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Abstract: The ORB-SLAM2 based on the constant velocity model is difficult to
determine the search window of the reprojection of map points when the objects
are in variable velocity motion, which leads to a false matching, with an inaccu-
rate pose estimation or failed tracking. To address the challenge above, a new
method of feature point matching is proposed in this paper, which combines
the variable velocity model with the reverse optical flow method. First, the con-
stant velocity model is extended to a new variable velocity model, and the
expanded variable velocity model is used to provide the initial pixel shifting
for the reverse optical flow method. Then the search range of feature points is
accurately determined according to the results of the reverse optical flow method,
thereby improving the accuracy and reliability of feature matching, with strength-
ened interframe tracking effects. Finally, we tested on TUM data set based on the
RGB-D camera. Experimental results show that this method can reduce the
probability of tracking failure and improve localization accuracy on SLAM
(Simultaneous Localization and Mapping) systems. Compared with the traditional
ORB-SLAM2, the test error of this method on each sequence in the TUM data set
is significantly reduced, and the root mean square error is only 63.8% of the ori-
ginal system under the optimal condition.

Keywords: Visual SLAM; feature point matching; variable velocity model;
reverse optical flow

1 Introduction

In recent years, with the performance improvement of edge computing platforms and the continuous
emergence of excellent algorithms, autonomous localization and navigation for mobile robots, such as
autonomous vehicles and drones, have been developed rapidly. The SLAM technology [1,2], which is the
basis of autonomous navigation for mobile robots and 3D medical technology [3,4], has attracted more
and more attention.

The visual SLAM based on the camera mainly can be divided into the optical flow method [5,6], direct
method [7], and feature point method [8] according to the extraction method of image information. The
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feature point method is an important direction in the community of visual SLAM, which mainly extracts
representative key feature points in every frame image, and then matches the feature points of two frames
of images to calculate the relative pose between the two frames of images. The method has high accuracy
and good robustness. When the camera moves too fastly or the tracking fails, the method can still
calculate the current pose of the camera according to the matching result of feature points, i.e.,
repositioning [9].

The ORB-SLAM2 proposed by Mur-Artal et al. [10] is the most classic visual SLAM system based on
the feature point method, with high accuracy and strong robustness. To improve the accuracy of the system,
an initial pose for the current frame is first obtained in its tracking thread using a constant velocity model,
then the map points mapped from the previous frame are projected onto the current frame using the initial
pose transformation relationship obtained by the constant velocity model, and finally, the best matching
feature points are found in a circular area centered on the projected coordinates. This method can obtain
an initial pose and reduce the time consumed by the feature matching. However, it assumes that the
object is moving at a constant velocity, in real scenarios, due to camera shake or fast movement, the
object is mostly moving at a variable velocity, which makes the constant velocity model disabled,
resulting in a failed feature points matching in a circular area centered on the projection coordinates or
wrong feature point matching.

Since the matching result of feature point mathching directly affects the tracking effect and positioning
accuracy of the system, it will eventually lead to a larger pose error or tracking failure. Therefore, how to
effectively improve the matching accuracy is an ongoing concern for researchers. To further improve
matching accuracy and reduce tracking failure of ORB-SLAM2, researchers are currently focusing on
how to extract better feature points by designing better descriptors or to exploit better matching
algorithm. For example, Wenle Wei [11] improved the BRIEF descriptors, Yi Cheng [12] performed fine
matching using the cosine similarity, and Fu et al. [13] improved the matching accuracy by fusing point-
line features. However, the improved descriptors or the used line features adversely affects the real-time
performance of the feature point matching due to a higher computational complexity. In terms of
improving the matching algorithm, the RANSAC (RANdom SAmple Consensus) algorithm [14] and
RPOSAC (PROgressive SAmple Consensus) [15] were used to eliminate false matching. Although the
above methods reduce false matching to some extent, using probabilistic random matching leads to a
significant increase in computational effort and time complexity. Additionally, the probability of obtaining
a plausible model by the RANSAC algorithm is related to the iteration times, i.e., computational effort
increases as the iteration times increase.

