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ABSTRACT

The inherent randomness, intermittence and volatility of wind power generation compromise the qual-
ity of the wind power system, resulting in uncertainty in the system’s optimal scheduling. As a result,
it’s critical to improve power quality and assure real-time power grid scheduling and grid-connected
wind farm operation. Inferred statistics are utilized in this research to infer general features based
on the selected information, confirming that there are differences between two forecasting categories:
Forecast Category 1 (0–11 h ahead) and Forecast Category 2 (12–23 h ahead). In z-tests, the null
hypothesis provides the corresponding quantitative findings. To verify the final performance of the predic-
tion findings, five benchmark methodologies are used: Persistence model, LMNN (Multilayer Perceptron
with LM learningmethods), NARX (Nonlinear autoregressive exogenous neural networkmodel), LMRNN
(RNNs with LM training methods) and LSTM (Long short-term memory neural network). Experiments
using a real dataset show that the LSTM network has the highest forecasting accuracy when compared to
other benchmark approaches including persistence model, LMNN, NARX network, and LMRNN, and the
23-steps forecasting accuracy has improved by 19.61%.
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1 Introduction

Coal, petroleum and gas, among other non-renewable resources, will significantly contami-
nate the human living environment. Wind energy has gotten a lot of attention as a renewable,
inexhaustible, and unlimited free energy source. Wind power is valuable not only because it is a
renewable energy source, but also because of the megawatt scale of available wind turbines, easy
operation, low maintenance costs and even government incentives [1–5]. According to estimates
from wind power generating experts, around 2% of the sun’s radiant energy is converted into
wind energy each year, with installed capacity of up to 10 TW and predicted to increase even
faster in the future [6–9]. In comparison to typical thermal power generation, wind energy as a
type of green energy in renewable energy can lower power system running costs. As a result, a
number of countries are promoting large-scale wind power development. However, the system’s
wind power quality is seriously impacted by the inherent randomness, intermittence, and volatility
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of wind power generation, and uncertainty is introduced to the system’s optimal dispatch. As
a result, accurate wind speed prediction can benefit not only the quality of energy, but also
real-time power grid scheduling and wind farm grid-connected operation [10–14]. One of the
most extensively used approaches for predicting wind speed is the neural network. Although
a single hidden layer feed-forward network can be used as an efficient predictive model to fit
any complex function, constructing a reasonable network model and parameters have used prior
knowledge of operators is extremely difficult for researchers and engineers to achieve accurate
and satisfactory results [15–18]. Wind speed is simply a time signal with several frequency
components, and its spectrum may be divided into two parts: amplitude and phase. Wavelet
transformation is a characterisation method that is commonly used to match input signals by
scaling the parent wavelet’s oscillating pattern type. Similarly, the data decomposition method may
properly reflect the signal’s time-frequency characteristics and assess the signal’s characteristics
in the time-frequency domain, allowing for signal analysis at different resolutions. For example,
wavelet transformation can properly reflect signal characteristics, assess signal characteristics in
the time domain and frequency domain based on a variety of resolutions. Wind power time
series can be treated of a layered overlays of several frequency components with varying levels of
volatility and periodicity. If multi-layer decomposition is used, a resolution with similar frequency
characteristics to each decomposition component may be identified, and the resolution at different
scales as well as a suitable analytical procedure can be raised. As a result, the high-precision
model is developed based on the properties of each frequency component. Precision wind energy
forecasting can combine many volatile power sources at all levels of the transmission and distribu-
tion networks [19–24]. Short-term wind power forecasting with high accuracy might be considered
an effective method for reducing grid integration and energy trading challenges [25–31]. The
short-term wind is random, whereas the long-term wind follows a continuous probability density
function, often known as the “Weibull distribution.” Physical models and statistical methods are
the mainly two kinds of short-term forecasting methodologies. The former method necessitates
a great deal of physical data about the wind turbine, but the later usually treated as a soft
computing method, is more adaptable and simple to apply in practice.

