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ABSTRACT

With the continuous increase in the proportional use of wind energy across the globe, the reduction of
power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted
more consideration for research. Therefore, it is crucial to accurately analyze the thickness of icing on wind
turbine blades, which can serve as a basis for formulating corresponding control measures and ensure a safe
and stable operation of wind turbines in winter times and/or in high altitude areas. This paper fully utilized
the advantages of the support vector machine (SVM) and back-propagation neural network (BPNN), with
the incorporation of particle swarm optimization (PSO) algorithms to optimize the parameters of the SVM.
The paper proposes a hybrid assessment model of PSO-SVMand BPNN based on dynamic weighting rules.
Three sets of icing data under a rotating working state of the wind turbine were used as examples for model
verification. Based on a comparative analysis with other models, the results showed that the proposedmodel
has better accuracy and stability in analyzing the icing on wind turbine blades.
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1 Introduction

Wind energy is a type of green energy that can potentially replace fossil fuels and is currently
being vigorously developed across the world. There are abundant wind resources on mountains,
hills, valleys, lakes, and offshore areas. The cold and wet weather in high altitude and high
elevation areas/regions are considered the main causes of icing on wind turbines. This problem of
icing on turbine blades is often fatal and can be a serious safety hazard as well. The increase in
loading and imbalance of wind turbine blades during normal operations because of icing, does
not only affect the power output of the wind turbine, but may also easily lead to ice shedding due
to the high-speed rotation of the blade, which potentially leads to safety related accidents [1–3].
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These potential problems are the reason why it is important to properly analyze the icing of wind
turbine blades.

At present, the diagnosis methods of wind turbine blade icing include blade icing detection
system, ultrasonic method, numerical simulation method, state parameter method, data-driven
method, etc., Skrimpas et al. [4–8] utilized an ice detection system or an external icing sensor to
detect the icing state of the blades, However, the use of sensors to detect icing on wind turbine
blades has detrimentally exhibited some problems that have resulted in increased costs of wind
turbine manufacture, installation, operations, and replacement. At the same time, the installation
of the sensor may change the aerodynamic performance of the blade, and with its continuous
use under severe working conditions, the measurement error gradually increases and the accuracy
decreases.

Muñoz et al. [9] adopted the ultrasonic method to accurately identify the icing state of the
blade, but it cannot work normally when the weather condition is adverse. Villalpando et al. [10]
used data analysis model to detect blade icing condition based on numerical mode and experi-
mental mode, but there was no unified standard for the selection and calculation of parameters
in the numerical simulation process, so it was difficult to ensure the accuracy of model analysis.
Makkonen et al. [11] studied the sensitivity of the icing model to meteorological conditions,
focusing on the study of the icing mechanism of wind turbine blades based on meteorological
conditions, and compared the model prediction results with the ice cave icing test results. The
validity of the model is confirmed. Dierer et al. [12–22] based on data mining and monitoring and
control systems, a multivariate statistical method is used to build an intelligent model based on
a large amount of data to detect and analyze the icing data of wind turbine blades to determine
its icing status However, its model algorithm has higher requirements for feature screening. If
effective feature screening cannot be performed, the accuracy of the overall algorithm is difficult
to guarantee.

It is often practically convenient to assess and quantify the ice thickness by analyzing the
changes in the environmental factors of icing on wind turbine blades. However, the operating
environment of wind turbine blades is harsh, and many factors affect the icing process, such
as temperature, humidity, wind speed, drop diameter, etc., which is a non-stationary random
process. This requires icing prediction models of wind turbine blades to have strong generalization
ability, accuracy, and stability. Based on outdoor natural environmental experiments, this paper
established a mapping relationship between the environmental factors and wind turbine blade
icing thickness. The environmental factors considered included temperature, humidity, wind speed,
and droplet diameter. This paper innovatively proposes a hybrid model of PSO-SVM+BNPP for
assessing and quantifying the icing on wind turbine blades accurately and as stable as possible. In
the analysis, PSO was used to optimize the parameters of the SVM, while the PSO-SVM and the
BPNN model were combined using dynamic weighting. This enabled the thickness of the wind
turbine blade icing to be analyzed quickly, accurately, and steadily.

The rest of the paper is arranged as follows: Section 2–introduction of the single analysis
method and the hybrid model used in the study. Section 3–data collection through experimenta-
tion and the establishment of the mapping relationship between multiple influencing factors and
the degree of icing on the wind turbine blades. Section 4–utilization of the performance evalua-
tion indicators to compare the performance of the models in icing on the wind turbine blades,
and Section 5–further verification. And lastly, Section 6–the conclusion and recommendations.
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2 Study Methodology

2.1 Particle Swarm Optimization (PSO)
PSO is an evolutionary computational algorithm. It is based on the concept that each particle

can find the best local position according to its own flight process experienced in n-dimensional
space. Moreover, the particle knows the best neighboring position, and its position and velocity
are updated iteratively using the flight experience of its own history and that of the other
particles’ [23–25].

