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Abstract: An information system is a type of knowledge representation, and attri-
bute reduction is crucial in big data, machine learning, data mining, and intelligent
systems. There are several ways for solving attribute reduction problems, but they
all require a common categorization. The selection of features in most scientific
studies is a challenge for the researcher. When working with huge datasets, select-
ing all available attributes is not an option because it frequently complicates the
study and decreases performance. On the other side, neglecting some attributes
might jeopardize data accuracy. In this case, rough set theory provides a useful
approach for identifying superfluous attributes that may be ignored without sacri-
ficing any significant information; nonetheless, investigating all available combi-
nations of attributes will result in some problems. Furthermore, because attribute
reduction is primarily a mathematical issue, technical progress in reduction is
dependent on the advancement of mathematical models. Because the focus of this
study is on the mathematical side of attribute reduction, we propose some meth-
ods to make a reduction for information systems according to classical rough set
theory, the strength of rules and similarity matrix, we applied our proposed meth-
ods to several examples and calculate the reduction for each case. These methods
expand the options of attribute reductions for researchers.
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1 Introduction

Pawlak proposed Rough set theory (RST) in 1982 [1]. RST is considered as a powerful mathematical
research technique in pattern recognition, machine learning, information discovery, and other fields.
Because Pawlak’s RST requires rigid equivalence relations, it can only extract expertise in information
systems with definite attributes [2]. Some researchers have extended Pawlak’s idea by incorporating fuzzy
equivalence relations, neighborhood relations and dominance relations into Pawlak rough sets to form
neighborhood rough sets [3,4], fuzzy rough sets [5–9], and dominance-based rough sets [10–12]. The
generalized models of rough set are commonly applied in the reduction of attributes [13–15], feature
selection [16–19], extraction of rules [20–23], theory of decisions [24–26], incremental learning [27–29],
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Collaborative Filtering [30], Variable Precision Rough Set Model, [31], topological rough application [32],
reduction in multi-valued information system [33] and so on. A significant application of RST is in the
reduction of attributes in databases (feature selection). Given a dataset with distinct attribute values,
the reduction of attributes finds subsets having the same attributes as the original. Its principle can be
regarded as the most powerful result of RST, differentiating it from other theories. The reduction of
attributes for selecting subsets attributes picks detailed and compact attributes and excludes redundant and
inconsistent attributes from the learning tasks. Several algorithms for attribute reduction exist based on
classical rough sets, rough neighborhood sets, entropy, and mutual knowledge. This study introduces the
reduction of attributes using classical RST. Additionally, we introduce the strength of rules and similarity
matrix that are also used in reducing attributes. Finally, we discuss many examples to explain these
methods. This article is organized as the following: Section 2 provides a quick overview of the
fundamental notion of the theory of rough sets and describes the reduction of attributes following the
indiscernibility relation and discernibility matrix. Section 3 presents the definition of the strength of rules
and some measures for evaluating attributes and discusses their properties. In Section 4, we introduce the
definition of similarity matrix for finding the reduct of a decision information table. Finally, Section
5 provides the conclusion.

Fig. 1 presents four methods of reduction of attributes in information systems, which will be discussed in
the following sections.

2 Basic Concepts

2.1 Rough Sets

In the early 1980s, RST was introduced by Pawlak as a new mathematical tool for dealing with
uncertainty and vagueness [2]. It is a mathematical technique that may be used for intelligent data
analysis. Suppose a system of information

IS ¼ U ;Að Þ
where Universe U and Attributes A are finite nonempty sets.

Set A consists of two distinct sets of attributes called: Condition C and Decision D attributes.

IS ¼ U ; C; Dð Þ denotes the system of information.

For every P � A; X � U ; x 2 U, we can define the Upper approximations P Xð Þ and Lower
approximation, P Xð Þ; as follows:

Figure 1: Some methods of attribute reduction in information systems
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P Xð Þ ¼ [ P xð Þ : P xð Þ \ X 6¼ [f g
and

P Xð Þ ¼ [ P xð Þ : P xð Þ � Xf g
where P xð Þ ¼ fy 2 U j x P yg is the equivalence class that contains x according to P.

