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ABSTRACT

In order to solve the failure of electricity anti-stealing detection device triggered by the noise mixed in high-
frequency electricity stealing signals, a denoising method based on variational mode decomposition (VMD) and
wavelet threshold denoising (WTD) was applied to extract the effective high-frequency electricity stealing signals.
First, the signal polluted by noise was pre-decomposed using the VMD algorithm, the instantaneous frequency
means of each pre-decomposed components was analyzed, so as to determine the optimal K value. The optimal
K value was used to decompose the polluted signal into K intrinsic mode components, and the sensitive mode
components were determined through the cross-correlation function. Next, each sensitive mode was reconstructed.
Finally, the reconstructed signal denoised using the wavelet threshold to obtain the denoised signal. The simulation
analysis and experimental results show that the proposed method is superior to the traditional VMD method, FFT
method and EMD method, as it can effectively eliminate the noise and enhance the reliability of high-frequency
electricity stealing signal detection.
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1 Introduction

The high-frequency electricity anti-stealing technology has been widely applied to the electricity
anti-stealing field. Many lawbreakers generate high-frequency electromagnetic interference using
equipment and damage the normal operation of electric meters via electromagnetic interference [1].
With the popularization of intelligent electric meters, the precision electronic elements in the meter
box are more susceptible to the electromagnetic interference. Because this technology has strong
concealment and the interference cannot be blocked by traditional meter boxes, it increases the
difficulty of in the electricity anti-stealing work. At present, related departments make efforts to
identify the abnormalities in the electricity use through the Machine learning or big data prediction
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[2–4], personnel are then assigned for the field verification, but this method fails to directly distinguish
whether such abnormality is generated by reduction in load of users or electricity stealing behavior.
The remote control cannot be prevented by installing camera and IR heat-sensing devices. The
high-frequency electricity stealing signal can be attenuated or shielded well by strengthening the
shielding and protecting the elements. However, the electricity stealing behavior cannot be tracked
once happening. In order to more effectively strike this electricity stealing behavior, detecting the
high-frequency electricity stealing interference signal will be of great significance [5,6]. Given this,
the method of detecting the electricity stealing signal with electricity anti-stealing devices has been
proposed, which can effectively and directly discriminate the electricity stealing behavior and provide
a basis for tracing such behavior.

Electricity stealing interference signal is usually concealed in environmental noise, which greatly
impacts the detection accuracy. In order to facilitate the electricity anti-stealing device to accurately
identify the electricity stealing signal, the acquired signal should be denoised. The commonly used
denoising methods include singular value decomposition (SVD) [7–9], wavelet transform (WT) [10,11]
algorithm, fast Fourier transform (FFT) [12,13] and empirical mode decomposition (EMD) [14],
among which the SVD algorithm is capable of effectively extracting the main components, but it
is difficult to determine its effective rank order and dimension of the matrix. The WT algorithm is
featured by favorable time-frequency characteristic, de-correlation and multi-resolution analysis, but
the noises with approximate frequencies cannot be effectively eliminated, and the denoising effect is
affected by the wavelet basis function. The FFT algorithm is simple and convenient, but it is prone to
the spectrum leakage problem. Although the EMD method does not need to select the basis function
for decomposition, it can be easily stuck in the mode aliasing problem, thus influencing the denoising
accuracy. The variational mode decomposition (VMD) [15], which was proposed by Konstantin
Dragomiretskiy in 2014, is a complete non-recursive signal processing method which decomposes a
signal into a series of mode components. These mode components, which have their respective center
frequencies, are effectively separated from each other. In comparison with algorithms like EMD, the
VMD is of better robustness and overcomes the mode aliasing problem, and it is suitable for processing
the nonlinear and non-stationary signals [16]. The wavelet threshold algorithm separates the noise and
signal according to the threshold of wavelet coefficients, which can suppress noise strongly [17].

Given that the electricity anti-stealing device fails to effectively operate due to the noise interfer-
ence, a method of high frequency electricity stealing signal denoising that combines the VMD and
wavelet threshold was used to solve the problem in this paper. First, the K value was determined based
on the instantaneous frequency mean, followed by the VMD decomposition. Second, the sensitive
modes were confirmed through the threshold of cross-correlation coefficient and reconstructed to
perform the wavelet threshold denoising, thus solving the problem that the preset mode number
(K value) should be accurately determined [18,19]. The simulation and experimental results showed
that this method is superior to the traditional VMD method, FFT method and EMD method.