The advantage of PSO is its simplicity and relative ease of implementation. Furthermore,
it does not need many parametric adjustments to reach iterative convergence. The particles have
only two attributes, namely: velocity (v) and position (pop), respectively. The positive and negative
values of velocity represent the direction of their movements whilst all the values of position need
to be absolute [26–28]. During analysis, each particle searches for the optimal solution individually
in the search space and records it as the current individual extreme value (Pbest). Thereafter, it
shares the individual extreme value with other particles in the entire swarm of particles. Lastly,
it finds the best individual extreme value as the current global optimal solution (Gbest) for the
entire swarm of particles [29]. Find the best learning factor c1 and c2 value through PSO , which
is expressed in Eq. (1) thru to Eq. (4):

vi = vi+ c1 × rand× (Pbesti− popi)+ c2 × rand× (Gbest− popi) (1)

popi = popi+ vi (2)

vi =
⎧⎨
⎩
vmin,
vi,
vmax,

vi < vmin
vmin ≤ vi ≤ vmax
vi > vmax

(1≤ i≤ a) (3)

popi =
⎧⎨
⎩
popmin,
popi,
popmax,

popi < popmin
popmin ≤ popi ≤ popmax
popi > popmax

(1≤ i≤ a) (4)

Eq. (1) is the velocity iteration formula. Eq. (2) is the iterative formula of the position.
Eq. (3) and Eq. (4) defines the upper and lower limits for v and pop, which can prevent the model
from overfitting. In the equations, vi is the current velocity, popi is the current particle position,
the rand function generates random numbers between (0, 1), which is uniformly distributed, and
c1, are learning factors, and a is the number of iterations.

2.2 Support Vector Machines (SVM)
The ice thickness was analyzed and quantified using SVM. The learning factors, c1 and c2,

were obtained using the particle swarm algorithm corresponding to c (penalty factor) and g
(parameter value in K function [kernel function]), respectively, in the support vector machine.

SVM is a type of a linear binary classifier defined in the feature space with maximum spacing,
which differentiates it from a perceptron. It provides a solution by mapping the low-dimensional
nonlinear space with the high-dimensional linear space through a kernel function k, which can be
used to classify and analyze the nonlinear system [30–32]. The basic idea of SVM is to solve the
training data set so that it can be correctly classified so that the maximum separation hyperplane
can be obtained through geometric intervals [33].
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When SVM is applied to a regression fitting analysis, the focus is no longer to find an
optimal classification surface to separate the two types of samples, but instead to find an optimal
classification surface to minimize the errors between all the training samples and the optimal
classification surface [34].

Support Vector Machine for Regression (SVR) is a generalization of the Support Vector
Classification (SVC). The hyperplane decision boundary in SVC is the threshold value used to
assess the ice thickness of the wind turbine blades. The mathematical expression shown in Eq. (5):

fx =wTX + b=
n∑
i=1

aiyik(xi,xj)+ b (5)

In Eq. (5), w is the normal vector of the hyperplane, b is the relative offset, and k is the
kernel function expressed in Eq. (6):

k(xi,xj)= exp(−g||xi−xj||2) (6)

Because the radial basis function has better performance in processing high-dimensional
complex samples than other functions and requires fewer parameters, this paper chose the radial
basis function as the kernel function. Thus, the used SVM regression function was obtained as
expressed in Eq. (7) below:

f (x)=wφ(x)+ bmin
w,b

1
2
||ω||2+ c

n∑
i=1

ξi (7)

where ξ is the relaxation factor and c is the penalty factor.

2.3 Back-Propagation Neural Network (BPNN)
BPNN is a concept that was first proposed by Rumelhart and McClelland in 1986. It is a

multi-layer feedforward neural network concept that is trained based on the error in the back-
propagation algorithm [35,36]. The output results of the BPNN adopts forward propagation,
while the error adopts the backward propagation. It emulates the activation and transmission
like that of the human neurons. That is the input layer receives the data, while the output
layer outputs the data [37]. The neurons of the first layer are connected to the neurons of the
next layer where they collect the information transmitted by the neurons of the previous layer
and pass the value to the next layer through an “activation” function [38]. BPNN has a strong
nonlinear fitting ability and can map arbitrarily complex nonlinear relations. As shown in Fig. 1
the learning rules are simple, which is convenient for computer realization. The input data X are
the environmental factors, mostly comprising of temperature, humidity, wind speed, and droplet
diameter. The output data O is the ice thickness.
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Figure 1: Structural diagram of the three-layer BPNN model

2.4 PSO-SVM+BPNN Model
By substituting the environmental factors of the training set such as temperature, humidity,

wind speed, and droplet diameter into the PSO-SVM and BPNN models, the corresponding
analytical results of the ice thickness for the training set are obtained. The ice thickness deter-
mined using PSO-SVM and BPNN is a weighted value and compared with the real ice thickness.
By continuously adjusting the weight, the combined analytical results get close to the real icing
thickness, The obtained weighting value “a” is thereafter used for the analysis [39]. On the basis
of determining “a”, the next step is to fine tune the combined model in the same way. The
disturbance parameters m and n are obtained, leading to an improvement in the analysis model.
while retaining good generalization ability. It has a better ability to approximate the objective
function and improve the accuracy of the diagnosis results. The combined formula for diagnosing
the ice thickness Y is illustrated in Eq. (8):

Y = (a+m)y1+ (1− a+ n)y2 (8)

In Eq. (8), a is the weight, m and n are disturbances that are used for the optimization of the
weight value. Parameter y1 is the diagnosis of icing thickness by the PSO-SVM model, and y2 is
the diagnosis of icing thickness by the BNPP model. The Matlab software was used to simulate
and actualize the solution of the icing thickness on the wind turbine blade.

