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ABSTRACT

Photovoltaic power generating is one of the primary methods of utilizing solar energy resources, with large-scale
photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy. In order to
provide reference strategies for pertinent researchers as well as potential implementation, this paper tries to provide
a survey investigation and technical analysis of machine learning-related approaches, statistical approaches and
optimization techniques for solar power generation and forecasting. Deep learning-related methods, in particular,
can theoretically handle arbitrary nonlinear transformations through proper model structural design, such as
hidden layer topology optimization and objective function analysis to save information that can increase forecasting
accuracy while filtering out irrelevant or less affected data for forecasting. The research’s results indicate that
RBFNN-AG performed the best when applying the predetermined number of days, with an NRMSE value of
4.65%. RBFNN-AG performs better than sophisticated models like DenseNet (5.69%), SLFN-ELM (5.95%), and
ANN-k-means-linear regression correction (6.11%). Additionally, scenario application and PV system investment
techniques are provided to evaluate the current condition of new energy development and market trends both
domestically and internationally.
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1 Introduction

Solar energy is a clean, green energy source. Photovoltaic (PV) power generation is one of the main
methods for exploiting solar energy resources, with large-scale grid-connected photovoltaic power gen-
eration being the most effective method [1]. However, photovoltaic power generation is fundamentally
unpredictable and unstable due to the influence of solar radiation intensity, temperature, humidity,
cloud cover, and many other factors [2]. With the increasing proportion of PV power generation
installed capacity in the power system, the decline in the quality of electricity and even the negative
effect on grid safety caused by the fluctuation of PV power generation can not be ignored. It is an
urgent task for photovoltaic power stations to improve the accuracy of ultra-short-term prediction as
much as possible. At present, the research work on ultra-short-term PV power prediction at home and
abroad can be divided into numerical forecast data-based prediction methods, cloud-based prediction
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methods, or hybrid prediction methods [3]. However, in cloudy weather, the prediction accuracy must
be improved because numerical data cannot directly reflect the short-term variations in solar radiation
caused by cloud growth and motion [4]. The numerical forecast data-based prediction method is
typically straightforward to use, and the prediction results are robust. Cloud map-based prediction
also includes both satellite-based cloud maps and ground-based cloud maps, which can be used to
predict solar radiation in the ultra-short-term or even in real-time by determining the distribution and
movement trends of sky clouds. Due to time and spatial resolution constraints, the forecast technique
based on satellite cloud maps is more accurate for the overall prediction of large areas within a few
hours, but the local prediction error may be significant [5]. In contrast, ground-based cloud map-
based prediction techniques are more suited for predicting photovoltaic power over the next 0–4 h.
In the ground-based cloud map prediction method, in order to improve the prediction accuracy of
the model by taking into account the attenuation of cloud motion to solar radiation [6]. Because
cloud growth and elimination make estimating cloud motion trend more challenging, this method of
employing cloud map information as the direct input of the prediction model demands high accuracy
of cloud recognition and motion trend prediction. Other researchers have developed other predictive
submodels by investigating the various impacts of clouds on solar radiation in a variety of weather
scenarios. In addition, the identification of the cloud map classification sample requires a significant
time-consuming cost for experienced staff [7], greatly limiting the application of this method.

The outcomes of cloud mapping processing, i.e., cloud identification, cloud motion trend pre-
diction, and cloud categorization accuracy, have a significant impact on the performance of the
above ground-based cloud map-based prediction approach. The existing cloud recognition and cloud
classification methods are mainly classified by professional pre-designed image features, and then by
k-neighbor, support vector machine (SVM), decision tree, and other classification methods. Human-
designed features, however, have a hard time accurately identifying the edge information of coiled
and layered clouds, and it is more difficult to judge their motion changes. Further complicating the
classification of clouds is the possibility of many clouds on a single foundation cloud map. Because the
characteristics of the cloud are not visible and the cloud itself experiences expansion and melting, only
the conventional image processing method, which uses artificially created features, can reliably predict
cloud motion trends. The capacity of the model to generalize is strongly dependent on the structural
design of the neural network because conventional neural network-based classification or modeling
approaches use shallow (at least one hidden) network architectures. Deep learning makes full use of
the computing power of the supercomputing platform to solve the above structural design problems,
the traditional artificial feature extraction method to automatically “search” for characteristics on the
computer, thus solving the traditional image processing methods in the feature extraction problem.
Compared with traditional ground PV systems, floating PV systems can save a lot of land and
water resources, and obtain higher power generation efficiency. Liu et al. [8] thoroughly studied
the power generation efficiency of floating PV systems, and conducted a comprehensive analysis of
the advantages and potential of floating photovoltaic systems in China. Compared with the strong
land demand burden of solar panels installed on land, the floating PV technology of installing
solar photovoltaic systems on oceans, lakes, reservoirs, and other water bodies has many advantages.
Sahu et al. [9] gave a comprehensive overview of floating photovoltaic technology, status quo and
various design options. Ranjbaran et al. [10] analyzed and updated different aspects of floating
PV systems as power generation systems, introduced the comparison between ground-mounted and
floating photovoltaic systems.