The accuracy of wind speed and wind power predictions is usually influenced by the surface
wind, precipitation probability, maximum temperature, and even the conditional probability of
frozen precipitation. In short-term wind power forecasting, wind speed is the most important
meteorological component. Stetco et al. [32] provided a bibliographical assessment of general
trends in the realms of wind speed and wind power forecasting. For the wind speed forecasts,
numerical wind speed predictions based on Kalman filtering [33] and atmospheric models [34]
with varied horizontal resolution capabilities were applied. Neural networks in combination with
nearest neighbor search methods [35] were used to predict the output power of a specific wind
farm using evolutionary optimization algorithms. The current state of hybrid solar-wind power
generation system simulation, control, and optimization is described in [36,37]. The sensitivity
of conventional generation and transmission were investigated as an example of alternative
methodology using a static linear programming model. Deng et al. [36] developed a model
for analyzing system optimum configurations based on the probability of power supply loss in
hybrid solar-wind systems (LPSP). Deng et al. [38] investigates the uncertainty of wind power
forecasting (WPF) using a proposed stochastic model. Tayab et al. [39] proposed some strategies
for forecasting grid loads, with two main topics being discussed: short-term load forecasting
(STLF) and the influence of anthropologic and structural variables on forecasting accuracy. The
following issues are what we want to address in this paper based on the above discussion:
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1) The methods to select the variables among the many available meteorological variables
which has a substantial impact on the output power prediction accuracy, should be
considered.

2) The short-term wind power forecasting category and error distribution in benchmark
models.

This paper is organized as follows: data description and preprocessing, correlation analysis
and neural network-related approaches are provided in Section 2. Section 3 introduces short-
term wind power forecasting results obtained by the benchmark approaches, such as persistence,
LMNN, NARX network, RNN and LSTM network, and all the performance of employed
approaches via an illustrative example are also demonstrated. In Section 4, proposed results and
prospective research issues are summarized and discussed.

2 Proposed Approaches for Wind Power Forecasting

The basic data description and distribution, data preprocessing methods, forecasting cate-
gories, and forecasting form are presented first in Fig. 1 of the paper’s processing diagram.
Second, correlation analysis between variables is used to select the input variables for describing
output power with the fewest input variables. Furthermore, a heatmap of the correlation matrix
between all of the available variables in Table 1 is shown, and a summary of the data distribution
is provided by wind rise related to wind speed. Finally, five neural network-related benchmark
approaches, such as the persistence model, LMNN, NARX network, LMRNN, and LSTM
network, are shown to illustrate the short-term wind power forecasting accuracy.

2.1 Data Description and Preprocessing
The dataset is provided by the Software Engineer Divyam Khandelwal [40] and download

from the Github, which is a time series with Power (MW), Wind direction 100 m (deg), Wind
speed 100 m (m/s), Air temperature 2 m (K), Surface air pressure (Pa) and Density hub height
(kg/m∧3), for the time period from 2012.01.01 to 2012.12.31. The detailed information of the
considered dataset is given in Table 1.

The values of ‘Hour’ ranges from 0 to 23, which indicates the number of hours-ahead needed
to be forecasted in short-term. For convenience, all the dataset objects are converted in to the
standardized ISO 8601 format by following the processing procedure proposed by data scientist
Jon Lo. Correspondingly, the forecasting category is split into two following categories:

1) Category 1: 1 h to 12 h ahead data
2) Category 2: 13 h to 24 h ahead data

Assume variables listed in Table 1, such as wind power y(pow)
t , wind speed x(win)

t and wind

direction x(dir)
t etc. at t-th time, then the forecasting is organized by

y(pow)

t+k
.=

[
y(pow)
t , . . . ,y(pow)

t−my
, . . . ,x(win)

t , . . . ,x(win)
t−mx

,x(dir)
t , . . . ,x(dir)

t−mu
, . . .

]
(1)

where py and px are positive integrate, indicating the model lags associated to wind power y(pow)
t

and wind speed x(win)
t at t-th time, respectively. y(pow)

t+k and
(
y(pow)
t , . . . ,y(pow)

t−py , . . . ,x
(win)
t , . . . ,x(win)

t−px
)

are the outputs and inputs, respectively. k ∈ N+ is a factor to measure the k-ahead forecasting
interval used to represent the short-term, median-term or long-term forecasting.
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Figure 1: The processing diagram of this paper

Table 1: Data description and distribution

Variables Power
(MW)

Wind
direction
100 m
(deg)

Wind
speed
100 m
(m/s)

Air tem-
perature
2 m (K)

Surface air
pressure
(Pa)

Density
hub height
(kg/m∧3)