2.5 Combination Diagnosis Model
First, normalize the data comprising of the meteorological environmental factors. Thereafter,

the PSO-SVM and BPNN models are used for analysis. The diagnosis results are then weighted,
and thereafter, a weight disturbance adjustment is performed, thus achieving weight optimization.
Finally, the best diagnosis result is calculated, as shown in Fig. 2–ultimately generating the
proposed hybrid diagnosis model.



1874 EE, 2021, vol.118, no.6

Start

Original
data

Training set and test set selection

PSO initialization

Data normalization

Searching for the best C and G

SVM creation / training 

Inverse normalization

SVM simulation prediction

weighting

Adjust weight a

Terminal
condition

Fine tuning

Adjust the perturbation m, n

Terminal
condition

SVM+BPNN comprehensive
prediction

End

NO

YES

NO

YES

Calculate fitness value

Satisfy the end condition?

Pulse loudness and frequency
updata

NO

YES

BP neural network initialization

BP neural network simulation
prediction

Date normalization

Training BP neural network

Inverse normalization

Figure 2: The combination diagnosis model of PSO-SVM+BNPP

3 Data Processing and Analysis

Factors affecting the icing of wind turbine blades are divided into external and internal
factors. Internal factors consist of some of the physical characteristics of the wind turbine blades
during the design process, including airfoil, material, and angle of attack. The external factors
mainly include temperature, humidity, wind speed, and diameter of water drops. This paper
studied the icing diagnosis on wind turbine blades from the perspective of external factors. Icing
should meet the following three meteorological conditions, namely: (a) the wind speed should be
in the range of 1 m/s∼10 m/s, (b) the general air relative humidity should be more than 60%, and
(c) the temperature should be below 0◦C [40]. The icing process must satisfy the fluid law and
the heat balance equation.

The test data for the study came from an ice coating test laboratory for rotating the wind
turbine blade. The experimental setup is shown in Fig. 3. The airfoil of the wind turbine blade
is NACA4412. The 1.5 MW wind turbine blade with 1:12.5 scale reduction was used as the test
device, the length of blade wingspan R was 1.6 m, and the material of the blade shell is glass
fiber reinforced epoxy resin. All the experimental data were collected with professional instruments
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that can be used to reflect the state changes during the icing process. The test was completed
in a natural icing environment during winter. The test conditions were consistent with the actual
environment of a local wind farm. The duration of the test period was 13 months. The wind
speed adjustment used was 1380 type high-power industrial exhaust fan (138 cm * 138 cm) with
a power of 1.1 kw, air volume of 45000 m3/h, an electricity voltage of 380 V, and an adjustable
wind speed range of 0 to 20 m/s. The test used a high-pressure atomized water spray device to
adjust the humidity of the test environment. The atomized water spray device is composed of: (a)
a high-pressure water pump, and (b) three high-pressure water mist nozzles. The spray diameter
of a single nozzle is 1 m. The pump power was 24 W. The change in the diameter of the water
droplets was adjusted by rotating the nozzle to the desired orientation. The wind speed had a
range of 2 m/s∼6 m/s, the humidity range was 60%∼85%, and the temperature range was −23◦C∼
−10◦C.

Figure 3: Icing test bench for wind power equipment. 1. Power input device fan, 2. Atomized
water spray device, 3. Data collection device, 4. Wind generator, 5. Power storage box

During testing, the wind speed was measured by an AM-4201 digital anemometer. The
temperature and humidity measurements were accomplished using a COS-03-X USB temperature
and humidity recorder, respectively, which can record up to 2.08 million sets of data. The device
is connected to a computer via a USB cable, and the data stored in the device can be imported
into a desktop computer with the supporting software to facilitate subsequent data analysis. The
ice thickness on the wind turbine blades was measured using an ultrasonic thickness gauge (with
an accuracy of 0.1 mm) and a vernier caliper, with the data saved periodically as captured.

It was discovered through experimentation that the icing area increased with an increase in
the wind speed. A droplet with a larger diameter forms larger ice crystal particles on the surface
of the blade resulting in a rougher ice surface. With the decrease in temperature, the thickness
of icing reduces. The reason for these changes is because the droplets in the air freeze directly
into ice crystals alongside the decrease of temperature, resulting in a decreased number of liquid
droplets impacting the surface of the wind turbine blades. When the humidity is low, the icing
position is largely located at the outer leading edge of the blade. When the humidity is high,
the icing position is mainly located at the leading edge and windward side, and thus, there is
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more icing. The front of the blade is the location for the most severe icing. Therefore, the icing
thickness measurement point was selected at the blade front and 0.75R away from the blade root
as shown in Fig. 4. The experimental data was obtained by conducting the test at 1 h interval.
In total, 324 sets of data were collected at each measuring point, including the first 200 sets of
data for training samples and the last 124 sets of data for test samples. The ice thickness data
at 0.75R is shown in Fig. 5, with the corresponding environmental data shown in Fig. 6. The
environmental data is shown in Tab. 1, As visually seen in the figures, there is no abnormality in
the data or missing data points.