The remainder of this essay is structured as follows: Section 2 provides a scenario analysis
of photovoltaic power (PV) systems, including distributed PV generating systems, standalone PV
generation systems, and generation systems connected to the grid; Section 3 formulates methods
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for solar energy power generation and forecasting, including cloud cover pattern analysis for solar
energy generation, cloud cover based on AVHRR scan geometry, and correlation analysis; Section 4
introduces ways linked to machine learning for solar energy forecasting, particularly those based
on deep learning techniques; Section 5 analyzes statistical and hybrid approaches for solar energy
forecasting. Section 6 develops an investment analysis and discussion of PV systems, and Section 7
brings this essay to a conclusion.

2 Scenario Analysis of Photovoltaic Power (PV) Systems

PV power systems are categorized based on their functional and operational requirements, compo-
nent configurations, and how they are coupled to other power sources and electrical loads, distributed
PV generation systems, standard-alone PV generation systems and grid-connected generation systems
that are shown in Fig. 1. Distributed PV system can be divided into centralized large-scale grid-
connected PV power plant and distributed PV system. The main feature of the centralized large-
scale grid-connected PV system is that it can transmit the generated electricity directly to the grid,
and the grid will be deployed to supply electricity to customers. Stand-along PV system is mainly
composed of solar cell module, controller and battery. It can be divided into those with batteries,
those without batteries, and hybrid PV systems. Grid-connected PV refers to systems that are directly
connected to the public grid after the direct current produced by the solar module is converted into
alternating current that satisfies the mains grid’s requirements by a grid-connected inverter. Grid-
connected PV power generation systems with storage systems and those without storage systems can
be distinguished.

Figure 1: Photovoltaic power systems

Life cycle assessment (LCA) method was used in [11] to study the environmental impact of grid-
connected generation of c-Si solar modules in China. According to the study, the energy return time
(TEPBT) of the grid-connected PV power generation using crystalline silicon solar modules is 1.6–2.3
years, with greenhouse gas emissions ranging from 60.1 to 87.3 g-CO2eq/kWh depending on different
installation methods. Subhani et al. [12] studied the performance of a new Z-source inverter (ZSI)-
based single-stage power conditioning system (PCS) analyzed for a standalone PV power generation
system. Wang et al. [13] developed a new piecewise generalised state-space averaging (P-GSSA)
model is derived and a multiple time scale modeling is achieved for the grid-connected converters
in PV systems. Zhang et al. [14] analyzed the demand side of China’s distributed photovoltaic (DPV)
power generation by calculating the comparison of the levelized electricity cost (LCOE) with retail
electricity prices and desulfurized thermal power benchmark electricity prices in 4 resource areas in
2018, 2020, and 2025. Mateo et al. [15] pointed out four obstacles to the large-scale integration of
photovoltaics into the distribution network, and made recommendations to overcome these obstacles.
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Remon et al. [16] analyzed the impact of large-scale PV power plants on the transmission grid under
different penetration levels. Considering a power plant composed of multiple power converters using
synchronous power controllers (SPC), the analysis results show that photovoltaic power plants using
SPC can limit frequency deviation, improve oscillation damping, and reduce the stress of other units,
thereby affecting the power system Have a beneficial impact. Ogbonnaya et al. [17] proposed a new
type of thermodynamic efficiency index for selecting the best location for large-scale PV power
generation as a resource reduction strategy. By choosing the best location for large-scale PV power
generation (LSPPG), the same amount of land space, materials, and energy resources will achieve
higher utilization efficiency. Gigoni et al. [18] extensively compared simple forecasting methods with
more complex forecasting methods for 32 PV power plants of different scales and technologies
throughout the year, and tried to assess the impact of weather conditions and weather forecasts on
photovoltaic power generation forecasts. The direct prediction technology of photovoltaic power
generation is comprehensively and systematically reviewed by Das et al. [19]. The impact of the
dynamic behavior of PV power generation systems on the transmission system’s short-term voltage
stability was examined in [20], and the findings indicate that these measures are crucial in preventing
voltage instability brought on by the sudden failure of photovoltaic systems due to faults. The study
findings indicate that the installed hydropower capacity and the annual solar energy absorptivity play
a significant role in the scale optimization of PV power stations. The complementary operation of
hydropower and PV, as well as three new operation modes of the actual scenario, were explored in
[21]. The methods to predict 1-day prior regional PV power was evluated in [22,23], and the results
indicated that selecting the appropriate prediction method based on regional characteristics is critical.
A nested model was created in [24] to estimate the PV energy delivered by analyzing the size of the
PV power station integrated into the hydropower plant using cost-benefit analysis and accounting
for changes in the downstream water level. This model incorporates both long-term and short-term
operational decisions (VDWL). In [25], the direct prediction technology of PV power generation is
thoroughly and methodically studied. The significance of input and output data correlation and model
input data preparation are also covered. A medium- and long-term wind and photovoltaic power
generation prediction method based on copula function and long- and short-term memory networks
is proposed in [26], which can effectively extract the key meteorological factors of nonlinear effects
and trends affecting power generation. Combined with the renewable energy management system, a
multi-site PV power station prediction model based on a deep learning algorithm was proposed by
[27]. A multivariable grey theory model based on the particle swarm optimization (PSO) algorithm is
proposed in [28] for short-term photovoltaic power generation prediction. A mathematical calculation
model of carbon emissions in the production, transportation, and waste treatment of PV power
generation systems was proposed by [29,30] in order to study the carbon footprint of the supply chain
of photovoltaic power generation and calculate the reduction of carbon emissions. Kawabe et al. [20]
conducted research on the impact of the PV power generation system’s dynamic behavior on the
transmission system’s short-term voltage stability. The findings demonstrate the significance of these
procedures in minimizing voltage instability brought on by abrupt PV system failures.