2 Basic Principles
2.1 Principle of VMD

The EMD method obtains multiple fixed mode functions through the recursive loop iterations.
Differently, the VMD method decomposes a signal into multiple modes around their respective center
frequencies by constructing and solving a constrained variational model, and transforms the mode
estimation problem into a variational problem.
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2.1.1 Construct a Variational Model

Variational model seeks for K bandwidth-limited modes with center frequencies on the precon-
dition that the original signal is the sum of modes, aiming to reach the sum of the bandwidth of each
mode is minimized.

Calculate each intrinsic mode component uk(t) using Hilbert transform and solve its single-sided
spectrum:(

δ(t) + j
πt

)
∗ uk(t) (1)

Estimate the center frequency of each mode by the mixing index e−jωkt, and regulate the frequency
spectrum of each mode component to the corresponding baseband on this basis.

Calculate the L2 norm for the gradient of demodulated signal, and estimate the bandwidth of
mode component.

The constrained variational model obtained through the above steps is as below:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
{uk},{ωk}

{
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]
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}
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(2)

where f is the original input signal; δ(t) is the Dirac distribution function; {uk(t)} is the set of mode
components; {ω(t)} is the set of center frequencies of mode components.

2.1.2 Solve the Variational Model

The precision and fidelity of mode reconstruction signal can be ensured by introducing Lagrange
multiplication operator λ(t) and quadratic penalty factor α, and the problem is transformed into an
unconstrained variational problem. The extended Lagrange expression can be acquired by Lagrange
multiplication operator and quadratic penalty factor as follows:
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〉

(3)

The formula (3) is solved based on the alternating direction method of multipliers. The saddle
point of the expression is solved by the alternating iteration of ukn+1, ωn+1 and λn+1, so as to solve the
minimum value of formula (2), where:

ûn+1
k (ω) =

f̂ (ω) − ∑
i �=k ûi(ω) + λ̂(ω)

2
1 + 2α(ω − ωk)

2 (4)



1456 EE, 2022, vol.119, no.4

ωk
n+1 =

∫ ∞
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k (ω)|2
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(5)

λ̂n+1(ω) = λ̂n(ω) + τ(f̂ (ω) −
K∑

k=1

ûn+1
k (ω)) (6)

where:τ is the time step of dual ascent method. The formulas (4)–(6) are solved circularly, and the
discriminant accuracy ε is given.

K∑
k=1

||ûn+1
k − ûn

k||2
2

/
||ûn

k||2
2 < ε (7)

The iteration ends when the formula (7) is satisfied, and K IMF components can be obtained
through Fourier transform.

2.2 Principle of Wavelet Threshold
The wavelet threshold method proposed by Donoho is an effective denoising method based on

WT, with the main process as follows [20]:

Select the proper number of decomposition layers and wavelet basis function, and perform the
wavelet decomposition of noise polluted signal.

Process the decomposed wavelet coefficients by selecting an appropriate threshold function, set
the wavelet coefficients of noise to zero through the threshold, and conduct the denoising operation
and reserve the characteristic signal.

Process the wavelet coefficients which after threshold processing using the wavelet inverse trans-
form, and obtain the final denoised signal.

The parameter selection is the most important in the wavelet threshold. The wavelet transform
and wavelet inverse transform is the transform under the wavelet basis function, and their expressions
are respectively as follows:

WTf (a, τ) = [f (t), ψa,τ (t)]

= 1√
a

∫
R

f (t) · ψ ∗(
t − τ

a
)dt

(8)

f (t) = 1
cφ

∫ +∞

0

da
a2

∫ +∞

−∞
WT(u, τ)

1√
a
ψ(

t − τ

a
)dt (9)

where a is the expansion and contraction quantity; τ is the translation quantity; ψ(t) is the wavelet
basis function; WTf (a, τ) is the wavelet coefficient. The common threshold functions include hard
threshold and soft threshold.