The boundary region BP Xð Þ is:
BPðX Þ ¼ P Xð Þ � P Xð Þ

If the boundary region is nonempty, then the set is rough; otherwise, the set is crisp. The ratio of lower-
and upper-approximation is used to compute the approximation accuracy of the set X from the elementary
subsets. Most of these concepts illustrated in Fig. 2.

Definition 1. The degree of dependency: The degree of dependency: Attributes are divided
into condition attributes C and decision attributes D. The degree of dependency denoted as l C;Dð Þ is
defined as [2]

l C;Dð Þ ¼ LOW C;Dð Þj j= Uj j
where

LOW C;Dð Þ ¼ [
Yi2U=IND Dð Þ

X 2 U=IND Cð Þ; X � Yif g;

which is determined as the union of the equivalence classes of the relation U=IND Cð Þ that are totally
contained in one of the equivalence classes of relation U=IND Dð Þ. By definition: 0 � l C;Dð Þ � 1

2.2 Reduction of Condition Attributes Using Indiscernibility Relation

For every set of condition attributes A � C, an indiscernibility relation IND(A) is defined as follows [2]:

Two objects xi and xj are indiscernible by the set of condition attributes, if xi and xj have the same value
of condition attributes A � C (i.e., a(xi) = a(xj) for every a 2 A)

More formally,

IND Að Þ ¼ xi; xj
� � 2 U2 : 8a 2 A; a xið Þ ¼ a xj

� �� �
IND(A) is an equivalence relation that partitions U into elementary sets. The partitions induced by IND

(A) are equivalence classes and represent the smallest discernible groups of objects using the information

Figure 2: Rough set concepts
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contained within. The notation U/A denotes the partitions induced by IND(A) or the elementary sets of the
universe U in the space [2].

Example 1.

In the following car information table, see Tab. 1: V: vibration, N: noise, I: interior, C: capacity.

We can obtain the indiscernibility relation from Tab. 1:

1) First, we find the equivalence classes of all attributes dented by U/A.

U=A = ffc1g,fc2g,fc3g,fc4g,fc5g,fc6g,fc7g,fc8gg
2) Second, we find the equivalence classes for each attribute alone.

U= Cf g = ffc1,c3,c4g,fc2,c6,c7g,fc5,c8gg
U= If g = ffc1,c2,c4,c5g,fc3,c7,c8g,fc6gg
U= Nf g = ffc1,c2,c3,c5g,fc4,c6,c7,c8gg
U= Vf g = ffc1,c2,c3,c6g,fc4,c5,c7,c8gg
3) Third, we find the equivalence classes of double attributes only.

U= C; If g = ffc1,c4g,fc2g,fc3g,fc5g,fc6g,fc7g,fc8gg
U= C;Nf g = ffc1,c3g,fc2g,fc4g,fc5g,fc6,c7g,fc8gg
U= C;Vf g = ffc1,c3g,fc2,c6g,fc4g,fc5,c8g,fc7gg
U= I ;Nf g = ffc1,c2,c5g,fc3g,fc4g,fc6g,fc7,c8gg
U= I ;Vf g = ffc1,c2g,fc3g,fc4,c5g,fc6g,fc7,c8gg
U= N ;Vf g = ffc1,c2,c3g,fc4,c7,c8g,fc5g,fc6gg
4) Fourth, we find the equivalence classes of triple attributes only.

U= C; I ;Nf g = ffc1g,fc2g, fc3g, fc4g, fc5g, fc6g, fc7g, fc8gg
U= C; I ;Vf g = ffc1g,fc2g, fc3g, fc4g, fc5g, fc6g, fc7g, fc8gg
U= C;N ;Vf g = ffc1,c3g, fc2g, fc4g, fc5g, fc6g, fc7,c8gg
U= I ;N ;Vf g = ffc1,c2g, fc3g, fc4g, fc5g, fc6g, fc7,c8gg
From the previous relationships, we conclude that.