A fault-tolerant strategy to maintain the current balance of the three-phase grid when an unequal
power generation fault occurs in the healthy h-bridge was proposed in [31]. The effectiveness of the
proposed fault tolerant control method is verified by the test results of a 430 V, 10 kW experimental
prototype. Yu et al. [31] proposed a fault-tolerant strategy for maintaining the current balance of
the three-phase grid when an unequal power generation fault occurs in the healthy h-bridge, and
confirm the effectiveness of the proposed fault tolerant control method. Hancevic et al. [32] studied
the possibility, benefits and challenges of the widespread application of distributed photovoltaic
power generation in the Mexican residential sector to support eligible households to adopt distributed
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photovoltaic power generation (DPVG). Based on the positive results in terms of economic and
environmental impact, it provided important support for the further design and implementation of
the DPVG plan. A PV power generation system based on qzs-cmi energy storage was proposed in [33].
The system realized the distributed Maximum power point tracking (MPPT) of PV panels, balance
the power between modules, and provide the required power for the grid. The real option model of
renewable energy investment was established in [34]. This model empirically evaluates the investment
value and optimal timing of solar PV power generation in China.

Studies have shown that the development of carbon market helps to promote the optimal
investment time. A long-term multi-objective optimization model for integrated hydropower/PV power
generation system was proposed in [35], which considers both the smoothness of power generation
process and the annual power generation of the system. The results show that in nature, hydropower
is an ideal compensation resource for PV power generation. A simulation model for the growth of
photovoltaic power generation in China was created using the system dynamics method, and sensitivity
analysis was performed [36]. The future development trend is forecasted by the simulation results of
electricity generation, investment, and capacity in the years 2012–2032, and the efficacy and impact
of incentive programs are assessed. Tafti et al. [37] proposed a constant power generation (CPG)
algorithm for PV systems, suitable for single-stage and two-stage PV power plants, and can flexibly
move the operating point to the right or left of the maximum power point. The experimental results
of the 1-kVA PV system verify the effectiveness of the proposed algorithm under various operating
conditions and prove the function of the proposed CPG algorithm.

3 Solar Energy Power Generation and Forecasting Techniques

The pattern analysis of cloud cover for solar energy generation, cloud cover based on AVHRR
scan geometry and correlation analysis of the inputs for solar forecasting are provided in this Section.
Solar energy power generation and forecasting based on the processing steps and time horizon is
shown in Fig. 2. Short-term forecasts are useful in integrated renewable energy management systems,
including economical load scheduling and power system operation, and typically span from one hour
to one day. The scheduling of electronic systems made up of high-end transformers and various
forms of electromechanical equipment requires a medium-term projection with a time horizon of
one week to one month. Long-term forecasts have a time horizon between one month and one year,
and this decision is suitable for long-term generation, transport, distribution, and solar rationing
that takes into account seasonal trends. Due to the large time span of long-term forecasting, there
are too many factors to be considered, resulting in a decrease in the accuracy of forecasting. An
alternative is to use short-term forecast extension to make long-term and medium-term forecasts,
although it also reduces forecast accuracy [19]. Clouds are variously shaped mixtures of tiny water
droplets, supercooled water droplets, ice crystals, and snow crystals that are formed by condensation
of water vapor in the atmosphere. The macroscopic characteristics and quantity of clouds, especially
the corresponding distribution and evolution in the sky, can show the relevant movement, stability,
and water vapor of the atmosphere over time [38]. This is also one of the most important signs for the
evolution of the future weather. The cluster-classify method must be used for the pattern analysis of
clouds in order to precisely detect and record clouds under various types of weather. The worldwide
cloud categorization technique, which strictly separates clouds into 29 categories, 10 genera, and 3
families according to their visual features, structure characteristics, and cloud base height, is currently
used in the observation of meteorological stations. Approximately, the cloud cover can be categorized
as three types of clouds: cumulus, stratus and cirrus. The outlined three types of clouds produce ten
basic types of clouds if the corresponding height and words for rainfall are all considered together [39].
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Figure 2: Types of PV power forecasting

3.1 Patterns Analysis of Cloud Cover for Solar Energy Generation
In the actual program, a lot of trustworthy expertise with forecasting weather changes over the

following 12 h is employed. Villous cumulus clouds, for instance, may signal favorable weather even
though they are widely spread, whereas expanding or fresh growth may signal an unexpected rain.
Although the troposphere is where the majority of clouds on Earth originate, they can occasionally be
seen in the stratosphere and mesosphere. The outlined three main layers of the atmosphere are often
referred to as the “homogeneous layer”, in which the composition ratio of all atmospheric substances is
roughly uniform and does not change much due to location, time and altitude [40]. The “homogeneous
layer” is often contrasted with the heterogeneous layer, which consists of the warming layer and the
exosphere and belongs to the transitional zone of outer space. The supervised cloud classification
methods usually consist of Maximum Likelihood Estimation (MLE) [3] and Support Vector Machines
(SVM) [41]. In recent years, many neural networks have been widely used for cloud classification, such
as Probabilistic Neural Network (PNN) [42] and Self Organizing Feature Maps (SOM) Network [43].
Ameur et al. [44] used C-means clustering method for cloud pattern analysis, and the results related to
texture features that were obtained from four directions of Meteosat satellite images, i.e., 0, 45, 90 and
135, and made use of k-means clustering for image segmentation. Li et al. [45] improved the traditional
single classification method by intergating the Genetic Algorithm (GA) fuzzy C-means clustering and
fuzzy subtraction clustering. Welch et al. [46] used BP neural network to divide AVHRR-LAC data
images into 10 categories. The model architecture of used neural network is 20-55-55-10, where 20
represents the dimension of the input feature space, and the overall accuracy of Bootstrap classification
was 87.6%. For accurate ground-based meteorological cloud classification, Zhang et al. [47] proposed
CloudNet, a new CNN model. Liu et al. [48] presented the novel joint fusion convolutional neural
network (JFCNN) to integrate multimodal information for ground-based cloud classification.