Count 105120 105120 105120 105120 105120 105120
Mean 7.3838 163.4756 8.2059 288.4757 93868.7282 1.1182
Std 5.9499 94.6037 3.6458 10.9733 622.2715 0.0436
Min 0.0000 0.0050 0.0060 259.5210 91703.5520 1.0250
25% 1.5170 90.2425 5.276000 279.5260 93464.1680 1.0830
50% 6.2090 170.7265 8.112500 288.9200 93853.2800 1.1140
75% 13.9120 211.5322 10.998000 297.0010 94254.2960 1.1510
Max 16.0000 359.9940 28.720000 314.7810 96132.1040 1.2580

2.2 The Correlation Analysis between Variables
An ideal variable input is one that is extremely informative, especially when it is inde-

pendent of each other, has a good number, and can be utilized to generate a set of variable
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interpretations. As a result, the ideal input variables will have the fewest input variables to
represent the characteristics of the output variables, which promotes neural network structural
design and promotional capacities. For linear argument selection approaches, there are forward-
back and step-by-step regression methods. In reality, selecting procedures for nonlinear arguments
remains a major challenge. Researchers are gradually learning various climate characteristics of
wind power, as well as the feedback impact of wind power, radiation, and precipitation, mainly
to the use of ground observation data. Station observation, on the other hand, has its own
intractable flaws, such as wind power overlap error, weather dependence, and observation area
constraints.

cov(Xi,Xj)=
∑

k=1,...,m (xki− x̄·i)(xkj − x̄·j)
m− 1

(2)

where X = [X1,X2, · · · ,Xn]T , {xk· = [xk1,xk2, · · · ,xkn]T |1≤ k≤m}, Xi and Xj represent two arbi-
trary variables selected from the Table 1, x̄·i and x̄·j are the expectation value of the time series
xk·, and m is the length of the given wind power data. Correlation coefficient cov(Xi,Xj) is used
to reflect the degree of correlation between different variables. The product difference approach is
used to determine the correlation coefficient, which represents the degree of correlation between
different wind power variables and their respective mean values. Because the mathematical expec-
tation of the variable cannot be determined, the m−1 reflects the sample mean of the random
variable.

2.3 Neural Network-Related Approaches for Forecasting
The robustness of the artificial neural network can be determined by the network parameters

and the specific morphology of the error surface around the sample (ANN). The network param-
eters can be coupled to the sample extreme points to make the network more resilient, and the
resulting error surface distribution is generally flat. It is critical to evaluate the network output’s
resilience, which may help address practical difficulties and improve the network’s promotion
ability and application prospects. The input is effectively a set of feature vectors composed of the
available variables from Table 1, and a typical neural network input-output mapping is given by

f (x)=
m∑
j=1

wjϕ(||x−xj ||) (3)

where m, wj and ϕ(||x−xj ||) are the number of hidden nodes in hidden-layers, the adjustment
weight and a set of m arbitrary functions, respectively. In order to speed up convergence, the
weights of the output layer are frequently modified quickly using a linear optimization tech-
nique, while the activation functions of the hidden layer are processed slowly using nonlinear
optimization strategies. An isotropic Gaussian mapping defined by

δ = dmax√
2P

(4)

with standard deviation is typically used according to the spread of the centers, where dmax is
the maximum distance between the chosen centers. The least mean square approach used for the
weight adjustment defined by

�Wk = η(dk−Wk
T�)� (5)
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are applied to the weights of output layers, where Wk and dk are the corresponding linear
weight and the desired output, respectively. If a high-accuracy forecasting model is used, the time-
delay must be taken into consideration while estimating wind power in the short future. NARX
(Nonlinear autoregressive with external input) helps improve historical data memory and is an
important component of a dynamic neural network. The NARX network’s training function is a
Bayesian regularization based on Levenberg-Marquardt optimization that updates the network’s
weight and bias values and minimizes a linear combination of squared errors and weights to
ensure that it is properly generalized. Typical performance functions are usually measured in
practice by

MSE = 1
N

∑
i=1,...,N

e2i , ei = ti− yi, i= 1, . . . ,N (6)

MSW = 1
N

∑
i=1,...,N

ω2
j (7)

MSEreg= γMSE+ (1− γ )MSW (8)

where γ is the performance ratio. MSE and MSW are the mean sum of squares of network error
and biases, respectively.

2.4 Performance Evaluation Metrics
The mean square error (RMSE) is used to predict the degree of discreteness or deviation

between the desired output and forecasted ones, to measure the accuracy of the prediction,
defined by

RMSE =
√
1
n

∑
t=1,...,n

(ytf − ŷtr)
2 (9)

The new performance function RMSE leads the network to have smaller weights and biases,
resulting in a smoother network response and less overfitting of the equation. In its most primitive
sense, an RBF neural network has three layers with only one hidden layer that executes a
nonlinear transition from input space to hidden space. It has a higher learning efficiency and
function approximation than the BP network.