When it comes to the hard threshold, the wavelet coefficients smaller than the threshold are set to
zero, while that larger than the threshold is reserved, and the expressed is as below:

Ŵj,k =
{

Wj,k |Wj,k| ≥ Thr
0 |Wj,k| < Thr

(10)
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As for the soft threshold, the wavelet coefficients smaller than the threshold are set to zero, while
the difference value between the threshold and the wavelet coefficients larger than the threshold are
solved, and the expression is as below:

Ŵj,k =
{

sgn(Wj,k) ∗ (|Wj,k| − Thr) |Wj,k| ≥ Thr
0 |Wj,k| < Thr (11)

where Thr is the classical threshold, which is expressed as follows:

Thr = ε
√

2 lg N (12)

3 VMD-WT Combined Denoising Method
3.1 Selection of K Value Based on Instantaneous Frequency Mean

It is crucial to determine the K value in the VMD decomposition. If the K value is too small, the
mode components may be under-decomposed, but if it is too large, the mode components will be over-
decomposed, accompanied by the discontinuous instantaneous frequency of IMF, both of which will
impact the accurate separation of noise modes. Most of the traditional VMD algorithms determine
the K value through the center frequency method [21], which, however, is of great subjectivity and
may generate different results specific to different problems. Given this, a selection method of K value
based on the instantaneous frequency mean was proposed. First, K = 2 was set to perform the pre-
decomposition of noised signal, then the K value was gradually enlarged to acquire different IMF
component groups. Next, the Hilbert transform of IMF components in each group was conducted,
and the mean value of their instantaneous frequency was solved. In the end, the mean values of
instantaneous frequency corresponding to different K values were compared. When an instantaneous
frequency mean was obviously reduced, the corresponding K value was a critical value, and K − 1 was
chosen as the decomposition number.

The instantaneous frequency mean was calculated by the following steps:

1. Conduct the Hilbert transform of signal X(t):

Y(t) = H[X(t)] = 1
π

P.V.
∫ +∞

−∞

X(τ )

τ − t
dτ (13)

where P.V. is Cauchy’s principal value.

2. Combine X(t) and Y(t) to form a sequence Z(t) of complex numbers:

Z(t) = X(t) + jY(t) = a(t)ejθ(t) (14)

The calculation formula of instantaneous frequency is as below:

f (t) = 1
2π

dθ(t)
dt

(15)

The instantaneous frequency mean is calculated through the following formula:

RESF = f (t) (16)

3.2 Determination of Sensitive Modes Based on Cross-Correlation Coefficient
When IMF components are acquired through the decomposition, the signal features can be

effectively extracted only by determining and reconstructing the effective sensitive components. In
this study, the sensitive components were screened out using the cross-correlation coefficients. To be
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more specific, the cross-correlation coefficients between each IMF component and noised signal were
solved firstly, a threshold was then calculated through the maximum cross-correlation coefficient, and
the IMF components greater than this threshold were regarded as the sensitive components. The cross-
correlation coefficient and threshold are expressed respectively as follows [19]:

ρxy =

N∑
n=1

[(xn − x̄)(yn − ȳ)]√
[

N∑
n=1

(xn − x̄)
2

N∑
n=1

(yn − ȳ)
2]

(17)

μ = max(ρxy)

10 × max(ρxy) − 3
(18)

where xn and yn are the IMF components and noised signal, respectively; x̄ and ȳ are the mean
values of IMF components and noised signal respectively; max (ρxy) is the maximum cross-correlation
coefficient.

3.3 Algorithm Steps

Acquire the noised
electricity stealing 

signal

Initialize the 
decomposition
mode number

Enlarge the K value 
successively for the loop
VMD decomposition of

noised signal

Solve the instantaneous 
frequency mean

corresponding to each K
value

Determine the final 
decomposition mode 
number through the

comparison

VMD
decomposition using

the final mode number

Calculate the cross-
correlation coefficients 

between each IMF 
component and noised signal

Determine the sensitive
mode components through

the threshold

Reconstruct the
sensitive mode 

components

Eliminate the 
residual noise via

the wavelet
threshold

4 Simulation Analysis

According to data collection, high-frequency electricity stealing signal is usually manifested by
the high-frequency impulse, so the formula (19) can be used to simulate.

f (t) = A0(e−1.3t − e−2.2t) ∗ sin(2πf0t) (19)

where A0 = 0.27 mV and f0 = 2 MHz.