For ground-based cloud recognition, a novel technique known as the multi-evidence and multi-
modal fusion network (MMFN) has been put out. MMFN might learn extended cloud information
by fusing heterogeneous data into a cohesive framework. The MMFN is evaluated on a multimodal
ground-based cloud database (MGCD) and achieves a classification accuracy of 88.63%. Ye et al. [49]
proposed “DeepCloud” as a novel cloud image feature extraction approach by resorting to deep
convolutional visual features. Kurihana et al. [50] presented a framework for cloud characterization
that makes use of modern unsupervised deep learning technologies. The study showed that the
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proposed method extracted physically relevant information from radiance data and produced mean-
ingful cloud classes. Compared with the window clustering algorithm currently used by FY-2C, and
figured out that SOM method had better classification accuracy [51]. The cluster results show that the
SOM method cannot only greatly improve the classification results at the pixel level, but also accurately
classify cloud clusters into cumulonimbus, cirrus, and altostratus clouds. The existing cloud pattern
analysis methods can detect clouds by using data from infrared channels and distinguish altostratus
clouds by using the brightness temperature gradient of water vapor channels. High-accuracy cloud
cover forecasting is critical to the analysis and evolution of climate predictions in many regions [52].
Oktas is a classical performance indicator used to measure the cloud amount based on the cloud
cover with a discrete scale, which consists of an eighth of the sky domes based on the pre-divided
eight boxes. Particularly, 0 oktas and 9 oktas depict, respectively, a cloudless sky and a sky with some
weather events. The experimental results demonstrate that the cloud cover distribution patterns in
spring and summer have obvious seasonal characteristics and that there are also significantly different
distributions of meteorological features [53–55]. These patterns are related to the 22-year satellite-
derived cloud cover record in the Pacific Northwest (PNW).

3.2 Cloud Cover Based on AVHRR Scan Geometry
The feedback system for weather analysis benefits from the cluster analysis of the cloud cover,

particularly its important climatic traits and probable cloud dispersal patterns. Clouds have a direct
impact on the earth-atmosphere system’s radiation balance, heat balance, temperature, and humidity
distribution as an internal characteristic of the climate system. The connection between clouds and
climate can become quite intricate by taking part in a number of positive and negative feedback
mechanisms. Cloud cover is one of the significant meteorological factors which can reflect the feedback
mechanism to a large extent. However, few studies on cloud cover change were focused on while most
data was collected from ground observation due to the lack of data. Cloud cover is typically treated
as cloudiness, which is used to measure the cloud amount and obscured by a portion of the sky from
a particular location. The cloud cover is always correlated to the sunshine duration, and the sunshine
is most abundant when the amount of clouds is the least. The unsupervised cloud classification
methods can be divided into three types of methods: the threshold method, the histogram method,
and clustering method. Earth-satellite geometry, as one of the important modern geodesy approaches,
is usually treated as a measurement technique based on the observation of man-made Earth-satellite to
construct the measurement method. The ground position, water, space position, as well as the shape,
size and gravity field of the Earth is the main components of the outlined methods.

3.3 Correlation Analysis of the Inputs for Solar Forecasting
With the application of ground observation data, researchers are gradually learning some climate

characteristics of the cloud and the feedback effect of cloud, radiation and precipitation. However,
station observation has its own insurmountable defects, such as cloud overlap error, weather depen-
dence and restrictions on the observation area. Satellite data, with its wide coverage, large volume, high
repetition frequency, strong objective truth, reliable source of information, and many other advantages,
has become a good supplement of ground observation data.

cov
(
Xi, Xj

) =
∑

k=1,...,m (xki − x·i)
(
xkj − x·j

)

m − 1
(1)

where X = [X1, X2, · · · , Xn]
T ,

{
xk· = [xk1, xk2, · · · , xkn]

T
∣∣ 1 ≤ k ≤ m

}
, Xi and Xj represent two variables

of different correlation, and m is the length of the given cloud data. The correlation coefficient is used
to reflect the degree of correlation between different variables. The correlation coefficient is calculated
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by the product difference method, which reflects the degree of correlation between different cloud
variables and their corresponding mean values. The m − 1 represents the sample mean of the random
variable, because the mathematical expectation of the variable is not obtained.

