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ABSTRACT

In the marine electric power system, the marine generators will be disturbed by the large change of loads or the
fault of the power system. The marine generators usually installed power system stabilizers to damp power
system oscillations through the excitation control. This paper proposes a novel method to obtain optimal
parameter values for Power System Stabilizer (PSS) to suppress low-frequency oscillations in the marine
electric power system. In this paper, a newly developed immune clone selection algorithm was improved from
the three aspects of the adaptive incentive degree, vaccination, and adaptive mutation strategies. Firstly, the
typical PSS implementation type of leader-lag structure was adopted and the objective function was set in
the optimization process. The performance of PSS tuned by improved immune clone selection algorithm
was compared with PSS tuned by basic immune clone selection algorithm (ICSA) under various operating
conditions and disturbances. Then, an improved immune clone selection algorithm (IICSA) optimization
technique was implemented on two test systems for test purposes. Based on the simulations, it is found
that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone
selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal
parameters of the power system stabilizers. Moreover, the proposed approach improves the stability and
dynamic performance under various loads conditions and disturbances of the marine electric power system.

KEYWORDS
Marine electric power system; excitation system; immune clone selection algorithm; low frequency oscilla-
tions; power system stability

Nomenclature

�δ Rotor angle deviation
�ω Rotor speed deviation
�E ′

q Quadratic axis transient potential deviation
�Efd Excitation voltage deviation
δ Rotor angle
ω Rotor speed
E ′

q Quadratic axis transient potential
Efd Excitation voltage
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M Inertia coefficient
D Damping coefficient
ω0 Synchronous speed
T ′

d0 Direct axis open-circuit time constant
Tm Mechanical torque
KA Gain of AVR
TA Time constant of AVR
U Output signal of the PSS
K1−K6 Constants of the linearized model of synchronous machine
K Gain of PSS
Tw Time constant of washout filter
T1−T4 PSS’s lead–lag time constants
ω(t) Speed of the generator
ω0 Reference speed
Vt Terminal voltage
Vref Reference voltage
VPSS Stabilizers’ output

V max
PSS , V min

PSS PSS’s output limits

ITAE Integral of time-absolute error
N Population size
k Encoding dimension of the antibody
θ Similarity threshold
λ Affinity weight coefficient
T Current iteration number
Tmax Maximum iteration number
S′ Total amount of antibody after cloning
M Number of antibodies to be cloned
Y Antibody gene before mutation
Y ′ Antibody gene after mutation
xd Direct axis reactance of the generator
x′

d Direct axis transient reactance of the generator
x′′

d Direct axis sub transient reactance of the generator
xq Quadratic axis reactance of the generator
x′′

q Quadratic sub axis reactance of the generator
x1 Direct axis leakage reactance of stator winding
T ′

qo Direct axis open-circuit time constant
T ′

d Excitation winding time constant of generator suddenly short circuit
T ′′

d Damping winding time constant of generator suddenly short circuit

1 Introduction

Due to the bad marine environment and the change of loads, the operation stability of the marine
electric power system is affected. The marine generator is prone to produce low-frequency oscillations,
which will affect the stability and performance of the marine electric power system.

Power system stabilizers are commonly used to improve the stability of marine electric power
systems. By introducing a power system stabilizer to increase damping in the excitation control system
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of the marine generator, the dilemma of insufficient damping of the marine electric power system
can be solved and the low-frequency oscillations can be suppressed [1]. The stable operation of diesel
generators in marine electric power systems greatly affects the stable operation. This paper studies the
excitation control system of marine generators that are set in marine electric power system and tunes
the power system stabilizer to ensure the continuous power supply and navigation safety of the marine
electric power system [2].