3 Experiments

3.1 Analysis of the Forecasting Categories and Data Distribution
The pd.DataFrame.merge are applied to mearge the training sample with wind speed and

wind power, and the mean wind speed, wind power and wind direction is 8.1951, 163.3769 and
0.461702, respectively. The curve of wind speed data for the whole year from January 2012 to
December 2012 is shown in Fig. 2, and two forecasting categories with respect to wind speed are
visualized in Fig. 3.

The distribution pattern of wind speed under different forecasting categories is generally
different, regardless of whether longer or shorter forecasting is used, and the inferential statis-
tics results in Section 3.3 can still confirm the highlighted issue. The wind rise in relation to
wind speed is shown in Fig. 4, which suggests a concise view that wind speed and direction
are commonly dispersed at 0∼15 m/s (about 60%–70%). The wind speed has been concentrated
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in three directions: 135–180 degrees, 225–260 degrees, and 270–350 degrees. The geological or
meteorological aspects may be to blame for these discrepancies in data distributions.

Figure 2: The wind speed trajectory of the whole year in 2012

Figure 3: Two forecasting categories

3.2 Correlation Analysis between Variables
Figs. 5–6 show the correlation analysis and the accompanying heatmap of correlation matrix

of the available variables in Table 1. To illustrate correlation estimation between distinct variables,
we introduced Pearson correlation coefficients in Fig. 5. It is simple to see that there’s a significant
correlation between wind speed and output power, with a coefficient of 0.96, fitting the high
correlation’s range of 0.9–1.0, notably the (a) and (b) of Fig. 6, which show that the coefficient of
wind power and wind speed are the highest. Because their correlation coefficients (about 0.0051)
are the lowest, there is a weak link between wind power and density hub height (kg/m3), which is
followed by wind direction and air temperature 2 m (K) (correlation coefficients is about 0.0092
and 0.0051, respectively). This is particularly evidence that the randomness, intermittence, and
seasonality of natural wind speed, as well as the wind power of wind turbines proportional to
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wind turbines, and the output voltage of wind turbines, are all closely related to wind speed fluc-
tuations. Wind speed, to be more specific, has a considerable impact on wind power forecasting
accuracy.

Figure 4: Wind rose of wind speed

3.3 Inferential Statistics and Performance Evaluation
Inferred statistics are statistical methods for inferring population characteristics from selected

samples. It have been used to compare forecasting categories to see if there are differences between
them: Forecast Category 1 (0–11 h ahead) and Forecast Category 2 (12–23 h ahead). Assume the
μ1 and μ2 are respectively, the mean of two outlined forecasting categories, the null hypothesis is

H0 :μ1 =μ2; H1 :μ1 �=μ2

and the z-tests for the null hypotheses is setting as Z = 1.96 and significance level α = 0.05, based
on the evluation results, Z-test statistic formular is defined as Z= m−μ

s ·√n.
Z scores is 36.6413 which is greater than z-tests scores Z = 1.96. This indicates that the

two forecasting models are significantly different. In addition, as the number of forecasting steps
increases, the accuracy of the forecasting will decrease dramatically. In short-term wind power
forecasting, a tiny error can nonetheless result in large forecasting inaccuracies. This also shows
that there is a distinction between two types of short-term wind power predictions. Table 2 shows
the short-term wind power forecasting results based on benchmark methodologies. In Table 2,
LMNN: Multilayer Perceptron with LM learning methods; NARX: Nonlinear autoregressive
exogenous neural network model; LMRNN: RNNs with LM training methods; LSTM: Long
short-term memory neural network.

Forecasting results 1–24-steps ahead wind power forecasting is obtained by LSTM network
and tabulated in Table 3. The forecasting results denote that the forecasting performance dete-
riorates and the forecasting accuracy decreases with the increase in forecasting-steps. The slight
inaccuracy in wind speed forecasting usually translates to large errors in wind power predictions.
This means that, in addition to the proposed approach in this research, the forecasting model
should be capable of error correction, dynamical feedback, and adaptive adjustment.
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Figure 5: Visualization of correlation analysis (a) Wind speed vs. wind power; (b) Wind speed vs.
wind direction; (c) Wind direction vs. wind power; (d) Wind power vs. air temperature; (e) Wind
power vs. surface air pressure; (f) Wind power vs. hub height
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Figure 6: Heatmap of correlation matrix (a) Heatmap of correlation matrix; (b) Heat map derived
from correlation matrix
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Table 2: Forecasting accuracy comparison