PV generation capacity is generally influenced by a variety of factors, such as: (1) The height
angle of the sun and geographic latitude; Generally, the higher the height angle of the sun, the lower
the solar radiation intensity; however, in low latitude regions, the higher the height angle of the sun,
the higher the radiation intensity (2) The impact of altitude and atmospheric transparency: When the
sky is clear, the atmosphere is more transparent and the sun’s radiation is stronger. The atmosphere
is more transparent at higher altitudes since the air is thinner there, hence the higher the height,
the more transparent the atmosphere will be. (3) The number of hours of sunlight, the longer the
sunlight duration, the more total solar radiation is obtained on the ground. (4) The inverter efficiency,
high-power inverters must have high efficiency even while delivering electricity to low loads. The
effectiveness of the inverter in PV generating systems has a big impact on increasing solar power
generation capacity and reducing power generation expenses. For PV generating systems, the inverter
should have low power loss and great efficiency. As a result, the grid-connected inverter should have a
maximum power point tracking control feature that can be engaged whenever there is sufficient solar
radiation in order to increase output efficiency. In addition, total PV generation is linked to wind
speed, wind direction, surface temperature, relative humidity, total cloud cover, zenith and azimuth
[56] as listed in Table 1. Correlation analysis of the inputs for PV forecasting and feature importance
(from highest to lowest) related to Table 1 is shown in Figs. 3 and 4, respectively.

Table 1: Feature importance

shortwave_radiation_backwards_sfc 0.38
shortwave_radiation_backwards_sfc 0.38
mean_sea_level_pressure_MSL 0.12
wind_speed_80_m_above_gnd 0.07
wind_speed_10_m_above_gnd 0.02
snowfall_amount_sfc 0.02
wind_direction_80_m_above_gnd 0.01
wind_direction_10_m_above_gnd 0.01
wind_direction_900_mb −0.00
total_precipitation_sfc −0.00
wind_gust_10_m_above_gnd −0.03
high_cloud_cover_high_cld_lay −0.04
medium_cloud_cover_mid_cld_lay −0.04
low_cloud_cover_low_cld_lay −0.04
otal_cloud_cover_sfc −0.08
temperature_2_m_above_gnd −0.09
relative_humidity_2_m_above_gnd −0.11
wind_speed_900_mb −0.13
Zenith −0.15
Azimuth −0.43
angle_of_incidence −0.44



EE, 2023, vol.120, no.2 393

Figs. 3–4 are generated based on the methods provided in the [56]. Based on the outlined
discussion, the following conclusions have been reached: Shortwave radiation rearward and Generated
Power KW have a 0.56 correlation. Relative Humidity and Zenith are correlated (+0.51), Relative
Humidity and Low Cloud Cover are also correlated (+0.49), Angle of Incidence and Zenith are
negative associated with Generated Power (−0.65). Shortwave radiation backwards and Zenith have
a negative correlation of (−0.55), and which and Relative humidity have a negative correlation of
(−0.72), and Relative humidity and Temperature have a negative correlation of (−0.77).

Figure 3: Correlation analysis of the inputs for PV forecasting



394 EE, 2023, vol.120, no.2

Figure 4: Feature importance (from highest to lowest)
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4 Machine Learning-Related Approaches for Solar Energy Forecasting

Solar energy forecasting and classification techniques based on historical data are shown in Fig. 5.
In order to predict the PV output more accurately, the inertia weighting strategy and Cauchy mutation
operator were introduced [57] to improve the moth flame optimization algorithm predicted by the PV
power generation SVM.

Figure 5: Solar energy forecasting and classification technique

To predict these disturbances, Monteiro et al. [58] analyzed seven training algorithms used in
artificial neural networks to generate active power estimates, and then compared their best statistical
results with SVM and Kalman filtering (KF) techniques. It is concluded that artificial neural networks
(ANN) are more suitable for this kind of problem than SVM and KF.

4.1 Neural Network-Related Approaches
For power generation forecasting of photovoltaic panels, da Silva et al. [59] used ANN with seven

training algorithms, which outperformed SVM. Leva et al. [60] proposed ANN for PV plant energy
forecasting to analyze the input dataset sensitivity.

Chen et al. [61] presented a prediction model for PV power generation based on the back
propagation (BP) neural network optimized by the mind evolutionary algorithm (MEA), which
used the MEA to optimize the weights and thresholds within the BP neural network to overcome
the drawbacks of traditional learning algorithms, the proposed MEA-BP prediction model, which
can more accurately predict the PV output. Zhong et al. [62] used Pearson’s correlation coefficient
to analyze meteorological factors, and selected irradiance and battery temperature as important
influencing variables. The power generation of PV power plants is predicted using general regression
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(GR) and BP neural networks on the basis of this. The BP neural network forecasts the approach has
superior prediction results than the GR method in PV power generation, according to comparison and
analysis of the two models’ outputs. In order to reduce the negative impacts of PV energy on electric
power and energy systems, Wang et al. [63] proposed a novel hybrid method for deterministic PV power
forecasting based on wavelet transform (WT) and deep convolutional neural network (DCNN). The
original signal is decomposed into several frequency series using WT, and DCNN is used to extract the
nonlinear features and invariant structures present in each frequency. It is critical to accurately predict
PV power in order to reduce the negative impact of PV plants on power systems. As a result, Li et al. [64]
developed a hybrid deep learning approach based on convolutional neural network (CNN) and long-
short term memory recurrent neural network (LSTM) for PV output power forecasting. Zang et al. [65]
developed a hybrid method for short-term PV power forecasting based on a deep CNN to mitigate
the impact of solar radiation uncertainty on grid-connected PV systems. Korkmaz [66] proposed a
new CNN model, SolarNet, for short-term photovoltaic output power forecasting under different
weather conditions and seasons. Compared with other deep learning methods, SolarNet has higher
accuracy and stability in short-term PV power forecasting. Wang et al. [63] proposed a CNN, an LSTM
network, and a hybrid model based on a CNN and an LSTM network model to predict and compare
photovoltaic power generation. The results show that the prediction effect of the mixed model is the
best, followed by CNN, and the LSTM has the worst prediction effect. A medium and long-term
wind and photovoltaic power generation prediction method based on copula function and LSTM
network is proposed [26], which can effectively extract the key meteorological factors of nonlinear
effects and trends affecting power generation. A new PV power prediction model is proposed, and the
BP ANN method is used to predict the PV power generation in the next 24 h. Experiments show that
compared with the traditional model, the model can improve accuracy [67]. Recent research on PV
power forecasting is listed in Table 2.