To address the above challenges, this paper proposes a feature point matching algorithm combining the
variable velocity model and the reverse optical flow method. In its tracking thread, a variable velocity model
is proposed based on the ORB-SLAM2 framwork, which exploits the pose transformation relationship
between three consecutive frames of images and combine the optical flow method to match the feature
points. Firstly, calculate the initial pixel translation and take it as the initial value for the reverse optical
flow method. The initial pixel translation can be obtained by the subtraction operation of the initial
projection coordinates estimated by the variable velocity model and the coordinates of the feature points
corresponding to the previous frame. Then, the greyscale error is minimized based on the reverse optical
flow method to calculate the real-world projection coordinates by estimating the optimal pixel translation.
Finally, the best matching points are found out in a circular area centered on the projection coordinates,
which reduces the searching range of matching points and improves the accuracy and reliability of feature
point matching, thereby estimating more accurate pose and further improving the effectiveness of tracking
between two frames.
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2 Methods

According to different tasks, ORB-SLAM2 is mainly divided into the tracking thread between two
frames, local mapping thread, and loop closing thread. In this paper, based on its tracking thread, the
proposed algorithm combines the variable velocity model and reverse optical flow method to solve the
defects of traditional constant velocity models in feature point matching. The framework diagram is
shown in Fig. 1.

The variable velocity model uses the pose transformation matrix between multiple frames to obtain a
more accurate initial pose for the next frame. This initial pose is regarded as the initial value for the
reverse optical flow. Finally, the reverse optical flow method can obtain the exact matching range of
feature points and increase the matching accuracy.

2.1 Variable Velocity Model

The variable velocity model can provide a more accurate initial pose for the next frame. It assumes that
the object moves with constant acceleration or deceleration in three frames, the pose transformation matrix
between the first two frames is used as the base value, and the difference of the pose transformation between
the first three consecutive frames is used as the updated value. By updating, the pose transformation matrix
from the current frame to the next frame is derived, finally the initial pose of the next frame is derived from
the derived pose transformation matrix. The flowchart of the variable velocity model is shown in Fig. 2.

1) Calculate the pose transformation matrix between two frames

Before solving for the base and update values, we need to calculate the pose transformation matrix
between the two frames, which can be obtained by transforming the reference coordinate system of the
pose of the previous frame.

Figure 1: Framework diagram of the approach in this paper

Calculate the Pose
Transformation Matrix 
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Matrix

Update Data 

Calculate the Initial 
Pose for the Next 

Frame

Figure 2: Flowchart of the variable velocity model
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In this paper, Frameiþ1, Framei, Framei�1 and Framei�2 represent the next frame, current frame,
previous frame, and previous frame of the previous frame, respectively. In the variable velocity model,
the positional transformation matrix Tcici�1 between Framei�1 and Framei is first obtained from the poses
of Framei�1 and Framei, which is calculated by Eq. (1):

Tcici�1 ¼ T�1
wci

Twci�1 (1)

where Twci�1 and Twci represent the poses of the previous frame and the current frame, respectively.

By iterating acrosss the data, the transformation matrix Tci�1ci�2 from Framei�2 to Framei�1 can also be
obtained in the same way.

2) Calculate the base and update values

When calculating the pose transformation matrix from the current frame to the next frame, the pose
transformation between the first two frames is set as the base value, and the difference of the pose
transformation between the first three consecutive frames is set as the update value. , which is calculated
as shown in Eq. (2):

Tciþ1ci ¼ Tcici�1 � ðTcici�1�Tci�1ci�2Þ (2)

where Tciþ1ci represents the pose transformation matrix from the current frame to the next frame, Tcici�1 is the
base value, the bracketed part is the update value.

When calculating the pose transformation matrix from the current frame to the next frame, operations
between pose transformation matrices are involved, such as addition or subtraction; however, the
operations between the transformation matrices cannot be done directly. Therefore, there is the need to
decompose the matrix into the rotation and translation parts for performing the operations. The rotation
and translation parts of Tciþ1ci can be expressed by Eq. (3):

fciþ1ci ¼ 2� fcici�1
� fci�1ci�2

tciþ1ci ¼ 2� tcici�1 � tci�1ci�2

�
(3)

where f and t denote the euler angle of the rotation part and the translation vector of the translation part,
respectively.

3) Calculate the initial pose of the next frame

By combining the rotation part and translation part, the pose transformation matrix from the current
frame to the next frame is obtained, and the initial pose Tciþ1w of the next frame can be calculated by Eq. (4).