Methods 1-step (5 min) 6-step (30 min) 12-step (1 h) 23-step (2 h)

Persistence 0.3028 0.3417 0.5436 0.6867
LMNN 0.1998 0.2708 0.2795 0.2821
NARX 0.1842 0.2135 0.2457 0.2691
LMRNN 0.1863 0.2027 0.2513 0.2746
LSTM 0.1817 0.1875 0.2247 0.2692

Table 3: (1–24-steps ahead) forecasting accuracy by LSTM network

FS Training RMSE Testing RMSE Trainable param #

1-step 0.3562 0.1817 199
2-step 0.3577 0.1830 216
3-step 0.3590 0.1836 242
4-step 0.3610 0.1860 271
5-step 0.3618 0.1872 295
6-step 0.3623 0.1875 319
7-step 0.3624 0.1885 343
8-step 0.3637 0.1902 367
9-step 0.3640 0.1907 391
10-step 0.3642 0.1919 415
11-step 0.4253 0.2242 439
12-step 0.4253 0.2247 463
13-step 0.4256 0.2256 487
14-step 0.4258 0.2275 511
15-step 0.4261 0.2291 535
16-step 0.4271 0.2295 559
17-step 0.4290 0.2307 583
18-step 0.4293 0.2312 607
19-step 0.4298 0.2313 631
20-step 0.4391 0.2352 655
21-step 0.4551 0.2548 679
22-step 0.4588 0.2564 703
23-step 0.4611 0.2692 727
24-step 0.4975 0.3302 751
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Training, validation and testing samples of the wind power and wind speed are shown in
Fig. 7, and the training and validation curve of the cost funtion (1-step to 24 steps ahead
forecasting) is provided in Fig. 8. There is a considerable difference between the two forecasting
groups, as discussed previously. Because the persistence model assumes that the present data and
the predictor do not change, and infers the predicted value based on inferential analysis, taking
into account the 23-steps ahead forecasting outcomes, its forecasting accuracy is considerably
lowered with RMSE 0.6867. When compared to the findings obtained by the other five forecasting
models, this model has the lowest forecasting accuracy. The LSTM and NARX models share the
best predicting results overall with the other approaches because they incorporate the delay and
feedback mechanisms of wind power time series and boost the recall ability of historical data.
One of the most generally used models of circulatory neural networks is the long-term short-
term memory (Long Short-Term Memory, LSTM) network. This addresses two major flaws in
simple circulatory neural networks: exploding gradients (i.e., it is trivial to generate infinite and
non-values, resulting in data overflow owing to the bigger gradient value) and vanishing gradients
(i.e., the learning ability of the model decays and the quality of learning is reduced when gradient
values are small or even tend to zero). As a result, the five benchmark techniques have the best
predicting accuracy, which is 62.43%, 8.54%, 4.12% and 6.05% lower than the other four models.

Figure 7: Training, validation and testing samples of the wind power and wind speed
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Figure 8: The training and validation curve of the cost function (1-step to 24 steps ahead
forecasting)

4 Conclusion

Inferred statistics are used in this research to confirm that there is a significant difference
between the two forecasting groups, i.e., Forecast Category 1 (0–11 h ahead) and Forecast Cate-
gory 2 (12–23 h ahead) are the two types of forecasts. The wind speed has a significant impact on
the forecasting accuracy of wind power when compared to the wind direction, air temperature 2
m (K), surface air pressure (Pa), and density hub height (kg/m3) based on the correlation analysis.
To verify the final performance of the forecasting output, five benchmark methodologies are used:



250 EE, 2022, vol.119, no.1

persistence model, LMNN, NARX network, LMRNN, and LSTM. For accurate and dependable
wind power forecasting, we would use dynamical analysis with error correction capability in
combination with reinforcement learning in the future.

Acknowledgement: The authors acknowledge the reviewers providing valuable comments and
helpful suggestions to improve the manuscript.

Funding Statement: This research is supported by National Natural Science Foundation of China
(No. 61902158).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Hong, Y. Y., Rioflorido, C. L. P. P. (2019). A hybrid deep learning-based neural network for 24-h

ahead wind power forecasting. Applied Energy, 250, 530–539. DOI 10.1016/j.apenergy.2019.05.044.
2. Watson, S., Moro, A., Reis, V., Baniotopoulos, C., Barth, S. et al. (2019). Future emerging technologies

in the wind power sector: A european perspective. Renewable and Sustainable Energy Reviews, 113,
109270. DOI 10.1016/j.rser.2019.109270.