Table 2: Recent researches on PV power forecasting

References Forecast horizon Forecast error Forecasting model

[60] 24 h RMSE 12.5%–36.9% ANN
[63] 15–120 min RMSE, CRPS WT-DCNN-QR
[64] 15–180 min RMSE Pers., BP/RBF, CNN-LSTM
[65] 1 h RMSE, MAE, MASE VMD-CNN, CNN
[67] 24 h MAPE 7.65% ANN
[68] 7.5/15/30/60 min MAE, RMSE, MAPE LSTM
[69] 6/12/24 h MAE, RMSE LSTM, RNN, GRNN, ELM
[70] 6 days RMSE LSTM, RNN, GRNN, ELM
[71] 15 min MAPER2 LSTM

To accurately predict the power output of PV systems in the short term, an LSTM-based deep
learning approach was proposed by Harrou et al. [71]. The application of the latest 10 neural networks
and intelligent algorithms in short-term PV prediction is comprehensively compared and analyzed [70].
The simulation results in MATLAB show that season affects the accuracy of all methods, and the pro-
posed hybrid method has the best overall performance. A BESSs scale and control strategy for market
scheduling of PV power plants one hour ago and one day ago was presented in [72]. The Levenberg-
Marquardt back propagation learning algorithm is used to train the feed forward neural network,
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and the prediction model is established to predict solar irradiance and load energy consumption.
Niu et al. [73] proposed based on random forest (RF), improved grey ideal approximation (IGIVA),
complementary integrated empirical mode decomposition (CEEMD), particle swarm optimization
algorithm based on dynamic inertia factor (DIFPSO) and back propagation neural network (BPNN)
hybrid forecasting model for PV power generation, RF-CEEMD-DIFPSO-BPNN. Through empirical
analysis, the effectiveness of the model in the prediction of photovoltaic power generation is verified.
Zhou et al. [68] proposed a hybrid integrated deep learning framework to predict short-term PV
power generation in a time series manner. Use two LSTM neural networks for temperature and power
output prediction, and add an attention mechanism to adaptively focus on the more important input
features in the prediction. Al-Dahidi et al. [74] utilized Extreme Learning Machines (ELMs) to provide
accurate 24 h-ahead solar PV power production predictions. Wang et al. [75] presented a short-term
PV power prediction model based on the online sequential extreme learning machine with a forgetting
mechanism (FOS-ELM) to reduce the negative impact of the use of PV power.

In order to better demonstrate the quality of the different models, a comparison in Table 3 of
model results from recent literature was made. The peak power normalized RMSE was used to evaluate
the prediction quality of the models (NRMSE). The model prediction results of all the models in the
literature were analyzed and it was found that RBFNN-AG showed the best performance using the
number of setup days. The performance of RBFNN-AG outperformed many other complex models
such as DenseNet, SLFN-ELM, and ANN-k-means-linear regressive correction.

Table 3: Comparison of PV prediction accuracy

References Model Testing set (days) NRMSE (%)

[76] RBFNN-AGO 730 4.65
[77] DenseNet 765 5.69
[78] SLFN-ELM 730 5.95
[79] ANN-k-means-linear regressive correction 730 6.11
[78] BPNN 730 6.30
[80] SOM-LVQ-SVR-fuzzy inference 730 7.00
[79] ANN-k-means 730 7.05
[77] ResNet 365 7.16
[77] MLP 365 7.43
[77] CNN 365 7.67
[81] SDD-LSTM 730 7.74
[80] SVR 730 8.05
[77] ETS 365 8.15
[77] SVR 365 8.37
[77] Theta 365 9.01
[82] NWP-LS 365 9.30
[77] RFR 365 9.70
[77] Physical 365 9.82
[83] Ensemble SARIMA(X) 730 10.25
[81] BPNN 730 10.47
[82] NWP-LS 365 11.00

(Continued)
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Table 3 (continued)

References Model Testing set (days) NRMSE (%)

[81] SVR 730 11.17
[83] ANN 730 11.26
[82] KNN-weighted average 630 15.30

4.2 Statistical Machine Learning-Related Approaches
In order to predict the PV output more accurately, the inertia weighting strategy and Cauchy

mutation operator was introduced [57] to improve the moth flame optimization algorithm predicted
by the PV power generation SVM.