Tciþ1w ¼ Tciþ1ciTciw (4)

2.2 Match Feature Points Combining Reverse Optical Flow

The reverse optical flow method can estimate the position of the feature points of the previous image on
the current frame. In the combined method, a least squares problem is first constructed using the reverse
optical flow method, and then the initial value for the reverse optical flow method is set by the initial
pose of the current frame obtained from the variable velocity model. Finally, the Gauss_Newton iterative
strategy is used to determine the feature point matching range. By finding the best feature points in the
obtained matching range and minimizing the reprojection error, the exact pose of the current frame is
derived, whose flowchart is shown in Fig. 3.
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1) Construction of least squares using reverse optical flow

In constructing the least squares, the constraint equations are first constructed based on the gray-
invariant nature of the reverse optical flow, and then the equations are transformed and Taylor expanded,
The steps are as follows:

a) The reverse optical flow method assumes that a pixel at ðx; yÞ at time t moves to ðxþ dx; yþ dyÞ at
time t þ dt with the same pixel gray value. This assumption can be expressed by Eq. (5):

Iðxþ dx; yþ dy; t þ dtÞ ¼ Iðx; y; tÞ (5)

where I represents the gray value of the pixel point.

(b) In general, the motion of pixels within a block of images is thought to be same. Assuming that there
are n pixels in an image block, specially, n is set to 64 in this paper, that is, pixels in a square area with
a 8� 8 pixels have same motion. By performing a Taylor expansion on the left side of Eq. (5), and
since the pixel gray scale of the same pixel point remains unchanged after the shift, the matrix form
shown in Eq. (6) is obtained.

½Ix; Iy�1
..
.

½Ix; Iy�n

2
64

3
75 u

v

� �
¼ �

It1
..
.

Itn

2
64

3
75 (6)

where u; v represents the velocity of the pixel on the x; y axis. Ix; Iy represents the gradient of the
pixel on the x; y axis, and It represents the amount of variation of the pixel grayscale over time.

(c) Based on Eq. (6), the optical flow method to match feature points can be formulated as a least squares
problem, which can be expressed by Eq. (7):

min
Dx;Dy

Pn
i¼1

kIi�1ðx; yÞ � Iiðxþ Dx; yþ DyÞk22
fiðDx; DyÞ ¼ Ii�1ðx; yÞ � Iiðxþ Dx; yþ DyÞ

8<
: (7)

2) Calculate the initial value of reverse optical flow

The variable velocity model enables the initial value calculated by reverse optical flow method to be
close to the global optimum, thus preventing the optical flow method from falling into a local minimum
during optimization process. The initial value of the reverse optical flow is obtained by the difference
between the coordinates before and after the projection of the feature point of the previous frame. The
initial values are calculated by following steps.

a) The feature points of the previous frame are first converted into 3D map points Pmappoint in the world
coordinate system, and after deriving Pmappoint, project it onto the current frame, the transformation
and projection are expressed in Eq. (8):

Projection of the Last Frame 

Feature Points

Get the Exact Search 

Range

Matching the Best Feature 

Points
Minimize Reprojection Error

Calculate the Initial Value 

of Reverse Optical Flow

Iterative Solution with

Gauss-Newton 
Construction of Least Squares 
using Reverse Optical Flow

Figure 3: Flowchart of the combining variable velocity model with reverse optical flow
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Pmappoint ¼ Twci�1ðK�1Zfeaturei�1Pfeaturei�1Þ
Pfeaturei ¼ KðTciwPmappointÞ=Zfeaturei

�
(8)

where K is the internal parameter matrix of the camera, Zfeaturei�1 represents the depth of the feature
point in the previous frame and Pfeaturei�1 reperesents the coordinate of the feature point in the image
coordinate system,Pfeaturei represents the 2D projection coordinate of the feature point, Zfeaturei
represents the projection depth in the current frame.

(b) Calculate the difference between Pfeaturei and Pfeaturei�1 , and set it as the initial value of the reverse
optical flow. The Gauss_Newton method can be used to solve the least squares problem for the
reverse optical flow, which requires to calculate Jacobi matrix. In the reverse optical flow method
[16], the Jacobi matrix can be replaced with the gradient Ii�1ðx; yÞ of the previous image frame.
The Gauss_Newton equation is shown in Eq. (9):

Xn
i¼1

JiðDx; DyÞJTi ðDx; DyÞ
Dx
Dy

� �
¼

Xn
i¼1

�JiðDx; DyÞfiðDx; DyÞ (9)

where JiðDx; DyÞ represents the Jacobi matrix at fiðDx; DyÞ.
3) Get the exact search rang

In the search for the best feature point, a Jacobi matrix JiðDx; DyÞ is first found in a square region with
8� 8 pixels, then the optimal ðDx; DyÞ is solved iteratively based on the calculated JiðDx; DyÞ and
fiðDx; DyÞ.