In reference [3], the root locus method is employed to tune the traditional power system stabilizer.
However, these methods also have some defects. For example, the calculation results fall into optimal
results and the full-dimensional equation of state is difficult to obtain. Many intelligent optimization
algorithms with high global optimization ability and great adaptability have been used in PSS design.
In reference [4], the genetic algorithm is presented for tuning power system stabilizers, it shows
good performance for large and small disturbances in the single-machine infinite system, with good
convergence and less calculation time. But it always tends to local optimal results. In [5], a bat algorithm
is employed to achieve the optimal PSS parameters in the power system, but the results of the algorithm
tend to be local optimal results. Reference [6] presents the gray wolf optimization algorithm for the
coordinating of the power system stabilizer, but the ability to find the global optimal solution is
not good. In reference [7], the annealing algorithm is used for the optimization of power system
stabilizers parameters. The algorithm does not depend on the initial value and has a high searching
ability, but it is easily affected by the number of iterations, temperature, and other parameters. In
reference [8], a modified Nyquist diagram is used to design power system stabilizers. Reference [9]
proposes a double-objective optimization function to adjust the PSS for different input signals. In
reference [10], the authors propose an NSGA-II genetic algorithm to tune the parameters of the power
system stabilizers controllers for a determined point of operation with a renewable energy source to
increase and guarantee the damping of the system. In reference [11], a firefly algorithm is presented
for tuning the power system stabilizers. In reference [12], the Hyper-Spherical Search (HSS) algorithm
is presented for tuning the power system stabilizers. In reference [13], a backtracking search algorithm
(BSA) is employed to achieve the optimal values of the power system stabilizers in a multi-machine
power system. Reference [14] proposes a novel bat algorithm (NBA) to optimize the parameters of the
power system stabilizers to minimize the low-frequency electromechanics oscillations. In reference [15],
the authors propose a model reference adaptive system, and the system is better than the conventional
power system stabilizer. Reference [16] presents the firefly algorithm to improve the small-signal
stability under renewable-energy-resource integration. In reference [17], a parallel genetic algorithm is
proposed to tune the power system stabilizers to achieve both dynamic responses encompassing several
critical operating conditions to reduce high computational efforts. In reference [18], the power system
stabilizer parameters are optimized based on both the amplitude-frequency and the phase-frequency
properties. In reference [19], the authors propose a Particle Swarm Optimization (PSO) to tune the
parameters for power system stabilizers for relatively small systems. In reference [20], the PSS4B
has been used as a static VAR compensator to damp oscillations in multi-machine power systems.
Reference [21] presents a comprehensive learning bat algorithm (CLBAT) to adjust the parameters of
power system stabilizers. In reference [22] a newly developed genetic algorithm is presented for tuning
the PSSs parameters under various loading conditions to dampen the low-frequency oscillations. In
reference [23], a customized differential evolution algorithm is employed to design probabilistically-
robust wide-area power system stabilizers (WPSSs) for damping the low-frequency oscillations in
power systems with wind power. In reference [24], an improved active set algorithm is presented to tune
the double input power system stabilizers based on phase-frequency characteristics. In reference [25],
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the switching power system stabilizer (SPSS) is employed to improve the stability of multi-machine
power systems.

The main contribution of this paper is as follows:

1. Use of an improved immune clone selection algorithm to coordinate the power system
stabilizers.

2. Development of an improved immune clone selection algorithm from three aspects: adaptive
incentive degree, vaccination, and adaptive mutation strategies.

3. Comparison of the improved immune clone selection algorithm with other optimization
techniques in tuning the parameters of power system stabilizers.

4. It analyzes the efficiency of the PSS controllers when the marine electric power system is under
various operating conditions and disturbances.

The organization of the research is as follows: The modeling of the marine diesel generator and
the structure of the PSS are introduced in Section 2. The objective function is described in Section 3.
The improved immune clone selection algorithm for tuning PSS parameters is presented in Section 4.
The simulation studies and results are discussed in Section 5. The conclusions and future studies are
presented in Section 6.

2 System Modeling
2.1 Marine Diesel Generator Model

For diesel generator, the mathematical model is shown in Eq. (1):

�
•

X = A · �X + B · �U (1)

where, X is the vector of the state variables, A is the state space matrix, B is vector the input matrix, U
is the PSS output signal [26]. The Heffron-Philips model is commonly used in damping control design.
Herron-Philips model of synchronous generator is shown in Fig. 1.

Figure 1: The Herron-Philips model of synchronous generator [27]

In Eq. (2), the diesel generator in a marine electric power system is studied by using a third-order
dynamic equation [26].