Figure 4: The wind turbine blade for icing experiment

Figure 5: Icing thickness data at 0.75R away from the blade root

With the use of the SPASS software, Pearson correlation, Kendall’s tau-b, and Spearman’s
Rho were used as the three evaluation indicators. Temperature, humidity, wind speed, water
droplet diameter, and ice thickness were measured during the test and used for statistical binary
correlation analysis. As shown in Tab. 2, environmental factors such as temperature, humidity,
wind speed, and water droplet diameter all have an impact on the thickness of ice covering.

4 Case Studies

4.1 Performance Evaluation Index
To verify the performance of the model, Root Mean Squared Error (RMSE), Mean Absolute

Deviation (MAD), and the coefficient of determination (R2) were used to compare the accuracy
of all the models. The study measures the average diagnostic utility at each data point in the
model. The statistical expressions used for the error computations and accuracy evaluation are
shown in Eqs. (9)–(11):

RMSY =
√√√√1
n

n∑
i=1

(xi− yi)2 (9)
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MAD= 1
n

n∑
i=1

|xi− yi| (10)

R2 = 1−
∑n

i=1(xi− x̄)2∑n
i=1(xi− yi)2

(11)

Figure 6: Environmental factor data of blade icing: (a) Wind speed, (b) Humidity, (c) Temperature
and (d) Droplet diameter
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Table 1: Training data environmental factors and icing thickness data at 0.75R away from the
blade root

Temperature
(◦C)

Humidity
(%)

Wind speed
(m/s)

Water
droplet
diamete (μm)

Icing thickness
at 0.75R (mm)

−12.2 63.1 2.4 10 6.11
−12.4 67.1 2.3 10 6.04
−12.9 65.8 2.2 10 6.04
−15.7 65.2 3.7 10 5.03
−15.2 68.3 2.9 10 5.01
−15.5 67.9 3.1 10 5.06
...

...
...

...
...

−15.5 74.2 5.2 15 6.1
−15.8 73.4 5.2 15 6.04
−15.6 73.5 5 15 6.05
−15.3 80.6 5.1 15 6.02
−15.1 82.4 5 15 6.07
−15.2 80.8 5.4 15 6.02
...

...
...

...
...

−19.5 77.9 3.2 20 5.03
−19.8 77.7 3.3 20 5.03
−19.4 79.2 3.5 20 5.01
−21.4 77.2 3.3 20 5.01
−21.3 78.3 3.2 20 5.04
−21.8 78.8 3.7 20 4.99
...

...
...

...
...

Table 2: Statistical binary correlation analysis of the environmental factors for blade icing

Pearson correlation Kendall’s tau-b Spearman’s rho

Temperature 0.696∗∗ 0.443∗∗ 0.631∗∗
Humidity −0.434∗∗ −0.288∗∗ −0.404∗∗
Wind speed 0.234∗∗ −0.006∗∗ −0.005∗∗
Water droplet diameter −0.301∗∗ −0.165∗∗ −0.205∗∗

Note: ∗∗ indicates a significant correlation.

In Eq. (9) through to Eq. (11), n represents the number of test samples, xi represents the
actual ice thickness, x̄ represents the average actual ice thickness, and yi represents the diagnosed
ice thickness.

To verify the optimality of the model, this study compared the icing diagnosis of the wind
turbine blade under different model settings. As shown in Fig. 6, the influencing factors and
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ice thickness were substituted into Parts 1 and 2 of the seven models. The hybrid diagnosis
model comprising of PSO-SVM+BPNN was then compared with the MLR (Multiple Linear
Regression), ELM (Extreme Learning Machine), SVM, BPNN, SVM+BPNN, and PSO-SVM
model diagnosis results. The model accuracy was determined using the RMSE, MAD, and R2

parameters, respectively–see Eq. (9) through to Eq. (11) and Part 3 of Fig. 7.

Original icing
thickness

Original influence
factors

MLR

ELM

SVM

BPNN

SVM+BPNN

Part 2

Part 1

RMSE

MAD

Part 3

PSO-SVM

PSO-SVM+BPNN

R2

Figure 7: Framework of the diagnosis model comparisons

4.2 Icing Thickness Diagnosis
The icing thickness diagnosis results obtained using the seven models at 0.75R distance from

the blade root of the wind turbine are shown in Fig. 8. Overall, the diagnosed results of MLR are
quite different from the actual values. Fig. 8 shows a significant deviation in the diagnosis results
obtained using the ELM, SVM, and BPNN models. The hybrid diagnosis model comprising
of SVM+BPNN model reduces the sensitivity of a single diagnosis method. The comparison
between the diagnosis results of PSO-SVM and SVM shows that the particle swarm algorithm
significantly reduces the diagnosis error of the SVM model. Based on a comparative analysis of
all the seven models, the hybrid diagnosis model comprising of PSO-SVM+BPNN yielded the
best fitting performance and is the final model recommended from this paper.