U=A = U= C; I ;Nf g and U=A = U= C; I ;Vf g
Therefore, attribute V or N can be dispensed with.

Table 1: Car information system table

U/A V N I C

C1 Medium Medium Fair 5

C2 Medium Medium Fair 4

C3 Medium Medium Good 5

C4 Low Low Fair 5

C5 Low Medium Fair 2

C6 Medium Low Excellent 4

C7 Low Low Good 4

C8 Low Low Good 2
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2.3 Reduction of Condition Attributes Using Discernibility Matrix

Definition 2. Relative Discernibility Matrix

If C and D denote condition and decision attributes respectively. Then the relative discernibility
function [2] is given as;

f DC ¼ ^ _a : a 2 MD
C 6¼ [

� �
;

where MD
C (x,y) = {a ∈C : a(x) ≠ a(y), D(x) ≠ D(y)}

which is used for the reduction of condition attributes relative to decision attributes.

Example 2.

In the following Car decision table Tab. 2: V: vibration, N: noise, I: interior, C: capacity, D: quality.

We obtain the relative discernibility matrix from Tab. 3:

Then; f DC = fN+Vg .fC+Vg .fC+I+Ng .fC+I+N+Vg .fC+I+N+Vg .fN+Vg .fC+Vg .fI+Ng .fI+N+Vg.
fC+I+N+Vg .fI+N+Vg .fC+I+Vg .fC+I+Ng .fC+N+Vg .fC+N+Vg .fC+I+Vg .fC+Ig .fC+Ig .fC+I+N+Vg.
fC+I+Ng .fI+Ng

= fN+Vg .fC+Vg .fI+Ng .fC+Ig
= fN.C+Vg .fN.C+Ig = N.C+V.I

!REDD cð Þ ¼ f DC = {fN,Cg, fV,Ig}

Table 2: Car decision table

U/A Condition attributes Decision attribute

V N I C D

C1 Medium Medium Fair 5 Low

C2 Medium Medium Fair 4 Low

C3 Medium Medium Good 5 Low

C4 Low Low Fair 5 Medium

C5 Low Medium Fair 2 Medium

C6 Medium Low Excellent 4 High

C7 Low Low Good 4 High

C8 Low Low Good 2 High

Table 3: Relative discernibility matrix

U/U C1 C2 C3 C4 C5 C6 C7 C8

C1 – – – N,V C,V C,I,N C,I,N,V C,I,N,V

C2 – – N,V C,V I,N I,N,V C,I,N,V

C3 – I,N,V C,I,V C,I,N C,N,V C,N,V

C4 – – C,I,V C,I C,I

C5 – C,I,N,V C,I,N I,N

C6 – – –

C7 – –

C8 –
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We reduce Tab. 4 by merging different rows which contain the same values for condition and decision
attributes, this technique is known as row reduction:

To find the core of each example, we proceed with Tab. 5: in a manner the table remains consistent. By
eliminating V = M, we have two decision values L and H. This means that, depending on the attribute V, we
are unable to make unique decisions, then V is unable to be removed. Similarly, eliminating N = L leaves two
decision values M and H, implying that no unique decision can be made based on attribute N. Thus, the value
of N is unable to be removed. Therefor Tab. 5 becomes as follows:

Tab. 6 presents the core of each car.

Table 4: Noise and vibration information table

U/A V N D

C1 Medium Medium Low

C2 Medium Medium Low

C3 Medium Medium Low

C4 Low Low Medium

C5 Low Medium Medium

C6 Medium Low High

C7 Low Low High

C8 Low Low High

Table 5: Eliminating repeated rows of the same values

U/A N V D

C1 Medium Medium Low

C2 Low Low Medium

C3 Medium Low Medium

C4 Low Medium High

C5 Low Low High

Table 6: Core of each car

U/A N V D

C1 Medium Medium Low

C2 * Low Medium

C3 * Low Medium

C4 Low * High

C5 Low * High

1536 CSSE, 2023, vol.45, no.2



We delete the repeated rows, as in Tab. 7,

Tab. 7 contains the decision rules since no further reduction is allowed. The following are the decision
rules based on the reduction and core:

1) If N(Medium) and V(Medium) ) D(Low)

2) If V(Low) ) D(Medium)

3) If N(Low) ) D(High)

3 Reduction of Condition Attributes Using the Strength of Rules

The rules are now generated based on the reduct and core. The reduced set of relations that
maintains the same inductive relation categorization is known as a reduct. If P is minimum and the
indiscernibility relation provided by P and Q is the same, the set P of attributes is the reduct of
another set Q. The core is described as follows:

Core = \ reduct

Definition 3. The strength of rules

Let IS ¼ U ;C;Dð Þ be a decision table. Every x 2 U determines a sequence c1 (x),…,cn (x), d1(x)……

dm((x), where c1 ; … ; cnf g ¼ C and d1 ; … ; dnf g ¼ D. The sequence called the decision rule induced by
x in U and denoted by

c1 xð Þ ; … ; cn xð Þ ! d1 xð Þ ;…; dm xð Þ or C ! xD:

Then the strength of rules is

r/;b Ci;Dj

� � ¼ CiðxÞ/ \ DjðxÞb
��� ���

DjðxÞb
��� ��� ;

whereCiðxÞ/ ¼ [fx 2 U j CiðxÞ ¼ ag,DjðxÞb ¼ [fx 2 U j DjðxÞ ¼ bg, a 2 values of Ci, b 2 values of Dj,
i ¼ 1; 2; 3; . . . n is the index of condition attributes, and j¼ 1; 2; 3; . . . ;m is the index of decision attribute.

Example 3.

From Tab. 2, and using Definition 3, we can calculate the strength of rules for all attributes as the
following steps:

The rules strength for attribute C may be found as follows:

(C = 5)!(D = Low); the strength of this particular rule =
2

3
= 66.667%

(C = 4)!(D = Low); the strength of this particular rule =
1

3
= 33.333%

Table 7: Decisions rules

U/A N V D

C1 Medium Medium Low

C2 * Low Medium

C3 Low * High
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(C = 5)!(D = Medium); the strength of this particular rule =
1

2
= 50%

(C = 2)!(D = Medium); the strength of this particular rule =
1

2
= 50%

(C = 4)!(D = High); the strength of this particular rule =
2

3
= 66.667%

(C = 2)!(D = High); the strength of this particular rule =
1

3
= 33.333%

The average of the strength of rules for attribute C = 50%

The rules strength for attribute I may be found as follows:

(I = Fair)!(D = Low); the strength of this particular rule =
2

3
= 66.667%

(I = Good)!(D = Low); the strength of this particular rule =
1

3
= 33.333%

(I = Fair)!(D = Medium); the strength of this particular rule =
2

2
= 100%

(I = Excellent)!(D = High); the strength of this particular rule =
1

3
= 33.333%

(I = Good)!(D = High); the strength of this particular rule =
2

3
= 66.667%

The average of the strength of rules for attribute I = 60 %

The rules strength for attribute N may be found as follows:

(N = Medium)!(D = Low); the strength of this particular rule =
3

3
= 100%

(N = Low)!(D = Medium); the strength of this particular rule =
1

2
= 50%

(N = Medium)!(D = Medium); the strength of this particular rule =
1

2
= 50%

(N = Low)!(D = High); the strength of this particular rule =
3

3
= 100%

The average of the strength of rules for attribute N = 75%

The rules strength for attribute V may be found as follows:

(V = Medium)!(D = Low); the strength of this particular rule =
3

3
= 100%

(V = Low)!(D = Medium); the strength of this particular rule =
2

2
= 100%

(V = Medium)!(D = High); the strength of this particular rule=
1

3
= 33.333%

(V = Low)!(D = High); the strength of this particular rule =
2

3
= 66.667%

The average of the strength of rules for attribute V = 75%

Note: The attributes with the highest percentage of the strength of rules are N and V, and attributes
with fewer proportions can be deleted. The reduct of set fC, I, N, Vg is fN, Vg. Therefore, Tab. 2 can be
reduced to Tab. 8.
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Reduce Tab. 8: to become as Tab. 9 by removing the repeated rows of attribute values.