�X = [�δ, �ω, �E ′
q, �Efd]T (2)

where, �δ is rotor angle deviation, �ω is rotor speed deviation, �E′
q is q-axis transient potential

deviation, �Efd is excitation voltage deviation.
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Herron-Philips’s linearization model [28] of synchronous generator is shown in Eq. (3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
•
ω = 1

M
(−D�ω − K1�δ − K2�E ′

q) + 1
M

�Tm

�
•
δ = ω0�ω

�
•

E ′
q = 1

T ′
d0

(−K4 − 1
K3

�E ′
q + �Efd)

�
•
Efd = 1

TA

(−KAK5�δ − KAK6�E ′
q − �Efd) + KA

TA

�U

(3)

where, δ and ω are rotor angle and speed of marine electric power system respectively; E′
q is the q-

axis transient potential; Efd is the excitation voltage; M and D are inertia coefficient and damping
coefficient of marine electric power system respectively; ω0 is the synchronous speed; T ′

d0 is the open-
circuit time constant of d-axis; Tm is mechanical torque; KA and TA are gain and time constant of
the automatic voltage regulator (AVR) respectively; U is the output signal of the PSS. K1−K6 are
dependent on generator operating conditions.

2.2 Power System Stabilizer Modeling
The marine diesel generator controller is shown in Fig. 2. In the excitation control system of a

marine diesel generator, the terminal voltage of the generator is regulated by the automatic voltage
regulator. The role of PSS is to generate an appropriate torque on the generator rotor, which is used
to improve the dynamic stability of marine diesel generators [29].

Figure 2: Block diagram of AVR and PSS transfer function are the gain and time constants of AVR

The first-order transfer function of AVR [30] is shown in Eq. (4):

AVR(s) = KA

1 + sTA

(4)

where, KA and TA are the gain and time constants of AVR.

The PSS controller adopts two lead-lag transfer functions [31] is shown in Eq. (5):

PSS(s) =K
sTw

1 + sTw

· 1 + sT1

1 + sT2

· 1 + sT3

1 + sT4

(5)

where, K is the gain of stabilizer, Tw is the time constant of washout filter, T1 and T3 are the lead time
variables, T2 and T4 are the lag time variables. As shown in Fig. 2, the purpose of introducing gain K
is to amplify the input signal to K times. �ω is the input signal, and the washout filter makes only
dynamic signal pass through the controller [31]. The time constant [32] of the washout filter and the
lead-lag phase compensation stage are Tw and T2, respectively. In this paper, they are 10, 0.02, and 0.54,
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respectively. Gain K and time constant T1 and T3 are optimized by the IICSA algorithm and K1−K6

are considered to be constant [33].

3 Objective Function

In order to make the output deviation of the marine electric power system smaller and ensure
good dynamic performance and good stability when the low-frequency oscillations occur. The error
performance index ITAE was selected [26]. The error is the absolute value of the synchronous generator
speed error.

fmin =
∫ t

t0

t|ω(t) − ω0|dt (6)

In Eq. (6), ω(t) is the speed of the generator at a time t. The speed of the generator varies according
to the change of loads. ω0 is the reference value of the generator speed. The purpose is to make the
objective function as small as possible.

4 The Improved Immune Clone Selection Algorithm
4.1 Basic Immune Clone Selection Algorithm

The flow of the basic immune clone selection algorithm is as follows:

Step 1: Generate the initial antibody population.

Step 2: The concentration of antibodies is obtained in Eq. (7):

fB(Xi) = 1
1 + F(Xi)

(i = 1, 2, 3, · · ·, N) (7)

where, F(Xi) is the value of the objective function, N is the population size.

In Eq. (8), the affinity index of antibodies is obtained:

fA(Xi, Xj) =
√√√√ K∑

k=1

(Xi,k − Xj,k)
2 (8)

where, Xi,k is the kth dimension of the Xi , Xj,k is the kth dimension of the Xj , k is the encoding dimension
of the antibody. In this paper, the dimension of the antibody is 3.

Antibody concentration index is shown in Eq. (9):

fC(Xi) = 1
N

N∑
j=1

D(Xi, Xj) (9)

where, N is the antibody scale; In Eq. (10), D(Xi, Xj) denotes the similarity between antibodies Xi and
Xj:

D(Xi, Xj) =
{

1, fA(Xi, Xj) < θ

0, fB(Xi, Xj) ≥ θ
(10)

where, θ is the similarity threshold, it is 0.2 in this paper.