The study compared RMSE, MAD, and R2 of the ice thickness diagnosis results of all the
seven models. As shown in Tab. 3, (a) the RMSE of models MLR, ELM, BPNN, and SVM is
0.163736, 0.052727, 0.039458, 0.029369, respectively; (b) MAD is 0.136714, 0.027359, 0.022686,
and 0.01283, respectively; and, (c) R2 is 0.916161, 0.989339, 0.989339 and 0.996844, respectively.
The RMSE and MAD of MLR are the highest and vice for the R2 value (i.e., the lowest) – which
statistically indicates the poorest fitting for the regression functional model. When comparing a
single diagnosis model, the rank order of model diagnosis accuracy from the highest (best) to
lowest (poorest) is as follows: SVM, BPNN, ELM, and MLR, respectively. Compared to the SVM
diagnosis results, the RMSE and MAD of PSO-SVM declined by about 0.008076 and 0.006992,
respectively, ultimately indicating an improvement in accuracy. From these results, it is apparent
that the particle swarm algorithm plays an important role in the optimization and diagnosis of
the SVM model.

In comparison to the SVM and BPNN models, the RMSE of the SVM+BPNN hybrid
diagnosis model decreased by about 0.000282 and 0.01089, respectively, whilst the MAD declined
by about 0.000299 and 0.001702, respectively–which evidently indicates a further improvement
in the model diagnosis accuracy. From the results in Tab. 3, the RMSE and MAD of the
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PSO-SVM+BPNN hybrid model are consistently the lowest with the highest R2, which proves
the optimality of the model. The PSO-SVM+BPNN model combines the advantages of the two
optimization methods, namely the SVM parametric optimization with PSO and dynamic weighted
hybrid model, which has yielded satisfactory results in icing diagnosis.

Figure 8: Icing thickness diagnosis of the seven models at 0.75R away from the blade root

Table 3: RMSE, MAD, and R2 of the icing thickness diagnosis results of seven models

Model RMSE MAD R2

MLR 0.163736 0.136714 0.916161
ELM 0.052727 0.027359 0.989339
BPNN 0.039458 0.022686 0.989339
SVM 0.029651 0.021283 0.996844
PSO-SVM 0.021575 0.014291 0.998259
SVM+BPNN 0.029369 0.020984 0.996739
PSO-SVM+BPNN 0.021553 0.014280 0.998259

5 Verification and Validation Simulations

This paper selected icing data at other locations of the wind turbine blades as a simulation
case study to verify the applicability of the proposed model for diagnosing icing at different
locations of wind turbine blades. This case study also allowed to further enhance and verify the
accuracy of the diagnosis model. The measuring point of the icing thickness was selected at
the leading edge of the blade. The distances from the root of the blade were 0.25R and 0.5R,
respectively. The 324 sets of data were collected at each measuring point, of which the first 200
sets of data were training samples whilst the last 124 sets of data constituted the test samples.
The environmental factors were similar to the previous case studies discussed in Section 4 of this
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paper. The collected data of the icing thickness at 0.25R and 0.5R away from the root are shown
in Fig. 9 and Fig. 10, respectively.

Figure 9: Data collection of the icing thickness at 0.25R away from the blade root

Figure 10: Data collection of the icing thickness at 0.5R away from the blade root

A statistical binary correlation analysis was performed on the selected icing factors of the
wind turbine blade. As shown in Tab. 4, the statistical results show that each factor is closely
related to the icing thickness.

Table 4: Statistical binary correlations for the icing thickness at 0.25R and 0.5R

Location Factor Pearson correlation Kendall’s tau-b Spearman’s Rho

0.25R Temperature 0.020 0.051 0.071
Humidity 0.222∗∗ 0.115∗∗ 0.179∗∗
Wind speed 0.639∗∗ 0.255∗∗ 0.413∗∗
Water droplet diameter 0.426∗∗ 0.325∗∗ 0.324∗∗

0.5R Temperature 0.695∗∗ 0.453∗∗ 0.641∗∗
Humidity −0.432∗∗ −0.267∗∗ −0.379∗∗
Wind speed 0.234∗∗ −0.005∗∗ −0.004∗∗
Water droplet diameter −0.301∗∗ −0.165∗∗ −0.205∗∗

The diagnosis results of the icing thickness on the front edge of the wind turbine blade at
0.25R and 0.5R of the seven models are as shown in Figs. 11–12, and Tab. 5, respectively. It
can be seen from these results that the findings and conclusion obtained are consistent with the
previous results discussed in Section 4 of this paper. In the single diagnosis model, MLR has
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the lowest diagnostic fit whilst ELM and BPNN have the largest errors in diagnosing local icing.
In diagnosing the icing thickness of the wind turbine blade, PSO plays a significant role in the
optimization of the SVM parameters and the kernel function. From these results, it is evident
that the diagnosis effects of PSO-SVM are not only better than SVM and BPNN individually
but also better than the performance of the SVM+BPNN combined forecasting model.