Statistical and artificial intelligence-based time series forecasting techniques for PV power output
were introduced and compared by Sharadga et al. [84], who also employed hourly solar power
projections to assess the efficacy of various models. Monteiro et al. [58] examined seven training
algorithms used in ANN to produce active power estimations and compared the best statistical
outcomes with SVM and Kalman filtering (KF) methods to forecast these disruptions. The conclusion
is that artificial neural networks, as opposed to SVM and KF, are better suited for this type of
challenge. Lamsal et al. [85] used method of using a discrete Kalman filter (DKF) to lessen the bias
error existing in the projected data was recommended as a way to predict the actual power of wind
and PV systems.

Hossain et al. [69] proposed an algorithm for short-term PV power prediction using an LSTM
neural network and comprehensive weather forecast. The k-means algorithm is used to classify
historical irradiance data into a dynamic type of sky group that changes hourly in the same season,
and the statistical characteristics of historical weather data are embedded, which greatly improves
the prediction accuracy. Ekström et al. [86] proposed the statistical method based on Monte Carlo
simulation to analyze the PV power generation scenarios containing new power generation sites
that lack data measurement. Ding et al. [87] designed a new discrete grey model with time-varying
parameters to deal with various PPG time series with nonlinearity, periodicity, and volatility widely
existing in long-term PPG sequences. The study results show that the model has high prediction
accuracy, small empirical results volatility, and generalization. Statistical, random and hybrid machine
learning algorithms based on different numerical weather prediction (NWP) input data were developed
in [88], and NWP data from IFS and WRF models was treated as input for solar energy forecasting.

5 Statistical Approaches and Hybrid Approaches for Energy Forecasting

Through empirical analysis, the effectiveness of the model in the prediction of photovoltaic power
generation is verified. Zhou et al. [68] proposed a hybrid integrated deep learning framework to predict
short-term PV power generation in a time series manner. Yi et al. [89] combined the Data envelopment
analysis (DEA) and Tobit regression analysis methods to analyze the factors affecting efficiency
and improve the efficiency of PV power generation. For the short-term forecasting of PV power,
Bracale et al. [90] suggested a new probabilistic approach based on a competitive ensemble of several
base predictors. A probabilistic forecasting method for single household electricity, photovoltaic power
generation and net demand using the Gaussian process was studied in [91]. The discriminant ability
of relevant scoring rules for the performance evaluation of the spatio-temporal trajectory of PV
power generation was studied in [92]. The advantages of considering spatio-temporal correlation over
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probability prediction and point prediction have been studied. Dong et al. [93] proposed two novel
stochastic forecasting models for solar PV, namely, using uncertain basis functions to predict solar
radiation and PV power and using stochastic state-space models to characterize the behavior of solar
radiation and PV power output. Wang et al. [94] proposed a two-tier model to coordinate the operation
of cascade hydropower and adjacent wind and PV facilities.

In order to solve the pressure problem that the hybrid power generation of dispatchable
hydropower and non-dispatchable PV power energy may bring to the integrated management of
water resources, Ming et al. [95] proposed an adaptive operating rule program for large-scale hydro-
PV hybrid power plants. Shepero et al. [96] summarized the research results on spatio-temporal PV
power generation and electric vehicle charging load modeling at home and abroad. The two main
goals of PV potential research are to increase the precision of the ramp rate model for PV power
generation and to calculate the overall clear sky index at the city size. An efficient home energy
management system (HEMS) concept for self-dispatching the assets of residential end users was put
out by Javadi et al. [97]. The self-dispatching problem is represented using a random mixed integer
linear programming (MILP) framework, which enables the best possible determination of the state
of household appliances throughout the day and quickly converges to the global optimal solution.
Liu et al. [98] proposed a short-term PV power prediction model using an improved chicken flock
optimization algorithm. The input of the model is determined by the correlation coefficient method,
and the weight and the threshold of the extreme learning machine are optimized by the improved
chicken flock optimization algorithm. The average absolute percentage error and root mean square
error (RMSE) of the improved model are 5.54% and 3.08%, respectively. Yang et al. [99] proposed an
equivalent modeling method based on the Canopy-FCM clustering algorithm to accurately analyze
the dynamic characteristics of a grid-connected photovoltaic power station. Gan et al. [100] proposed
a photovoltaic thermal (PVT) system that combined with a phase change material (PCM) as a thermal
storage medium for managing the photovoltaic temperature. Jiang et al. [101] introduced the power
sharing problem between different energy storage components and two optimization objectives for the
energy loss of the energy storage system and the state of charge of the energy storage system. To cope
with abrupt variations in load demand requiring energy storage with high power density capabilities,
Aktas et al. [102] presented a hybrid energy storage system (HESS) comprising of a high energy and
power density storage battery bank and an ultra-capacitor unit, respectively. Chen et al. [103] proposed
a smoothing method for fuzzy complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) based on the optimal base power of a variable-speed pumped storage station (VSPSS).
When compared to the fixed base power smoothing method, this method effectively suppresses PV
power fluctuations. The proton exchange membrane fuel cell system (PEMFCS) in combination with
PV and battery is now seen as a promising alternative to power generation. A dual mode distributed
economic control for a fuel cell-photovoltaic-battery hybrid power generation system (HPGS) was
proposed by Yang et al. [99]. In order to solve the problem that the maximum power of PV will
cause the overvoltage of the grid, Prasetyono et al. [104] proposed a modified MPPT algorithm using
incremental conductance for constant power generation of PV systems. Nguyen et al. [105] introduced
a new MPPT algorithm for photovoltaic power generation systems. Compared with the existing
popular MPPT algorithm (P&O), its performance is superior.