We find the core of Tab. 9; to keep the table consistent. Two decision values L and H remain if we
eliminate V = M. This implies that we cannot make a sole judgment based on attribute V, so the value of
V cannot be removed. Similarly, two decision values M and H remain when we eliminate N = L,
implying that we cannot make a unique judgment based on attribute N. Therefore, the value of N cannot
be removed. Now Tab. 9 is like Tab. 10.

Tab. 10: Displays each instance’s core. Tab. 10 can be further reduced; by merging double rows.

By removing the same rows again, we obtain Tab. 11.

Tab. 11 provides us with rules of judgment. No further reduction is necessary. The decisions on
reduction and core are as follows.

Table 8: Reduction of Tab. 2 according to the strength of rules

U/A V N D

C1 Medium Medium Low

C2 Medium Medium Low

C3 Medium Medium Low

C4 Low Low Medium

C5 Low Medium Medium

C6 Medium Low High

C7 Low Low High

C8 Low Low High

Table 9: Row reduction of Tab. 8

U/A N V D

C1 Medium Medium Low

C2 Low Low Medium

C3 Medium Low Medium

C4 Low Medium High

C5 Low Low High

Table 10: Reduction of some values of Tab. 9

U/A N V D

C1 Medium Medium Low

C2 * Low Medium

C3 * Low Medium

C4 Low * High

C5 Low * High
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1) If N(Medium) and V(Medium) ) D(Low)

2) If V(Low) ) D(Medium)

3) If N(Low) ) D(High)

4 Reduction of Condition Attributes Using Similarity Matrix

The similarity matrix is considered a novel method reducing condition attributes. It is easy to use and
produces more accurate results, depending on the deletion or dispensing of the attribute that has the least
influence on decision making under specific conditions.

Definition 4. Let IS ¼ U ;C;Dð Þ be a decision table; then the distance d xi; xj
� �

between two objects
xi; xj 2 U according to one attribute a 2 A can be calculated using the following equation:

d xi; xj
� � ¼ 0; xi að Þ 6¼ xj að Þ; a 2 A

1; xi að Þ ¼ xj að Þ; a 2 A

�

The ratio of the similarity between two objects denoted by d xi; xj
� �

is given by the following equation:

d xi; xj
� � ¼

P
d xi; xj
� �
Aj j

Example 4.

From Tab. 2, and Definition 4, we obtain the similarity matrix for all objects as in Tab. 12:

Table 11: Elimination of identical rows of Tab. 10

U/A N V D

C1 Medium Medium Low

C2 * Low Medium

C5 Low * High

Table 12: Similarity matrix

U/U C1 C2 C3 C4 C5 C6 C7 C8

C1 1 3

4

3

4

2

4

2

4

1

4
0 0

C2 3

4
1 2

4

1

4

2

4

2

4

1

4
0

C3 3

4

2

4
1 1

4

1

4

1

4

1

4

1

4
C4 2

4

1

4

1

4
1 2

4

1

4

2

4

2

4
C5 2

4

2

4

1

4

2

4
1 0 1

4

2

4
C6 1

4

2

4

1

4

1

4
0 1 2

4

1

4
C7 0 1

4

1

4

2

4

1

4

2

4
1 3

4
C8 0 0 1

4

2

4

2

4

1

4

3

4
1
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From Tab. 2; we can find the indiscernibility relation of the decision attribute as follows:

U/IND(D) = c1; c2; c3f g; c4; c5f g; c6; c7; c8f gf g
From Tab. 12, selecting the ratio of similarity between two objects when d xi; xj