Step 3: Judgment of the program termination. If the algorithm obtains the optimal value of power
system stabilizers. Otherwise, the algorithm optimization is continued.
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Step 4: Evaluation of antibody excitation degree. Antibody excitation degree is a comprehensive
evaluation index based on antibody concentration and affinity.

Step 5: Promotion and inhibition of antibodies. Clone proliferation, clone mutation, clone
suppression.

Step 6: Population refresh. Arrange the antibodies in order of their excitation. A part of the
antibodies with low excitation degree in the population was removed. The new antibodies were
randomly generated to supplement and update the original antibody population. To form a new
population, proceed to Step 2.

4.2 Improvements
4.2.1 Adaptive Excitation Degree

If only the evaluation index based on antibody affinity is considered, it is difficult to ensure that
the best solution can be selected. Comprehensive evaluation indexes based on antibody concentration
and affinity were considered to avoid premature maturation and the local optimal solution. In Eq. (11),
the adaptive excitation degree based on the number of iterations was adopted to ensure the selection
of excellent antibodies for cloning and accelerate the convergence rate of the algorithm. To ensure that
the best antibodies in the population are selected [34].

fD(Xi) = λ
fB(Xi)

N∑
i=1

fB(Xi)

+ (1 − λ)
fC(Xi)

N∑
i=1

fC(Xi)

(11)

where, λ is the affinity weight coefficient.

λ = 1 − 0.2T
Tmax

(12)

where, T is the current iteration number, Tmax is the maximum iteration number.

In Eq. (13), the clone scale of antibody can be expressed as:

NC(Xi) = round

⎡
⎢⎢⎣ fD(Xi)

M∑
i=1

fD(Xi)

· S′

⎤
⎥⎥⎦ (13)

where, S′ is the total amount of antibody after cloning, round(·) is the integer operator. M is the number
of antibodies to be cloned.

4.2.2 Vaccination

The lack of antibody gene crossover in the basic ICSA results in insufficient diversity of antibodies
production. The introduction of a vaccination strategy based on the basic ICSA not only preserves
the genes of the superior parent antibody, but also increases the probability of producing a superior
antibody. To ensure that the best antibody in the population is selected. Antibody populations with
high excitation were used as candidate vaccines. Vaccines were selected according to the roulette
method [35]. The steps for selecting vaccines are as follows:
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Step 1: The sum of all antibody excitation degrees in the population can be calculated by Eq. (14):
N∑

i=1

fD(Xi)(i = 1, 2, 3, · · ·, N) (14)

Step 2: The ratio of each antibody’s incentive degree to the sum of the population’s incentive degree
can be calculated by Eq. (15):

Pi = fD(Xi)
N∑

i=1

fD(Xi)

(i = 1, 2, 3, · · ·N) (15)

Step 3: The selection probability of antibody corresponds to the interval on the roulette wheel.

Step 4: Use roulette to select individuals randomly.

The binary loci method [35] was used to inoculate candidate antibodies.

4.2.3 Adaptive Variation

In order to ensure the randomness and diversity of antibodies, adaptive variation in Eq. (16) and
gaussian variation based on antibody affinity in Eq. (17) are adopted to basic ICSA. To ensure that
the algorithm picks the best antibody in the population.

Y ′
N =

{
YN + γ · U(−1, 1) rand ≥ 0.5
YN + γ · N(−1, 1) rand < 0.5 (16)

γ = 1
η

· e−fB (17)

where, Y is the antibody gene before mutation. Y ′ is antibody gene after mutation. N is the population
size. N(0, 1) is a standard normal distribution. The value of η is 1. fB is the antibody affinity. U(−1, 1)

is a random variable with uniform distribution between [−1, 1].

4.3 Optimization Process of PSS Based on Improved Immune Clone Selection Algorithm
The specific flow of the IICSA algorithm is as follows:

Step 1: Generation of the initial antibody population. The initial population was composed of the
antibody memory bank and the general population. The size of the antibody population was 30 and
the number of antibody memory banks accounted for 40% of the population.

Step 2: Calculate the adaptive excitation degree of the antibody. Put the first M antibodies with
the highest excitation into the antibody memory bank. The antibody memory bank is updated.

Step 3: Antibody cloning. The antibody was cloned from the antibody memory bank. The clonal
scale of each antibody was determined according to the excitation degree of the antibody in the
antibody memory bank.