Figure 11: The icing thickness diagnosis of the models at 0.25R away from the blade root

Figure 12: The icing thickness diagnosis of the models at 0.5R away from the blade root
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Table 5: RMSE, MAD, and R2 of the icing thickness diagnosis results of seven models

0.25R 0.5R

RMSE MAD R2 RMSE MAD R2

MLR 0.200807 0.155044 0.907167 0.166950 0.127756 0.915473
ELM 0.043137 0.027065 0.995671 0.044312 0.027949 0.992016
BPNN 0.034359 0.025481 0.99750 0.035261 0.026698 0.995006
SVM 0.027258 0.020192 0.998261 0.044312 0.027949 0.995605
PSO-SVM 0.200807 0.155044 0.907167 0.026097 0.018021 0.997202
SVM+BPNN 0.043137 0.027065 0.995671 0.032770 0.024932 0.995605
PSO-SVM+BPNN 0.034359 0.025481 0.99750 0.025967 0.017963 0.997202

The diagnosis results of the SVM and BPNN models at 0.5R evaluated using the RMSE
and MAD parameters show that the RMSE and MAD of BPNN are smaller than that of SVM.
However, the results are opposite at 0.25R. Comparative analysis with single SVM and BPNN
models proves that the hybrid diagnosis model comprising of SVM+BPNN has relatively lower
RMSE and MAD, which ultimately improves the accuracy of the diagnosis results. (d) In the two
diagnosis scenarios, the hybrid diagnosis model comprising of PSO-SVM+BPNN had the best
regression fitting and the lowest deviation for the icing thickness analysis.

6 Conclusions and Recommendations

To achieve an accurate and stable diagnosis of the wind turbine blade icing, a dynamic
weighted hybrid diagnosis model based on the PSO-SVM and BPNN formulation was proposed
and successfully verified in this paper. The key findings drawn from the study are listed below:

(1) Based on the outdoor natural environment and experimental data, the characteristic indi-
cators of the environmental factors were extracted using binary correlation analysis of the
environmental factors that affected the wind turbine blade icing. These factors included
temperature, humidity, wind speed, and water drop diameter, which were used to analyze
the wind turbine blades’ icing characteristic.

(2) Through analysis of the training data that were obtained from the experiment, a PSO-
SVM+BNPP combined model is proposed herein for diagnosing and analyzing the icing
state of wind turbine blades. Based on the diagnostic analysis of the ice thickness for
0.75R, 0.25R, and 0.5R from the blade root of the wind turbine, the RMSE was found
to be less than 0.026, MAD less than 0.018, and R2 less than 0.999. This proved and
demonstrated that the diagnostic results of the combined model were more accurate and
reliably superior.

(3) When comparing the PSO-SVM+BNPP combined model with the MLR, ELM, BPNN,
SVM, PSO-SVM, and SVM+BPNN models for blade icing thickness diagnosis at 0.75R,
0.25R, and 0.5R from the blade root of the wind turbine based on RMSE, MAD
and R2 parameters, the hybrid prediction model, namely PSO-SVM+BPNN, yielded best
regression fitting and the lowest deviation for the icing thickness prediction.

The icing on wind turbine blades has a detrimental effect on the power generation efficiency
and operational safety of wind turbines. Based on environmental factors that can easily be
obtained from wind farms, the models proposed in this paper indicated suitability to diagnose the
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thickness of icing on wind turbine blades. A comparison with the surface contact or embedded
sensor diagnosis schemes showed that mitigating icing on wind turbines reduces the operational
difficultness and production/maintenance costs, as well as minimizing/preventing the damage to
the surface and internal structure of the wind turbine blades. The research work presented in
this paper provides valuable decision support for wind farm operations and maintenance during
winter.

Author Contributions: In this research activity, all the authors were involved in the experiment
design and implementation, data analysis and preprocessing phase, results for analysis and discus-
sion, and manuscript preparation. Xiyang Li conceived the experiment of ice coating on the wind
turbine blade, designed research methodology, and participated in data analysis work. Bin Cheng
guided the whole idea and framework of the paper and provided a lot of t revised opinions
for the paper. Hui Zhang was mainly responsible for analyzing and discussing the experimental
results, wrote and revised this paper. Xianghan Zhang conducted data collection and analysis. Zhi
Yun presented the published work, specifically visualization.

Funding Statement: This work is supported by the Natural Science Foundation of China (Project
No. 51665052).

Conflicts of Interest: We declare that we do not have any commercial or associative interest that
represents a conflict of interest in connection with the work submitted. The founders had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript, or in the decision to publish the results.

References
1. Rastayesh, S., Long, L., Dalsgaard Sørensen, J., Thöns, S. (2019). Risk assessment and value of

action analysis for icing conditions of wind turbines close to highways. Energies, 12(14), 2653. DOI
10.3390/en12142653.

2. Frohboese, P., Anders, A. (2007). In effects of icing on wind turbine fatigue loads. Journal of Physics:
Conference Series, 75(1), 12061–12073. DOI 10.1088/1742-6596/75/1/012061.