� � ¼ 1 according to the
following equation: f xið Þ ¼ xj : d xi; xj

� � ¼ 1
� �

,

we get;

f c1ð Þ ¼ fc1g, f c2ð Þ ¼ fc2g, f c3ð Þ ¼ fc3g, f c4ð Þ ¼ fc4g, f c5ð Þ ¼ fc5g, f c6ð Þ ¼ fc6g, f c7ð Þ ¼ fc7g,
f c8ð Þ ¼ fc8g,
!LOW (U(A)/D) = fc1,c2,c3,c4,c5,c6,c7,c8g
Then the degree of dependency is

m U Að Þ=Dð Þ ) = 8

8
¼ 1

By eliminating attribute C from Tab. 2, we obtain the following similarity matrix in Tab. 13.

From Tab. 13, selecting the ratio of similarity between two objects in the same manner as above, we get;

f c1ð Þ ¼ fc1,c2g; f c2ð Þ ¼ fc1,c2g; f c3ð Þ ¼ fc3g; f c4ð Þ ¼ fc4g, f c5ð Þ ¼ fc5g; f c6ð Þ ¼ fc6g; f c7ð Þ ¼
fc7,c8g; f c8ð Þ ¼ fc7g, fc8g
!LOW (U(A-{C})/D = fc1,c2,c3,c4,c5,c6,c7,c8g
Then The degree of dependency is

m U A� Cf gð Þ=Dð Þ = 8

8
¼ 1

Table 13: Similarity matrix of A� Cf g
U/U C1 C2 C3 C4 C5 C6 C7 C8

C1 1 1 2

3

1

3

2

3

1

3
0 0

C2 1 1 2

3

1

3

2

3

1

3
0 0

C3 2

3

2

3
1 0 1

3

1

3

1

3

1

3
C4 1

3

1

3
0 1 2

3

1

3

2

3

2

3
C5 2

3

2

3

1

3

2

3
1 0 1

3

1

3
C6 1

3

1

3

1

3

1

3
0 1 1

3

1

3
C7 0 0 1

3

2

3

1

3

1

3
1 1

C8 0 0 1

3

2

3

1

3

1

3
1 1
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Also, by eliminating attributes {I}, {N}, {V, {C, N}, {I, V}, {C, I}, {C, V}, {I, N}, {N, V} from Tab. 2
respectively, and computing its similarity matrices, we get the following degree of dependencies:

m U Að Þ=Dð Þ = 8

8
=
8

8
¼ 1

m U A� Cf gð Þ=Dð Þ = 8

8
=
8

8
¼ 1

m U A� If gð Þ=Dð Þ = 8

8
=
8

8
¼ 1

m U A� Nf gð Þ=Dð Þ = 8

8
=
8

8
¼ 1

m U A� Vf gð Þ=Dð Þ = 8

8
=
8

8
¼ 1

m U A� C;Nf gð Þ=Dð Þ = 8

8
=
8

8
¼ 1

m U A� I;Vf gð Þ=Dð Þ = 8

8
¼ 1

m U A� I;Cf gð Þ=Dð Þ = 5

8
¼ 0:625

m U A� V;Cf gð Þ=Dð Þ = 5

8
¼ 0:625

m U A� I;Nf gð Þ=Dð Þ = 4

8
¼ 0:5

m U A� N;Vf gð Þ=Dð Þ = 6

8
¼ 0:75

From previous calculations, we have;

m U Að Þ=Dð Þ =1
m U A� N;Cf gð Þ=Dð Þ =1
m U A� I;Vf gð Þ=Dð Þ =1
Therefore, the reduct(A) = ffC,Ng,fI,Vgg.

5 Conclusions

We emphasised in our research the need of decreasing the size of the dataset before beginning any
research and how rough set theory provides an effective approach for determining the minimal dataset’s
reduct. We also discussed how the rough set may be unable to discover the minimal reduct by itself since
doing so may need computing all combinations of attributes, which is not achievable in huge datasets.
We proposed two methods to find the reduct of a dataset. One of them is the strength of rules which
calculate the strength of rules for all attributes, and the other is similarity matrix, which is considered a
novel method reducing condition attributes, it is easy to use and produce more accurate results.
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available from the corresponding author on request.