Step 4: Vaccination. Vaccines come from an antibody memory bank. The probability of each
antibody being selected is determined according to the excitation degree of the antibody. Roulette
algorithm was used to select vaccines. Vaccination was conducted by multi-point cross vaccination.

Step 5: Clone variation. For inoculated antibodies, adaptive variation and gaussian variation
based on antibody affinity were used.

Step 6: Clone suppression. The excitation degree of each antibody was calculated after the
mutation. The first M antibodies with the highest excitation degree were re-selected and put into
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the antibody memory bank to realize the update of the antibody memory bank. After the update
of antibody memory, all the remaining antibodies were eliminated.

Step 7: Population regeneration. At the end of each iteration of the algorithm, the population
needs to be updated. The updated population still consists of the antibody memory bank and the
general population. The maximum number of iterations of the algorithm is 100.

Step 8: Judgment of termination conditions. When the termination conditions are satisfied, output
the optimal parameters of the marine electric power system stabilizer. Otherwise, go to Step 2.

In Fig. 3, it is a flow chart of PSS parameters optimization strategy. The power system stabilizer
of marine electric power system simulation model optimized by IICSA. The optimal PSS parameters
are obtained when the iteration condition is satisfied.

Y

N

Generate initial population

Run the system simulation model

Generate system simulation data

Is the iteration condition 
satisfied?

IICSA algorithm optimization

Update PSS parameters

End

Start

Calculate the objective Function

Determine the optimal PSS parameters

Read power system data

T=T+1

Figure 3: Flow chart of PSS parameter optimization strategy

5 Simulation Results and Discussion
5.1 Convergence Characteristics of Different Algorithms in Finding the Optimal Design of PSS
5.1.1 Convergence Characteristics of ICSA and IICSA in Finding the Optimal Design of PSS

The objective function evolution with ICSA based PSS and IICSA based PSS as a function of
generation is shown in Fig. 4. In Fig. 4a, we find the final value of the objective function for ICSA is
0.1528 from the 56 iterations. In Fig. 4b, we notice that the final value of the objective function for
IICSA is 0.1496 from the 21 iterations. It can be observed from Fig. 4 that IICSA can not only find
optimal value in search space, but also has a relatively fast convergence rate to ensure the best antibody
in the population.
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(a)

(b)

Figure 4: Convergence characteristics of different algorithms in finding the optimal design of PSS. (a)
ICSA, (b) IICSA

5.1.2 Convergence Characteristics of SSA, GOA, and IICSA in Finding the Optimal Design of PSS

In order to illustrate the efficiency of the improved immune clonal selection algorithm, the salp
swarm algorithm (SSA) [36] and the grasshopper optimization algorithm (GOA) [37] are compared
with the IICSA to show their effect on convergence rate. These algorithms were run with the same
population size and a maximum number of iterations. According to the analysis of the convergence
curve in Fig. 5, we notice that the IICSA attains at the end of optimization a value of 0.1495 lower than
the 0.1496 that SSA delivers. The GOA reaches the optimal value of 0.1496 in 61 iterations while the
IICSA reaches the optimal value of 0.1496 in 21 iterations. It was found that IICSA gives the fastest
convergence and minimum fitness value in these algorithms. The result also shows that the IICSA can
obtain the optimal tuning parameters for power system stabilizers of marine electric power system.

5.2 Controller Performance Evaluation
The parameters of these controllers are optimized by improved immune clonal selection algorithm.

The objective function is in Eq. (6). In order to show the superiority of the PSS controller over the PI,
PID, and FOPID [38] controllers, the +15% load changes on marine electric power system start at
2.5 s and end at 4.5 s. The optimized parameters of these controllers are shown in Table 1. In Fig. 6,
when the marine electric power system adopts PI controller, the rotor speed deviation is 0.76%, and the
system produces low-frequency oscillations. However, when the marine electric power system adopts
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PID controller, the rotor speed deviation is 0.67% and the settling time is 3.5 s. The results show that
PID controller is better to reduce the maximum deviation in the marine electric power system than
the PI controller. When the marine electric power system adopts FOPID controller, the rotor speed
deviation is 0.60% and the settling time is 2 s. The results show that FOPID controller can reduce the
response time and maximum deviation of the marine electric power system and improve the response
rate. When the marine electric power system adopts PSS controller, the rotor speed deviation is 0.48%
and the settling time is 1 s. The controller can greatly reduce its response time and maximum deviation,
and significantly suppress the low-frequency oscillations of the marine electric power system. After
comparison, it can be concluded that the relative controlperformance of PSS controller is the best in
these controllers.