6 PV System Investment Analysis and Discussion

The amount of solar energy produced by the system needs to be better understood because it is a
crucial component of the power producing system. The best possible distribution of solar and other
energy sources can balance supply and demand. Improved solar forecasting will increase the flexibility
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and adaptability of PV systems to changing environmental conditions while reducing disruption
and total investment costs. These predictions are becoming more accurate thanks to research. Solar
forecasting essentially gives PV systems a mechanism to foresee and balance energy production and
consumption. Reliable solar predictions can best optimize the way they plan controlled units when a
PV system has numerous generating resources available.

Integrated energy systems (IESs) are considered a trending solution to the energy crisis and
environmental issues. Wang et al. [106] established an IES operation optimization model that included
photovoltaic, combined heat and power generation systems (CHP) and battery energy storage to
achieve the goal of optimal component scheduling. In addition, the improved differential evolution
algorithm (IDEA) was used to validate the effectiveness of the model. Tian et al. [107] provided a
method based on real options to analyze the investment value of PV power generation under the
linkage of the carbon market. From the perspective of power generation companies, evaluate PV
power generation under uncertain conditions of investment costs, electricity prices, carbon prices,
and subsidy payments. Briese et al. [108] developed a solar PV power generation system ecological
network analysis based on the CdTe PV module material, energy and water life cycle inventory. The
technical and economic performance of two HESs composed of BAPV and batteries for residential
and commercial housing was studied in [109]. The results show that the use of BAPV in commercial
building HES can reduce customer electricity costs.

Krauter [110] proposed a simple and effective method for matching PV power generation with the
grid load curve of PV-based energy systems. During periods of high demand, peak power generation is
accomplished by the following operations: azimuth and tilt angle adjustment, usage of angle-selected
optical surfaces, photovoltaic module thermal control, and smart site selection, showing how PV
power plants should adapt to load requirements. The selection of a case study was presented [111] to
evaluate the possibility of solar energy combining heat and power generation. The results of case study
show that it is beneficial in economy and environment to invest in small and large solar-biomass hybrid
power plants for cogeneration under the climate conditions of northern Europe. The potential of
renewable energy technologies was investigated [112], especially PV power generation and its economic
and environmental impacts on Bangladesh. The future dynamic PV power generation potential was
evaluated [113] based on the resources suitable for photovoltaic systems. Priyadarshi et al. [114]
proposed a three-phase voltage source inverter current control method based on fuzzy space vector
pulse width modulation (FSVPWM), which uses a MPPT algorithm based on hybrid fuzzy particle
swarm optimization to achieve high tracking efficiency and the optimal maximum power point under
unfavorable operating conditions. In particular, the suggested hybrid system accurately obeys MPPT
with excellent performance regardless of solar irradiation and wind velocity. The market participation
based on different firming control strategies of an IPV power plant was proposed by Saez-de
Ibarra et al. [115], to optimize the economic exploitation based on the storage system management,
taking PV generation predictions into account. A method for determining the PV potential of rooftops
in cities or regions was decribed in [116]. The method estimates the total area that can be used for
rooftop PV installation and the solar radiation throughout the event year. In order to determine
the best on-grid price for solar PV power generation in 30 Chinese provinces, Zhang et al. [117]
coupled the least square Monte Carlo method with the backward dynamic programming algorithm.
Hosenuzzaman et al. [118,119] conducted an examination of the PV cell technology, energy conversion
efficiency, economic analysis, energy policy, environmental impact, diverse applications, prospects, and
advancement.

Although there is a high trend of government and policy makers to deploy PV technology in Iran,
there are still some obstacles to the potential of the sector due to insufficient industry growth, financing
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issues, lack of governance rules and lack of a sustainable development roadmap. Addressing these
problems requires long-term and sustained policies to obtain technological and industrial development
in order to achieve large-scale advances in the sector in the coming decades [120,121].

7 Conclusions

This paper offers a thorough, up-to-date assessment of machine learning, statistical, and opti-
mization strategies for solar power generation and forecasting. Investment in PV systems and solar
forecasting are discussed in particular. This study formulates and addresses solar energy power
generation and forecasts. The literature comparison of deep learning-related approaches then delves
further into the benefits and drawbacks of various related methods as well as the improvement
plan. The PV system investment analysis and discussion are offered in the final section. This study’s
suggested approach will aid relevant academics and engineers in their understanding of and application
of solar energy power generation and forecasting in architectural design and analysis. In order to lower
generation system costs and integrate renewable energy, the most recent research on PV generation
forecasts is crucial. Energy merchants and power plant managers can use it to obtain more precise
projections. The collection of meteorological data from the atmosphere is made possible by the use
of remote sensing technology. It is possible to forecast the power of photovoltaic generating using
this statistics. In the forecasting of renewable sources, accuracy is crucial. When compared to single
error forecasts, the usage of group error forecasts can provide more reliability. The processes taken to
process meteorological data and the precision of the forecasts are directly tied to the proper model. It
is anticipated that more appropriate data pre-processing techniques and neural network models will
emerge in the future, improving forecast precision and supporting solar power generation as a source
of renewable energy.
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