3. Dolinski, L., Krawczuk, M. (2020). Analysis of modal parameters using a statistical approach
for condition monitoring of the wind turbine blade. Applied Sciences, 10(17), 5878. DOI
10.3390/app10175878.

4. Skrimpas, G. A., Kleani, K., Mijatovic, N., Sweeney, C. W., Jensen, B. B. et al. (2016). Detection of
icing on wind turbine blades by means of vibration and power curve analysis. Wind Energy, 19(10),
1819–1832. DOI 10.1002/we.1952.

5. Kabardin, I., Meledin, V., Dvoinishnikov, S., Naumov, I. (2016). Remote monitoring of ice loading
on wind turbine blades based on total internal reflection. Journal of Engineering Thermophysics, 25(4),
504–508. DOI 10.1134/S181023281604007X.

6. Neumayer, M., Bretterklieber, T., Flatscher, M. (2018). Signal processing for capacitive ice sensing:
Electrode topology and algorithm design. IEEE Transactions on Instrumentation and Measurement,
68(5), 1458–1466. DOI 10.1109/TIM.19.

7. Filippatos, A., Dannemann, M., Nguyen, M., Brenner, D., Gude, M. (2020). Influence of ice accumu-
lation on the structural dynamic behaviour of composite rotors. Applied Sciences, 10(15), 5063. DOI
10.3390/app10155063.

8. Zhang, Z., Zhou, W., Li, H. (2020). Icing estimation on wind turbine blade by the interface temper-
ature using distributed fibre optic sensors. Structural Control and Health Monitoring, 27(6), 2534. DOI
10.1002/stc.2534.

http://dx.doi.org/10.3390/en12142653
http://dx.doi.org/10.1088/1742-6596/75/1/012061
http://dx.doi.org/10.3390/app10175878
http://dx.doi.org/10.1002/we.1952
http://dx.doi.org/10.1134/S181023281604007X
http://dx.doi.org/10.1109/TIM.19
http://dx.doi.org/10.3390/app10155063
http://dx.doi.org/10.1002/stc.2534


EE, 2021, vol.118, no.6 1885

9. Muñoz, C. Q. G., Márquez, F. P. G., Tomás, J. M. S. (2016). Ice detection using thermal infrared
radiometry on wind turbine blades. Measurement, 93, 157–163. DOI 10.1016/j.measurement.2016.
06.064.

10. Villalpando, F., Reggio, M., Ilinca, A. (2016). Prediction of ice accretion and anti-icing heating
power on wind turbine blades using standard commercial software. Energy, 114, 1041–1052. DOI
10.1016/j.energy.2016.08.047.

11. Makkonen, L., Laakso, T., Marjaniemi, M., Finstad, J. K. (2001). Modelling and prevention of ice
accretion on wind turbines. Wind Engineering, 25(1), 3–21. DOI 10.1260/0309524011495791.

12. Dierer, S., Oechslin, R., Cattin, R. (2011). Wind turbines in icing conditions: Performance and
prediction. Advances in Science and Research, 25(1), 245–250. DOI 10.5194/asr-6-245-2011.

13. Cao, Y., Yuan, K., Li, G. (2011). Effects of ice geometry on airfoil performance using neu-
ral networks prediction. Aircraft Engineering and Aerospace Technology, 83(5), 266–274. DOI
10.1108/00022661111159870.

14. Kusiak, A., Verma, A. (2012). A data-mining approach to monitoring wind turbines. IEEE Transac-
tions on Sustainable Energy, 3(1), 150–157. DOI 10.1109/TSTE.2011.2163177.

15. Davis, N., Hahmann, A. N., Clausen, N. E., Žagar, M. (2014). Forecast of icing events at
a wind farm in Sweden. Journal of Applied Meteorology and Climatology, 53(2), 262–281. DOI
10.1175/JAMC-D-13-09.1.

16. Gantasala, S., Luneno, J. C., Aidanpää, J. O. (2017). Investigating how an artificial neural network
model can be used to detect added mass on a non-rotating beam using its natural frequencies: A pos-
sible application for wind turbine blade ice detection. Energies, 10(2), 184. DOI 10.3390/en10020184.

17. Zhang, L., Liu, K., Wang, Y., Omariba, Z. B. (2018). Ice detection model of wind turbine blades
based on random forest classifier. Energies, 11(10), 2548. DOI 10.3390/en11102548.

18. Zhou, G. F., Tan, W., Zhang, D. (2018). In ice detection for wind turbine blades based on PSO-SVM
method. Journal of Physics: Conference Series, 2018, 22036. DOI 10.1088/1742-6596/1087/2/022036.

19. Li, T., Tan, W., Liu, Z. (2019). A hybrid model based on logistic regression algorithm and extraction
algorithm using reward extremum to real-time detect blade icing alarm. International Journal of Pattern
Recognition and Artificial Intelligence, 33(14), 1955016. DOI 10.1142/S0218001419550164.

20. Peng, C., He, J., Chi, H., Yuan, X., Deng, X. (2019). Icing prediction of fan blade based
on a hybrid model. International Journal of Performability Engineering, 1(11), 2882–2890. DOI
10.23940/ijpe.19.11.p6.28822890.