The electricity stealing signal is as shown in Fig. 1a.

To simulate the noisy environment, five narrow-band noises and one Gaussian white noise (6 dB)
were added into the original signal, where the expression of narrow-band noise is as follows:

fi(t) = Ai sin(2πfit) (20)

where Ai is taken as 0.06, 0.08, 0.06, 0.1 and 0.08 mV; fi is taken as 2.5, 4.8, 6.2, 8.9 and 11 MHz. The
final noised signal is displayed in Fig. 1b.

The noised signal was decomposed via VMD under K value of 2–10. Establish a coordinate axis,
the y-axis is the instantaneous frequency mean, and the x-axis is the number of modal sequences, the
change curves of instantaneous frequency mean were solved for each IMF component, as shown in
Fig. 2. It could be seen that the instantaneous frequency mean was obviously reduced under K = 3,
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so the optimal decomposition mode number should be taken as 2. The VMD decomposition result of
noise polluted signal under K = 2 is as shown in Fig. 3.

(a)                                                                                                  (b)

Figure 1: (a) is electricity stealing signal, (b) is noise polluted signal
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Figure 2: Variation diagram of instantaneous mean frequency

If the value of K is too large, that is, the time of decomposition is too many, the instantaneous fre-
quency of the modal component will appear very serious jump phenomenon. When K is appropriate,
the instantaneous frequency change of the modal component is continuous and slow. Therefore, the
instantaneous frequency mean is quantified. When the quotient of the absolute value of the slopes of
two adjacent segments is greater than a threshold for the first time, and the instantaneous frequency
mean shows a downward trend, the appropriate K can be judged. Because the change of this slope is
very obvious, the threshold can be selected according to the actual situation, and the article is set to
2.5. According to the decomposition result, when K = 3, the quotient of the slopes of two adjacent
segments is 10.753 > 2.5, so choose K is selected as 2.
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VMD decomposition corresponding spectrum

Figure 3: VMD decomposition result and its corresponding spectrum

According to the formula (18), the threshold could be calculated as 0.1441. Calculated through
the formula (17), the cross-correlation coefficient between IMF1 and electricity stealing signal was
0.9810 and that between IMF2 and electricity stealing signal was 0.001, so IMF1 was the sensitive
component. The denoising results through the VMD reconstruction were presented in Fig. 4. The
wavelet decomposition number was selected as 4, soft threshold function was chosen as the threshold
function, the wavelet basis function was ‘db8’, and the denoised signal obtained by the wavelet
threshold processing of the reconstructed signal was as shown in Fig. 5, FFT denoising results and
EMD denoising results are shown in Figs. 6 and 7.

Figure 4: VMD denoising result Figure 5: VMD + WTD denoising result



EE, 2022, vol.119, no.4 1461

As shown in Figs. 4–7, the four denoising methods could effectively eliminate the noise, and the
high-frequency electricity stealing signal was extracted for the discrimination. It could be known
through a comparison that FFT method has relatively serious distortion, large noise still remains in
the EMD, and the VMD denoising effect was further enhanced after the wavelet threshold was added,
the residual noise was eliminated, thus improving the accuracy of electricity anti-stealing device to a
greater extent.

Figure 6: FFT denoising result Figure 7: EMD denoising result

Three evaluation indexes—signal to noise ratio (SNR) [22], root-mean-square error (RMSE)
[23] and cross-correlation coefficient aforementioned [24]—were introduced to better evaluate the
proposed method, which was compared with the traditional VMD method. The results are listed in
Table 1.

Table 1: Comparison of denoising effects

Denoising method SNR/DB RMSE Cross-correlation coefficient/%

Traditional VMD 14.1437 0.0638 0.9810
The proposed method 17.5150 0.0094 0.9901
EMD 8.3945 0.1181 0.9332
FFT 14.8985 0.0154 0.9642

From the above table, both SNR and cross-correlation coefficient of the proposed method are the
highest, with a smallest RMSE, noise suppression effect is better than the other three methods, and
the signal characteristics are more complete.