3. Javed, M. S., Ma, T., Jurasz, J., Amin, M. Y. (2020). Solar and wind power generation systems
with pumped hydro storage: Review and future perspectives. Renewable Energy, 148, 176–192. DOI
10.1016/j.renene.2019.11.157.

4. Vargas, S. A., Esteves, G. R. T., Maçaira, P. M., Bastos, B. Q., Oliveira, F. L. C. et al. (2019). Wind
power generation: A review and a research agenda. Journal of Cleaner Production, 218, 850–870. DOI
10.1016/j.jclepro.2019.02.015.

5. Shair, J., Xie, X., Yan, G. (2019). Mitigating subsynchronous control interaction in wind power sys-
tems: Existing techniques and open challenges. Renewable and Sustainable EnergyReviews, 108, 330–346.
DOI 10.1016/j.rser.2019.04.003.

6. Deng, X., Shao, H., Hu, C., Jiang, D., Jiang, Y. (2020). Wind power forecasting methods based
on deep learning: A survey. Computer Modeling in Engineering & Sciences, 122(1), 273–302. DOI
10.32604/cmes.2020.08768.

7. Mahela, O. P., Khan, B., Alhelou, H. H., Siano, P. (2020). Power quality assessment and event
detection in distribution network with wind energy penetration using stockwell transform and fuzzy
clustering. IEEE Transactions on Industrial Informatics, 16(11), 6922–6932. DOI 10.1109/TII.9424.

8. Kushwaha, A., Gopal, M., Singh, B. (2020). Q-learning based maximum power extraction for wind
energy conversion system with variable wind speed. IEEE Transactions on Energy Conversion, 35(3),
1160–1170. DOI 10.1109/TEC.60.

9. Xu, B., Chen, D., Venkateshkumar, M., Xiao, Y., Yue, Y. et al. (2019). Modeling a pumped storage
hydropower integrated to a hybrid power system with solar-wind power and its stability analysis.
Applied Energy, 248, 446–462. DOI 10.1016/j.apenergy.2019.04.125.

10. Navas, R. K. B., Prakash, S., Sasipraba, T. (2020). Artificial neural network based computing model
for wind speed prediction: A case study of Coimbatore, Tamil nadu, India. Physica A: Statistical
Mechanics and its Applications, 542, 123383. DOI 10.1016/j.physa.2019.123383.

11. Zhou, Q., Wang, C., Zhang, G. (2019). Hybrid forecasting system based on an optimal model
selection strategy for different wind speed forecasting problems. Applied Energy, 250, 1559–1580. DOI
10.1016/j.apenergy.2019.05.016.

12. Sorknæs, P., Djørup, S. R., Lund, H., Thellufsen, J. Z. (2019). Quantifying the influence of wind power
and photovoltaic on future electricity market prices. Energy Conversion andManagement, 180, 312–324.
DOI 10.1016/j.enconman.2018.11.007.

http://dx.doi.org/10.1016/j.apenergy.2019.05.044
http://dx.doi.org/10.1016/j.rser.2019.109270
http://dx.doi.org/10.1016/j.renene.2019.11.157
http://dx.doi.org/10.1016/j.jclepro.2019.02.015
http://dx.doi.org/10.1016/j.rser.2019.04.003
http://dx.doi.org/10.32604/cmes.2020.08768
http://dx.doi.org/10.1109/TII.9424
http://dx.doi.org/10.1109/TEC.60
http://dx.doi.org/10.1016/j.apenergy.2019.04.125
http://dx.doi.org/10.1016/j.physa.2019.123383
http://dx.doi.org/10.1016/j.apenergy.2019.05.016
http://dx.doi.org/10.1016/j.enconman.2018.11.007


EE, 2022, vol.119, no.1 251

13. Zhu, M., Qi, Y., Belis, D., Lu, J., Kerremans, B. (2019). The China wind paradox: The role of state-
owned enterprises in wind power investment versus wind curtailment. Energy Policy, 127, 200–212.
DOI 10.1016/j.enpol.2018.10.059.