21. Kreutz, M., Ait-Alla, A., Varasteh, K., Oelker, S., Greulich, A. et al. (2019). Machine learning-based
icing prediction on wind turbines. Procedia CIRP, 81, 423–428. DOI 10.1016/j.procir.2019.03.073.

22. Yang, X., Ye, T., Wang, Q., Tao, Z. (2020). Diagnosis of blade icing using multiple intelligent
algorithms. Energies, 13(11), 2975. DOI 10.3390/en13112975.

23. Xu, X., Niu, D., Fu, M., Xia, H., Wu, H. (2015). A multi time scale wind power forecasting model
of a chaotic echo state network based on a hybrid algorithm of particle swarm optimization and tabu
search. Energies, 8(11), 12388–12408. DOI 10.3390/en81112317.

24. Rayala, S. S., Kumar, N. A. (2020). Particle swarm optimization for robot target tracking application.
Materials Today: Proceedings, 33(7), 3600–3603. DOI 10.1016/j.matpr.2020.05.660.

25. Kaloop, M. R., Kumar, D., Zarzoura, F., Roy, B., Hu, J. W. (2020). A wavelet-particle swarm
optimization-extreme learning machine hybrid modeling for significant wave height prediction. Ocean
Engineering, 213, 107777. DOI 10.1016/j.oceaneng.2020.107777.

26. Piotrowski, A. P., Napiorkowski, J. J., Piotrowska, A. E. (2020). Population size in particle swarm
optimization. Swarm and Evolutionary Computation, 58, 100718. DOI 10.1016/j.swevo.2020.100718.

27. Kumar, N., Dilawari, V., Bansal, A. (2020). Chemical equilibrium analysis of energetic materials using
particle swarm optimization. Fluid Phase Equilibria, 522, 112738. DOI 10.1016/j.fluid.2020.112738.

28. Li, D., Huang, F., Yan, L., Cao, Z., Chen, J. et al. (2019). Landslide susceptibility prediction using
particle-swarm-optimized multilayer perceptron: Comparisons with multilayer-perceptron-only, BP neu-
ral network, and information value models. Applied Sciences, 9(18), 3664. DOI 10.3390/app9183664.

http://dx.doi.org/10.1016/j.measurement.2016.06.064
http://dx.doi.org/10.1016/j.measurement.2016.06.064
http://dx.doi.org/10.1016/j.energy.2016.08.047
http://dx.doi.org/10.1260/0309524011495791
http://dx.doi.org/10.5194/asr-6-245-2011
http://dx.doi.org/10.1108/00022661111159870
http://dx.doi.org/10.1109/TSTE.2011.2163177
http://dx.doi.org/10.1175/JAMC-D-13-09.1
http://dx.doi.org/10.3390/en10020184
http://dx.doi.org/10.3390/en11102548
http://dx.doi.org/10.1088/1742-6596/1087/2/022036
http://dx.doi.org/10.1142/S0218001419550164
http://dx.doi.org/10.23940/ijpe.19.11.p6.28822890
http://dx.doi.org/10.1016/j.procir.2019.03.073
http://dx.doi.org/10.3390/en13112975
http://dx.doi.org/10.3390/en81112317
http://dx.doi.org/10.1016/j.matpr.2020.05.660
http://dx.doi.org/10.1016/j.oceaneng.2020.107777
http://dx.doi.org/10.1016/j.swevo.2020.100718
http://dx.doi.org/10.1016/j.fluid.2020.112738
http://dx.doi.org/10.3390/app9183664


1886 EE, 2021, vol.118, no.6

29. Lorestani, A., Ardehali, M. (2018). Optimal integration of renewable energy sources for autonomous
tri-generation combined cooling, heating and power system based on evolutionary particle swarm
optimization algorithm. Energy, 145, 839–855. DOI 10.1016/j.energy.2017.12.155.

30. Salahshoor, K., Kordestani, M., Khoshro, M. S. (2010). Fault detection and diagnosis of an industrial
steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy
inference system) classifiers. Energy, 35(12), 5472–5482. DOI 10.1016/j.energy.2010.06.001.

31. Eskandari, A., Milimonfared, J., Aghaei, M., Reinders, A. H. M. E. (2020). Autonomous moni-
toring of line-to-line faults in photovoltaic systems by feature selection and parameter optimiza-
tion of support vector machine using genetic algorithms. Applied Sciences, 10(16), 5527. DOI
10.3390/app10165527.

32. Krama, A., Zellouma, L., Rabhi, B., Refaat, S. S., Bouzidi, M. (2018). Real-time implementation of
high performance control scheme for grid-tied PV system for power quality enhancement based on
MPPC-sVM optimized by PSO algorithm. Energies, 11(12), 3516. DOI 10.3390/en11123516.

33. Baser, F., Demirhan, H. (2017). A fuzzy regression with support vector machine approach to the esti-
mation of horizontal global solar radiation. Energy, 123, 229–240. DOI 10.1016/j.energy.2017.02.008.
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