5 Experimental Verification

In order to verify the effectiveness and applicability of the proposed electricity anti-stealing
denoising method in reality, an electricity anti-stealing device detection system (Fig. 8) was established
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in the laboratory using electromagnet and electromagnetic transducer. First, electric signals with
different frequencies were emitted by the control signal regulator, driving the electromagnet to generate
a high-frequency electricity stealing electromagnetic field, and then a moderate noise was added
to simulate the realistic electricity stealing environment. Second, the electromagnetic signal was
transformed into electric signal by the electromagnetic transducer, and the noise-containing electricity
stealing signal was acquired by the signal acquisition circuit, as shown in Fig. 9.

Signal 
acquisition 

panel
Signal generation 

panel

Electromagnet

Magnetic field 
sensor

Serial port 
screen

Figure 8: Experimental system

Figure 9: Experimental measurement signal

The noise-containing electricity stealing signal was denoised by the proposed method. First, the
signal was decomposed via VMD under different K values (2∼10). From K = 2, 9 groups of VMD
decomposition modes could be acquired with the increase in the K value, and the instantaneous
frequency mean of each mode in the VMD decomposition mode group corresponding to each K
value was solved, as shown in Fig. 10. It could be observed that the instantaneous frequency mean
was obviously reduced under K = 3, at the same time, when K = 3, the absolute value of the quotient
of the slopes of two adjacent segments is 6.677 > 2.5, so K = 2 should be selected as the decomposition
mode number.

The VMD decomposition was performed under K = 2. The IMF components and their corre-
sponding frequency spectra are as shown in Fig. 11. The cross-correlation coefficients of the two IMF
components with the electricity stealing signal were 0.9095 and 0.0053, respectively, the threshold of
cross-correlation coefficient was 0.1492, so IMF1 was the sensitive component as the VMD denoising
result. The wavelet threshold processing of this component was implemented under the wavelet
decomposition number of 6, the threshold function was soft threshold function, and the wavelet basis
function was ‘db8’. The traditional VMD denoising results were shown in Fig. 12, the VMD + WTD
denoising results were as shown in Fig. 13, FFT denoising results and EMD denoising results were
shown in Figs. 14 and 15.
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Figure 10: Variation diagram of experimental instantaneous mean frequency

VMD decomposition corresponding spectrum

Figure 11: VMD decomposition result and its corresponding spectrum

As shown in Figs. 12–15, the denoising effect of is better than other three methods. It could
eliminate the residual burrs, make the waveform smoother and no distortion, so that the electricity
anti-stealing device would not be stuck in malfunction, effectively eliminate the noise while reserving
relatively complete electricity stealing signals, and improve the accuracy of the electricity anti-stealing
device in identifying the electricity stealing signal to a greater extent.

As shown in Table 2, the FFT threshold method and the EMD method have good SNR, but the
RMSE is large, the cross-correlation coefficient is not high, and the waveform is distorted, the two
methods effect is not good. Compared with the other three methods, the method in this paper has
a higher SNR, a smaller RMSE, and the cross-correlation coefficient closer to 1. On the whole, the
method in this paper has better noise suppression effect and better performance.
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Figure 12: VMD denoising results Figure 13: VMD + WTD denoising results

Figure 14: FFT denoising results Figure 15: EMD denoising results

Table 2: Comparison of denoising effects

Denoising method SNR/DB RMSE Cross-correlation coefficient/%

VMD + WTD 3.9825 0.0272 0.8447
VMD 3.0917 0.7288 0.8259
EMD 3.2797 0.2410 0.8243
FFT 3.3277 0.3781 0.7587

6 Discussion

In this study, an electricity stealing signal denoising method that integrated the VMD with the
wavelet threshold was applied to the anti-stealing device eliminate narrow-band periodic noise and
white noise. The instantaneous frequency mean method, which does not need to solve the difference
value between adjacent center frequencies, reduces the calculation error compared with the center
frequency method. Moreover, it can realize the adaptive determination of K value. The VMD method
is utilized to perform the adaptive filtering of white noise and separate the narrow-band periodic noise.
The wavelet threshold method is combined to eliminate the residual noise, thus inhibiting the noise.
Both simulation and experimental results show that compared with the traditional VMD method, FFT
method and EMD method, the proposed method has higher SNR and correlation coefficient, smaller
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RMSE and well reserved features of electricity stealing signal. Furthermore, this method is able to
effectively eliminate the noise in the electricity anti-stealing detection, extract the effective information
in the electricity stealing signal, so as to improve the detection reliability.
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