Figure 5: Convergence characteristics obtained by different algorithms

Table 1: Optimized parameters of controllers

Controllers KP KI KD λ μ

PI 0.5832 0.7268 - - -
PID 1.9683 0.8724 2.1560 - -
FOPID 2.6147 0.6172 2.2685 1.2663 1.4056

5.3 The Simulation Results of PSS Parameters Optimized by ICSA and IICSA
The proposed marine electric power system can be found in [39]. The marine generator is a single

generator. The main switch bus is granted as an infinite bus and also as a reference.

The parameters of the marine generator in the simulation are set as follows [17]: Vn = 2400 V,
fn = 60 Hz, cos ϕn = 0.8, xd = 1.56, x′

d = 0.296, x′′
d = 0.177, xq = 1.06, x′′

q = 0.177, x1 = 0.052,
T ′

d = 3.7, T ′′
d = 0.05, T ′

qo = 0.05, D = 1.07 s. In the Herron-Philips model, the parameters of K1−K6:
K1 = 1.05; K2 = 1.385; K3 = 1.986 ; K4 = 0.032; K5 = 0.260; K6 = 0.866.

In the same case, PSS parameters optimization results of basic ICSA and IICSA algorithms are
shown in Table 2.

In order to verify the excellent effect of the IICSA algorithm to optimize the stabilizer parameters
of the marine electric power system. The marine electric power system is disturbed by 15% load
changes, a 10% increase of excitation voltage reference value, and a sudden short circuit fault of the
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marine generator. The rotor speed deviation and generator terminal voltage deviation were observed
under three conditions: no PSS (the marine electric power system is without PSS), PSS parameters
optimized by ICSA, PSS parameters optimized by IICSA.

Figure 6: PSS controller compared with conventional PI, PID, and FOPID controllers

Table 2: PSS parameters optimization results

Parameters K T1 T3 Fitness function
value

ICSA-PSS 12.1230 0.2892 2.8863 0.1528
IICSA-PSS 23.8134 0.3311 3.9016 0.1496

5.3.1 The Increase of 15% Load on Marine Generator

The +15% load changes on the marine electric power system start at 2.5 s and end at 4.5 s. It is
a small type of disturbance for a marine electric power system. The generator rotor speed deviation
and generator terminal voltage deviation are shown in Fig. 7 By observing Fig. 7, it can be found that
when there is no power system stabilizer in marine electric power system, the generator rotor speed
deviation reaches 0.52%. The speed deviation of the power system stabilizer optimized by ICSA is
0.45%, which is smaller than the diesel generator without the power system stabilizer. So, the power
system stabilizers improved the capacity of the marine electric power system to suppress low-frequency
oscillation.

After being disturbed, the time of the transition process is 2 s and the number of oscillations is 3
when the PSS is optimized by ICSA. However, the time of the transition process is 1 s and the number of
oscillations is 1 when the PSS is optimized by IICSA. In terms of generator terminal voltage deviation,
the voltage deviation is 6.18% when the power system stabilizer is optimized by IICSA, which is higher
than the power system stabilizer is optimized by ICSA. The voltage deviation is 5.65% when the power
system stabilizer is optimized by ICSA. But, the IICSA optimized power system stabilizer exhibits
better damping than ICSA optimized power system stabilizer.
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(a)

(b)

Figure 7: (a) Rotor speed deviation of the marine generator for +15% load changes. (b) Terminal
voltage deviation of the marine generator for +15% load changes

5.3.2 The Reference Value of the Marine Generator Excitation Voltage is Increased by 10%

Marine diesel generator excitation voltage reference value is increased by 10%. It starts at 2 s and
ends at 2.2 s. By observing Fig. 8, it is found that the low-frequency oscillations in the marine electric
power system is significantly reduced after the installation of the power system stabilizer. In terms
of generator rotor speed deviation, when the marine generator adopts the power system stabilizer
optimized by ICSA, the generator rotor speed deviation is 0.22%, while the generator rotor speed
deviation is 0.18% by IICSA.