In the process of iteration, the cost function is calculated for the correctness of the iterative result.
Compare the result of the cost function after each iteration, if the result is decreasing, it means that the
error is decreasing, and needs to continue iterating to update ðDx; DyÞ and fiðDx; DyÞ; otherwise, the
iteration ends and the final result ðDx; DyÞ is input. The cost function is expressed in Eq. (10):

Cost ¼
Xn
i¼1

fiðDx; DyÞfiðDx; DyÞ (10)

By the above interation process, the more accurate position of the feature points of the previous frame
image on the current frame image can be obtained, which is calculated by Eq. (11):

Pfeaturei ¼ Pfeaturei�1 þ ðDx; DyÞ (11)

Finally, the best feature points are matched by the feature point descriptor distance within a radius circle
centered on the coordinates of Pfeaturei in the current frame.

4) Minimize reprojection error

The reprojection error is calculated based on the initial pose Tciw obtained from the variable velocity
model and the final feature point matching result, which is calculated as in Eq. (12):

T�
ciw

¼ argmin
Tciw

1

2

Xn
i¼1

Pfeaturei �
1

si
KðTciwPmappointÞ

����
����
2

2

(12)

where si represents the depth of the map point Pmappoint projected into the current frame.

The Bundle Adjustment method [17] is used to minimize the reprojection error [18] to update the initial
pose forobtaining the accurate pose T�

ciw
. Finally, the variable velocity model is updated based on the accurate

pose, which will prepare for the pose estimation in next frame.
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3 Experiments

The experiments for the feature search and matching combining the variable velocity model and the
reverse optical flow method are carried out on the platform with ubuntu18.04, where the computer is
configured with an Intel Core I5-6300HQ CPU, 16G 2133 MHz RAM. The testing and analysis are
conducted based on five representative sequences captured by the RGB-D camera from the public TUM
dataset. In order to judge the accuracy and stability of the improved algorithm, comparative experiments
with the ORB-SLAM2 system are done for each group of sequences in the dataset in terms of the
Absolute Trajectory Error (ATE), Relative Pose Error (RPE) and the proportion of correctly matched
feature points. To verify the effectiveness of the variable velocity model on the reverse optical flow
method, comparative experiments with the traditional optical flow method without initial values were also
performed in terms of the positioning accuracy.

3.1 Experimental Results and Error Analysis

The TUM dataset contains RGB and depth images, where internal parameters of camera has been
calibrated and the real pose information of camera has been given, which is a standard dataset for testing
the performance of visual SLAM methods.

3.1.1 Feature Matching Experiment
In the experiment, the improved method and the ORB-SLAM2 system were compared and analyzed

in terms of the proportion of correct matching points between two frames during the feature matching,
and the results are shown in Fig. 4. Further, the true matching results based on the D435i depth camera
are shown in Fig. 5.
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Figure 4: Comparison of proportion of correct matching points

Figure 5: Actual matching effect based on the D435i camera
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The small green boxes in Fig. 5 represent the matched feature points. Seen from Figs. 4 and 5, the
improved method can improve the proportion of correctly matched feature points on every sequence to a
certain extent, with a maximum improvement of 10.2%, which indicates that the proposed method can
realize more accurate feature point matching during the pose estimation between two frames. Therefore, a
more accurate pose can be obtained to improve the tracking effect in the subsequent optimization process.

3.1.2 Positioning Accuracy Experiment
Tab. 1 shows the comparison results between the proposed method and the traditional ORB-

SALM2 method in terms of the absolute trajectory error on five sequences of the TUM dataset. The ATE
is the error between the ground truth Ttrue

wci
and the estimated value Test

wci
in the SLAM system, representing

the global consistency of the trajectory throughout the running phase, which is calculated by Eq. (13):

ATEall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn
i¼1

klog ðTtrue
wci

�1
Test
wci
Þ_k22

s
(13)

Tab. 2 shows the comparison results of the RPE between the improved method and ORB-SLAM2 on
five sequence of the TUM dataset. The RPE considers the relative error between Framei and Frameiþ1.
The smaller error means the better tracking effect between the two frames. It is calculated by Eq. (14):

RPEall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN�1

i¼1

klog ððTtrue
wci

�1
Ttrue
wciþ1

Þ�1ðTest
wci

�1
Test
wciþ1

ÞÞ
_
k22

vuut (14)

Table 1: Comparison of absolute trajectory error (ATE/m)