14. Ning, C., You, F. (2019). Data-driven adaptive robust unit commitment under wind power uncertainty:
A Bayesian nonparametric approach. IEEE Transactions on Power Systems, 34(3), 2409–2418. DOI
10.1109/TPWRS.59.

15. Altan, A., Karasu, S., Zio, E. (2021). A new hybrid model for wind speed forecasting combining long
short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft
Computing, 100, 106996. DOI 10.1016/j.asoc.2020.106996.

16. Jeon, J., Panagiotelis, A., Petropoulos, F. (2019). Probabilistic forecast reconciliation with applications
to wind power and electric load. European Journal of Operational Research, 279(2), 364–379. DOI
10.1016/j.ejor.2019.05.020.

17. Meng, H., Wang, M., Olumayegun, O., Luo, X., Liu, X. (2019). Process design, operation and
economic evaluation of compressed air energy storage (CAES) for wind power through modelling and
simulation. Renewable Energy, 136, 923–936. DOI 10.1016/j.renene.2019.01.043.

18. Shahid, F., Zameer, A., Muneeb, M. (2021). A novel genetic LSTM model for wind power forecast.
Energy, 223, 120069. DOI 10.1016/j.energy.2021.120069.

19. Lima, M. A. F., Carvalho, P. C., Fernández-Ramírez, L. M., Braga, A. P. (2020). Improving
solar forecasting using deep learning and portfolio theory integration. Energy, 195, 117016. DOI
10.1016/j.energy.2020.117016.

20. Kisvari, A., Lin, Z., Liu, X. (2021). Wind power forecasting–A data-driven method along with gated
recurrent neural network. Renewable Energy, 163, 1895–1909. DOI 10.1016/j.renene.2020.10.119.

21. Mäkitie, T., Normann, H. E., Thune, T. M., Gonzalez, J. S. (2019). The green flings: Norwe-
gian oil and gas industry’s engagement in offshore wind power. Energy Policy, 127, 269–279. DOI
10.1016/j.enpol.2018.12.015.

22. Yang, W., Yang, J. (2019). Advantage of variable-speed pumped storage plants for mitigating wind
power variations: Integrated modelling and performance assessment. Applied Energy, 237, 720–732.
DOI 10.1016/j.apenergy.2018.12.090.

23. Naik, J., Dash, P. K., Dhar, S. (2019). A multi-objective wind speed and wind power prediction
interval forecasting using variational modes decomposition based multi-kernel robust ridge regression.
Renewable Energy, 136, 701–731. DOI 10.1016/j.renene.2019.01.006.

24. Shilaja, C., Arunprasath, T. (2019). Optimal power flow using moth swarm algorithm with gravitational
search algorithm considering wind power. Future Generation Computer Systems, 98, 708–715. DOI
10.1016/j.future.2018.12.046.

25. Weschenfelder, F., Leite, G. D. N. P., da Costa, A. C. A., de Castro Vilela, O., Ribeiro, C. M.
et al. (2020). A review on the complementarity between grid-connected solar and wind power systems.
Journal of Cleaner Production, 257, 120617. DOI 10.1016/j.jclepro.2020.120617.

26. Wang, Y., Hu, Q., Li, L., Foley, A. M., Srinivasan, D. (2019). Approaches to wind power curve
modeling: A review and discussion. Renewable and Sustainable Energy Reviews, 116, 109422. DOI
10.1016/j.rser.2019.109422.

27. Ghoushchi, S. J., Manjili, S., Mardani, A., Saraji, M. K. (2021). An extended new approach for
forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind
power plant. Energy, 223, 120052. DOI 10.1016/j.energy.2021.120052.

28. Han, L., Zhang, R., Wang, X., Bao, A., Jing, H. (2019). Multi-step wind power forecast based on
VMD-lSTM. IET Renewable Power Generation, 13(10), 1690–1700. DOI 10.1049/iet-rpg.2018.5781.

29. Wang, J., Niu, T., Lu, H., Yang, W., Du, P. (2019). A novel framework of reservoir computing for
deterministic and probabilistic wind power forecasting. IEEE Transactions on Sustainable Energy, 11(1),
337–349. DOI 10.1109/TSTE.5165391.