After being disturbed, the time of the transition process is 2 s and the number of oscillations is 4
when the PSS is optimized by ICSA. However, the time of the transition process is 1 s and the number of
oscillations is 1 when the PSS is optimized by IICSA. In terms of generator terminal voltage deviation,
the terminal voltage deviation is 3.43% when the marine generator adopts a power system stabilizer
optimized by ICSA. However, the generator terminal voltage deviation is 2.84% that optimized by
IICSA. It is showing that the system having IICSA optimized PSS shows better performance than the
system having ICSA optimized PSS.
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(a)

(b)

Figure 8: (a) Rotor speed deviation for +10% reference value of the excitation voltage. (b) Terminal
voltage deviation for +10% reference value of the excitation voltage

5.3.3 Short Circuit Fault in the Marine Generator

A short circuit fault of marine diesel generator. The short circuit starts at 2 s and ends at 2.2 s.
The rotor speed deviation of the marine generator for short circuit is shown in Fig. 9a, the terminal
voltage deviation of the marine generator for the short circuit is shown in Fig. 9b. From the simulation
results of the marine generator system response to short circuit. It is found that the low-frequency
oscillation in marine electric power systems decreases significantly after the installation of a power
system stabilizer than the system without a power system stabilizer. In terms of generator rotor speed
deviation adjustment, the speed deviation is 1.8% when the marine diesel generator adopts the basic
ICSA to optimize the power system stabilizer. However, the rotor speed deviation is 1.4% when the
power system stabilizer is optimized by the IICSA.

After the short circuit of the marine generator, it can reach a stable state in 3.5 s. In terms of the
generator terminal voltage deviation, the generator terminal voltage deviation is 0.26 when the marine
generator adopts ICSA to optimize the power system stabilizer, while it is 0.23 when the power system
stabilizer is optimized by IICSA. After being disturbed, the time of the transition process is 1.9 s and
the number of oscillations is 4 when the PSS is optimized by ICSA. But, the time of the transition
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process is 1.3 s and the number of oscillations is 1 when the PSS is optimized by IICSA. So, the marine
electric power system having IICSA optimized PSS shows better performance than the marine electric
power system having ICSA optimized PSS.

(a)

(b)

Figure 9: (a) Rotor speed deviation of the marine generator for short circuit. (b) Terminal voltage
deviation of the marine generator for short circuit

The study will be extended to multimachine power systems in the following sections.

5.4 Two Area Four Machine Ten Bus Power System
Fig. 10 shows the two-area four-machine test system. Details of the power system can be seen

in reference [40]. It can be seen from Fig. 11 that generator G1 excitation voltage reference value is
increased by 5% at 1 s with different methods of setting PSS parameters, including CPSS, ICSA-PSS,
IICSA-PSS. The terminal voltage of generator G1 increased to 1.03 pu. The amplitude of generator
G1 speed deviation of generator excitation system under traditional power system stabilizer (CPSS),
power system stabilizer under basic immune clonal selection algorithm (ICSA-PSS), power system
stabilizer under improved immune clonal selection algorithm (IICSA-PSS) reached 0.084%, 0.067%,
0.039%, respectively. As shown in Fig. 12, generator G1 is shown a three-phase short-circuit fault at the
communication line for 0.2 s. The data shows that after the short-circuit fault occurred, the terminal
voltage of generator G1 dropped to 0.9455 pu, and the deviation of generator speed reached 0.3767%.
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It is clear from these figures that the IICSA-PSS provides better damping performance than the ICSA-
PSS and traditional power system stabilizer.

G1

G2

G3

G4

1 2

5 6

4 3

L1 L2

Figure 10: Single line diagram of two-area four-machine test system [12]

(a)

(b)

Figure 11: (a) Rotor speed deviation for +5% voltage reference value of generator G1. (b) Terminal
voltage for +5% voltage reference value of generator G1
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(a)

(b)

Figure 12: (a) Rotor speed deviation of the generator G1 for short circuit. (b)The terminal voltage of
the generator G1 for the short circuit

5.5 Ten Machine Thirty-Nine Bus Power System
The 10 machines 39 bus system [40] in Fig. 13 is also widely used to test performance of PSS.