Sequence ORB-SLAM2 Traditional optical flow Improved method Improved accuracy

fr1_desk 0.020020 0.018721 0.014702 26.6%

fr1_desk2 0.025081 0.023929 0.021915 12.6%

fr1_room 0.059802 0.061339 0.039071 34.7%

fr2_desk 0.012238 0.009804 0.007804 36.2%

fr2_xyz 0.003883 0.003939 0.003580 7.8%

Table 2: Comparison of relative pose error

Sequence RPE/m RPE/(�)

ORB-
SLAM2

Traditional
optical flow

Improved
method

ORB-
SLAM2

Traditional
optical flow

Improved
method

fr1_desk 0.032665 0.023628 0.022589 0.853104 0.864233 0.845168

fr1_desk2 0.039646 0.037377 0.032773 0.742684 0.759225 0.726633

fr1_room 0.057244 0.072658 0.053969 0.658592 0.651615 0.627112

fr2_desk 0.016293 0.011608 0.013586 0.390832 0.384760 0.386853

fr2_xyz 0.012004 0.011689 0.010783 0.305707 0.296274 0.296066
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To ensure the accuracyt and reduce the variability of each run, all the test results were obtained by
implementing each method five times in succession and calculating the median value of their
corresponding errors.

It can be seen from Tabs. 1 and 2 that the proposed method has significantly improved the pose accuracy
in every sequence of the TUM dataset, with a 36.2% improvement in the sequence fr2_desk, compared to
ORB-SLAM2. Further comparison and analysis show that the error of the pose estimation of the
proposed method can be reduced to a certain extent due to the accurate initial pixel translation predicted
by the variable velocity model, in comparison with the single optical flow method.

To intuitively analyze the error between the improved method and ORB-SLAM2, the real trajectory and
the estimated trajectory of the sequence fr1_room are shown in Fig. 6, along with the distribution of the
absolute trajectory error of the two methods on the entire trajectory. At the same time, the comparison
chart of the translation data and the angle data in the XYZ direction over time is shown in Fig. 7.

Figure 6: Trajectory graph and distribution of absolute trajectory error
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The trajectory distribution is shown in Fig. 6, where the gradient color band from blue to red represents
the magnitude size of the error of ATE, and the maximum and minimum values of the error are on the top and
bottom of the color band, respectively. Seen from Figs. 6 and 7, the trajectory error of the proposed method is
smaller and the trajectory is closer to the true trajectory.

It can be seen from Fig. 7 that the accuracy of the proposed method has been greatly improved in
comparison with ORB-SLAM2, especially for the data on the z-axis and the pitch angle.

To further analyze the positioning accuracy of the proposed method, Fig. 8 shows the absolute pose error
(APE) of the two algorithms in the sequence, where the mean, median, root mean square error (RMSE), and
standard deviation (STD) are presented in detail.

Figure 7: Comparison of xyz axis translation data and angle data

Figure 8: Comparison of absolute pose error
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By analyzing the absolute pose error shown in Fig. 8, the median, mean, STD, and RMSE of the absolute
trajectory error of the proposed method decrease with different degrees. The tracking error between two
frames decreases significantly, and the maximum error of the ORB-SLAM2 is reduced to 0.108470 m
from 0.140345 m. The above experimental results demonstrate that the proposed method can reduce the
error of estimated pose and improve the accuracy of tracking between two frames.

4 Conclusions

Based on ORB-SLAM2, this study proposes a feature matching algorithm combining variable velocity
model and inverse optical flow method. A more accurate initial pose is obtained by the variable velocity
model through the pose transformation relationship between three consecutive frames, and then the initial
pose displacement of the reverse optical flow method is estimated using the initial pose calculated by the
variable velocity model to obtain a more accurate range of feature point matching, which improves the
proportion of correct matching points between two frames and provides better robustness and higher
accuracy for the SLAM system. The experimental results demonstrate the effectiveness of the proposed
method.

In the follow-up work, an IMU inertial unit and a magnetometer will be introduced to further optimize
the matching between two frames, which can improve the robustness and accuracy of the SLAM system.
Additionally, the re-identification algorithms [19–21] and trajectory prediction algorithm [22] can be
incorporated into the system to improve the recall of loopback detection, which will reduce the
cumulative error of the pose, meanwhile, real-time dense reconstruction [23], pedestrian dynamic
detection [24], and object detection algorithm [25] can be added to accomplish dynamic target rejection,
improve localization accuracy, and accomplish more tasks.
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