30. Abedinia, O., Lotfi, M., Bagheri, M., Sobhani, B., Shafie-Khah, M. et al. (2020). Improved EMD-
based complex prediction model for wind power forecasting. IEEE Transactions on Sustainable Energy,
11(4), 2790–2802. DOI 10.1109/TSTE.5165391.

http://dx.doi.org/10.1016/j.enpol.2018.10.059
http://dx.doi.org/10.1109/TPWRS.59
http://dx.doi.org/10.1016/j.asoc.2020.106996
http://dx.doi.org/10.1016/j.ejor.2019.05.020
http://dx.doi.org/10.1016/j.renene.2019.01.043
http://dx.doi.org/10.1016/j.energy.2021.120069
http://dx.doi.org/10.1016/j.energy.2020.117016
http://dx.doi.org/10.1016/j.renene.2020.10.119
http://dx.doi.org/10.1016/j.enpol.2018.12.015
http://dx.doi.org/10.1016/j.apenergy.2018.12.090
http://dx.doi.org/10.1016/j.renene.2019.01.006
http://dx.doi.org/10.1016/j.future.2018.12.046
http://dx.doi.org/10.1016/j.jclepro.2020.120617
http://dx.doi.org/10.1016/j.rser.2019.109422
http://dx.doi.org/10.1016/j.energy.2021.120052
http://dx.doi.org/10.1049/iet-rpg.2018.5781
http://dx.doi.org/10.1109/TSTE.5165391
http://dx.doi.org/10.1109/TSTE.5165391


252 EE, 2022, vol.119, no.1

31. Mishra, S., Bordin, C., Taharaguchi, K., Palu, I. (2020). Comparison of deep learning models for
multivariate prediction of time series wind power generation and temperature. Energy Reports, 6, 273–
286. DOI 10.1016/j.egyr.2019.11.009.

32. Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D. et al. (2019). Machine learning
methods for wind turbine condition monitoring: A review. Renewable Energy, 133, 620–635. DOI
10.1016/j.renene.2018.10.047.

33. Shair, J., Xie, X., Yuan, L., Wang, Y., Luo, Y. (2020). Monitoring of subsynchronous oscillation in a
series-compensated wind power system using an adaptive extended Kalman filter. IET Renewable Power
Generation, 14(19), 4193–4203. DOI 10.1049/iet-rpg.2020.0280.

34. Parks, K., Wan, Y. H., Wiener, G., Liu, Y. (2011). Wind Energy Forecasting: A Collaboration of
the National Center for Atmospheric Research (NCAR) and Xcel Energy (No. NREL/SR-5500-52233).
National Renewable Energy Lab. (NREL), Golden, CO (United States).

35. Bay, C. J., Annoni, J., Taylor, T., Pao, L., Johnson, K. (2018). Active power control for wind farms
using distributed model predictive control and nearest neighbor communication. Annual American
Control Conference, pp. 682–687. Wisconsin Center, United States. DOI 10.23919/ACC.2018.8431764.

36. Deng, X., Shao, H. (2020). Deep learning approach with optimizatized hidden-layers topology for
short-term wind power forecasting. EnergyEngineering, 117(5), 279–287. DOI 10.32604/EE.2020.011619.

37. Li, J., Liu, P., Li, Z. (2020). Optimal design and techno-economic analysis of a solar-wind-biomass
off-grid hybrid power system for remote rural electrification: A case study of West China. Energy, 208,
118387. DOI 10.1016/j.energy.2020.118387.

38. Deng, X., Shao, H., Wang, X. (2020). Seasonal characteristics analysis and uncertainty measurement
for wind speed time series. Energy Engineering, 117(5), 289–299. DOI 10.32604/EE.2020.011126.

39. Tayab, U. B., Zia, A., Yang, F., Lu, J., Kashif, M. (2020). Short-term load forecasting for microgrid
energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet
transform. Energy, 203, 117857. DOI 10.1016/j.energy.2020.117857.

40. Divyam Khandelwal, Wind Power Dataset (2019). https://github.com/divyam-khandelwal/Thesis-Wind-
Power-Prediction-Model.

http://dx.doi.org/10.1016/j.egyr.2019.11.009
http://dx.doi.org/10.1016/j.renene.2018.10.047
http://dx.doi.org/10.1049/iet-rpg.2020.0280
http://dx.doi.org/10.23919/ACC.2018.8431764
http://dx.doi.org/10.32604/EE.2020.011619
http://dx.doi.org/10.1016/j.energy.2020.118387
http://dx.doi.org/10.32604/EE.2020.011126
http://dx.doi.org/10.1016/j.energy.2020.117857
https://github.com/divyam-khandelwal/Thesis-Wind-Power-Prediction-Model
https://github.com/divyam-khandelwal/Thesis-Wind-Power-Prediction-Model