1542 CSSE, 2023, vol.45, no.2



Authors’ Contributions: The authors declare that they contributed equally to all sections of the paper. All
authors read and approved the final manuscript.

Funding Statement: The authors declare that they did not receive third-party funding for the preparation of
this paper.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Z. Pawlak, “Rough sets,” International Journal of Computer & Information Sciences, vol. 11, no. 5, pp. 314–356,

1982.

[2] Z. Pawlak, Rough Sets-theoretical Aspects of Reasoning about Data, Dordrecht, Boston, London: Kluwer
Academic Publishers, 1991.

[3] Y. Y. Yao, “Relational interpretations of neighborhood operators and rough set approximation operators,”
Information Sciences, vol. 111, no. 1–4, pp. 239–259, 1998.

[4] Y. Y. Yao, “Rough sets, neighborhood systems and granular computing,” in IEEE Canadian Conf. on Electrical
and Computer, Canada, pp. 1553–1558, 1999.

[5] A. Mohammed, A. J. Carlos, A. Hussain and G. Abdu, “On some types of covering-based e, m-fuzzy rough sets
and their applications,” Journal of Mathematics, vol. 2021, pp. 1–18, 2021.

[6] D. Dubois and H. Prade, “Putting rough sets and fuzzy sets together, intelligent decision support,” In: R. Slowinski
(Ed.), Handbook of Applications and Advances of the Rough Set Theory, Springer, Dordrecht, pp. 203–232, 1992.

[7] D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets,” International Journal of General Systems, vol.
17, no. 2–3, pp. 191–209, 1990.

[8] E. C. C. Tsang, D. Chen, D. S. Yeung, X. Z. Wang and J. W. T. Lee, “Attributes reduction using fuzzy rough sets,”
IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1130–1141, 2008.

[9] W. Wu, M. Shao and X. Wang, “Using single axioms to characterize (S, T)-intuitionistic fuzzy rough
approximation operators,” International Journal of Machine Learning and Cybernetics, vol. 10, no. 1, pp.
2742, 2019.

[10] S. Greco, B. Matarazzo and R. Slowinski, “Rough approximation by dominance relations,” International. Journal
of Intelligent Systems, vol. 17, no. 2, pp. 153–171, 2002.

[11] W. Xu, Y. Li and X. Liao, “Approaches to attribute reductions based on rough set and matrix computation in
inconsistent ordered information systems,” Knowledge-Based Systems, vol. 27, no. 4, pp. 78–91, 2012.

[12] A. H. Attia, A. S. Sherif and G. S. El-Tawel, “Maximal limited similarity-based rough set model,” Soft Computing,
vol. 20, no. 8, pp. 31–53, 2016.

[13] D. Chen, L. Zhang, S. Zhao, Q. Hu and P. Zhu, “A novel algorithm for finding reducts with fuzzy rough sets,”
IEEE Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 385–389, 2012.

[14] L. Chen, D. Chen and H. Wang, “Fuzzy kernel alignment with application to attribute reduction of heterogeneous
data,” IEEE Transactions on Fuzzy Systems, vol. 27, no. 7, pp. 1469–1478, 2019.

[15] C. Wang, Y. Huang, M. Shao and X. Fan, “Fuzzy rough set-based attribute reduction using distance measures,”
Knowledge-Based Systems, vol. 164, no. 12, pp. 205–212, 2019.

[16] A. Mirkhan and N. Çelebi, “Binary representation of polar bear algorithm for feature selection,” Computer
Systems Science and Engineering, vol. 43, no. 2, pp. 767–783, 2022.

[17] R. S. Latha, B. Saravana Balaji, N. Bacanin, I. Strumberger, M. Zivkovic et al., “Feature selection using grey wolf
optimization with random differential grouping,” Computer Systems Science and Engineering, vol. 43, no. 1, pp.
317–332, 2022.