Fig. 14 shows the dynamic response curves of generator G9 voltage reference value is decreased by
10% at 3 s. The terminal voltage of generator G9 decreased to 0.987 pu. The amplitude of generator
G9 speed deviation of excitation system under traditional power system stabilizer (CPSS), power
system stabilizer under basic immune clonal selection algorithm (ICSA-PSS), and power system
stabilizer under improved immune clonal selection algorithm (IICSA-PSS) reached 0.036%, 0.029%,
and 0.025%, respectively. It is clear from these figures that the IICSA-PSS provides better damping
than the ICSA-PSS and conventional power system stabilizer. The settling times of generator G9 speed
deviation of generator excitation system under traditional power system stabilizer (CPSS), power
system stabilizer under ICSA (ICSA-PSS) and power system stabilizer under IICSA (IICSA-PSS)
reached 18, 11, and 8.5 s, respectively. As shown in Fig. 15, generator G9 is shown a three-phase short-
circuit fault at bus 29. The data shows that after the short-circuit fault occurred, the terminal voltage
of generator G9 dropped to 0.4173 pu, and the deviation of generator speed reached 0.1798%. It is
clear from these figures that the IICSA-PSS provides better damping performance than the ICSA-
PSS and traditional power system stabilizer after the three-phase short-circuit fault. The settling
times of generator G9 speed deviation of generator excitation system under traditional power system
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stabilizer (CPSS), power system stabilizer under ICSA (ICSA-PSS) and power system stabilizer under
IICSA (IICSA-PSS) reached 16.5, 13, and 5 s, respectively. It is showing that the system having IICSA
optimized power system stabilizer shows better performance than the system having ICSA optimized
power system stabilizer and traditional power system stabilizer.

G1 G8

G10

G2 G3 G5 G4

G9

G6

G7

1

39

2

30
37

25 26

3
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27

17

28 29

38

2116

15

144

5
6

12

11 10

32
31

7
9

8

13

19

20

34 33

24

23

22
35

36

Figure 13: Single line diagram of ten machine thirty-nine bus test system [12]

(a)

Figure 14: (Continued)
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(b)

Figure 14: (a) Rotor speed deviation of the −10% voltage reference value of generator G9. (b) The
terminal voltage of the −10% voltage reference value of generator G9

(a)

(b)

Figure 15: (a) Rotor speed deviation of G9 for short circuit. (b) The terminal voltage of G9 for short
circuit
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6 Conclusions

This work presented an improved immune clone selection algorithm to tune the parameters of
the power system stabilizers for marine generator excitation control and then compared with a basic
immune clone selection algorithm. The objective function is to minimize output deviation of the
marine electric power system smaller and to ensure good dynamic performance and good stability
when the low-frequency oscillations occur.

The proposed improved immune clone selection algorithm adopts adaptive excitation, vaccina-
tion, and adaptive mutation strategies. Then, the improved immune clone selection algorithm gets a
smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power
system stabilizers than the basic immune clone selection algorithm, the salp swarm algorithm, and the
grasshopper optimization algorithm. The final value is 0.1496 from the 21 iterations for the improved
immune clone selection algorithm to optimize the parameters of the power system stabilizer.

The low-frequency oscillations caused by various load conditions disturbances and three-phase
fault can be significantly suppressed better by installing power system stabilizers in the marine
generators. The rotor speed deviation is 1.4% and the settling time is 1.3 after the short circuit of the
marine generator for improved immune clone selection algorithm while the rotor speed deviation is
1.8% and the settling time is 1.9 for the basic immune clone selection algorithm. The simulation results
show that the power system stabilizers optimized by an improved immune clone selection algorithm
can greatly improve the stability and dynamic performance under various operating conditions and
disturbances of the marine electric power system. Moreover, the proposed approach presents better
performance than the basic immune clone selection algorithm to tune the parameters of power system
stabilizers.

Future studies will be focused on the following two aspects:

(a) The proposed controller will be compared with a new control structure that hasn’t been used
for PSSs.

(b) To compare the performance of hybrid algorithms (immune clone selection algorithm and
genetic algorithm) with a single algorithm to tune the parameters of power system stabilizers.
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