convergence result of the AO algorithm for
15 x 15 PV arrays at the 4th case of PSC. It can be seen that AO can quickly converge to a high-quality
optimal solution.
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Figure 3: Optimal solution of the 15 × 15 PV arrays reconfigured by AO with 10 cases of PSCs

(a) (b)

Figure 4: Comparison result of the sub-system acquired by without optimization and AO at the 4th

case of PSC. (a) I-V curves, and (b) P-V curves

Figure 5: The convergence diagram of the AO for 15 × 15 PV arrays at the 4th case of PSC
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6 Conclusions

An AO based OAR is proposed for real-time maximum power extraction under PSC of PV arrays
in this work, which contributions are drawn as follows:

(1) AO contains a series of discrete operations during optimization to solve the discrete problem of
PV array reconfiguration, which owns great potential to apply in other complex discrete optimization
problems.

(2) This work comprehensively considers the impact of PSC caused by clouds, trees, buildings,
dust accumulation, bird droppings, and snow for PV array and simulates the 10 cases of PSCs based
on this impact to validate the application reliability of AO under various PSCs.

(3) A series of experiments based on 10 cases of PSCs are designed to validate the optimization
performance of AO compared against five well-known algorithms (e.g., GA, PSO, ACO, GOA, and
BOA). Simulation results indicate that the mismatched power loss obtained by AO is the smallest,
which can be decreased by 4.34% against BOA. Furthermore, it can be seen that the number of multiple
peaks caused by the various PSCs can be significantly reduced by AO.

Future studies will focus on the following aspects:

(1) Apply the proposed AO based OAR to larger-scale PV arrays.

(2) Apply discrete AO to solve other discrete optimization problems.
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