[18] U. Ramakrishnan and N. Nachimuthu, “An enhanced memetic algorithm for feature selection in big data analytics
with mapreduce,” Intelligent Automation & Soft Computing, vol. 31, no. 3, pp. 1547–1559, 2022.

CSSE, 2023, vol.45, no.2 1543



[19] R. M. Devi, M. Premkumar, P. Jangir, B. S. Kumar, D. Alrowaili et al., “BHGSO: Binary hunger games search
optimization algorithm for feature selection problem,” Computers, Materials & Continua, vol. 70, no. 1, pp. 557–
579, 2022.

[20] X. Zhang, C. Mei, D. Chen and J. Li, “Feature selection in mixed data: A method using a novel fuzzy rough set-
based information entropy,” Pattern Recognition, vol. 56, pp. 1–15, 2016.

[21] X. Zhang, C. Mei, D. Chen, Y. Yang and J. Li, “Active incremental feature selection using a fuzzy-rough-set-based
information entropy,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp. 901–915, 2019.

[22] D. Chen, W. Zhang, D. Yeung and E. C. C. Tsang, “Rough approximations on a complete completely distributive
lattice with applications to generalized rough sets,” Information Sciences, vol. 176, no. 13, pp. 1829–1848, 2006.

[23] C. Luo, T. Li, H. Chen and D. Liu, “Incremental approaches for updating approximations in set-valued ordered
information systems,” Knowledge-Based Systems, vol. 50, no. 50, pp. 218–233, 2013.

[24] C. Zaibin and M. Lingling, “Some new covering-based multigranulation fuzzy rough sets and corresponding
application in multicriteria decision making,” Journal of Mathematics, vol. 2021, pp. 1–25, 2021.

[25] Y. Guo, E. C. C. Tsang, M. Hu, X. Lin, D. Chen et al., “Incremental updating approximations for double-
quantitative decision-theoretic rough sets with the variation of objects,” Knowledge-Based Systems, vol. 189,
no. 5, pp. 1–30, 2020.

[26] S. A. Alblowi, M. E. Sayed and M. A. E. Safty, “Decision making based on fuzzy soft sets and its application in
COVID-19,” Intelligent Automation & Soft Computing, vol. 30, no. 3, pp. 961–972, 2021.

[27] Y. Guo, E. C. C. Tsang, W. Xu and C. Degang, “Local logical disjunction double quantitative rough sets,”
Information Sciences, vol. 500, no. 2–3, pp. 87–112, 2019.

[28] C. Luo, T. Li, H. Chen, H. Fujita and Z. Yi, “Incremental rough set approach for hierarchical multicriteria
classification,” Information Sciences, vol. 429, pp. 72–87, 2018.

[29] C. Luo, T. Li, Y. Huang and H. Fujitad, “Updating three-way decisions in incomplete multi-scale information
systems,” Knowledge-Based Systems, vol. 476, pp. 274–289, 2019.

[30] C. R. Kumar and V. E. Jayanthi, “A novel fuzzy rough sets theory based CF recommendation system,” Computer
Systems Science & Engineering, vol. 34, no. 3, pp. 123–129, 2019.

[31] A. F. Oliva, F. M. Pérez, J. V. B. Martinez and M. A. Ortega, “Non-deterministic outlier detection method based
on the variable precision rough set model,” Computer Systems Science and Engineering, vol. 34, no. 3, pp.
131–144, 2019.

[32] A. S. Salama, “Sequences of topological near open and near closed sets with rough applications,” Filomat, vol. 34,
no. 1, pp. 51–58, 2020.

[33] A. S. Salama, “Bitopological approximation space with application to data reduction in multi-valued information
systems,” Filomat, vol. 34, no. 1, pp. 99–110, 2020.

1544 CSSE, 2023, vol.45, no.2


	Attribute Reduction for Information Systems via Strength of Rules and Similarity Matrix
	Introduction
	Basic Concepts
	Reduction of Condition Attributes Using the Strength of Rules
	Reduction of Condition Attributes Using Similarity Matrix
	Conclusions
	References


