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Abstract: In an underdetermined system, compressive sensing can be used to
recover the support vector. Greedy algorithms will recover the support vector
indices in an iterative manner. Generalized Orthogonal Matching Pursuit (GOMP)
is the generalized form of the Orthogonal Matching Pursuit (OMP) algorithm
where a number of indices selected per iteration will be greater than or equal to 1.
To recover the support vector of unknown signal ‘x’ from the compressed
measurements, the restricted isometric property should be satisfied as a sufficient con-
dition. Finding the restricted isometric constant is a non-deterministic polynomial-time
hardness problem due to that the coherence of the sensing matrix can be used to
derive the sufficient condition for support recovery. In this paper a sufficient con-
dition based on the coherence parameter to recover the support vector indices of
an unknown sparse signal ‘x’ using GOMP has been derived. The derived sufficient
condition will recover support vectors of P-sparse signal within ‘P’ iterations. The
recovery guarantee for GOMP is less restrictive, and applies to OMP when the
number of selection elements equals one. Simulation shows the superior perfor-
mance of the GOMP algorithm compared with other greedy algorithms.

Keywords: Compressed sensing; restricted isometric constant; generalized
orthogonal matching pursuit; support recovery; recovery guarantee; coherence

1 Introduction

Compressed sensing will aid to recover a P-sparse (P-non zero elements) unknown signal x 2 Rn using
the linear equation

y ¼ Hxþ v (1)

where y 2 Rm is an observation vector, H 2 Rm�n ðm,, nÞ is a sensing matrix, v is a noise vector. Though
the above equation is under determined, P-sparse x can be recovered from under determined measurements y
by imposing condition on matrixH using Restricted Isometric Property (RIP). Greedy algorithms are popular
to recover the support vector indices for example Orthogonal Matching Pursuit (OMP), Compressive
SAmpling Matching Pursuit (CoSAMP), Basis Pursuit. The condition to recover any P-sparse vector x,

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI: 10.32604/csse.2023.031566

Article

echT PressScience

mailto:varad1983@gmail.com
http://dx.doi.org/10.32604/csse.2023.031566
http://dx.doi.org/10.32604/csse.2023.031566


Restricted Isometric Constant (RIC) d 2 ð0; 1Þ is the smallest constant that satisfy the relation given below

ð1� dpÞjjxjj22 � jjHxjj22 � ð1þ dpjjxjj22Þ (2)

The smallest constant d satisfying Eq. (2) is referred as RIC. Greedy approach is most popular and lesser
computational complexity than the state-of-the-art algorithms like OMP, and CoSAMP. Most of the recovery
guarantee has been proposed based on the RIC which accurately recovers all the support indices of the sparse
signal with the help of the RIP [1–4]. In general, it is Non-deterministic Polynomial-time (NP)-hard to
evaluate RIC for a given matrix H in the expression to satisfy the stringent conditions. Recovery
conditions based on the mutual coherence have been proposed in the literature earlier for the OMP
algorithm (special case where a number of support elements selected in this algorithm is equal to one
(Q = 1) [5,6]. Coherence statistics will be helpful in solving many signal processing problems including
support detection and vector quantization [7–10]. In this paper, a sufficient condition has been derived to
guarantee the recovery performance based on coherence for Generalized Orthogonal Matching Pursuit
(GOMP). In recent years recovery conditions based on the RIC have been proposed to ensure recovery of
the accurate P-sparse signal with GOMP [11–15]. Furthermore in, the author [11,16] proposes sufficient
condition has been improved to dNKþ1,

1ffiffiffiffiffiffiffiffiffiffiffi
K=Nþ1

p . Though the conditions are tighter bounds it is NP-

hard to find out the RIC of the matrix H [11, 17–19]. Sufficient condition based on the mutual coherence
to accurately recover the support indices of the P-sparse signal with GOMP in noisy case has been
proposed. GOMP algorithm has the choice to choose number elements to be selected in each iteration
Q � ðm� 1Þ=P. As a generalized case if the number of selection element is equal to 1, it converges to
OMP whose performance is inferior to the GOMP.

1.1 Contributions

Sufficient condition to guarantee the support recovery for GOMP algorithm has been derived using the
coherence of the sensing matrix H.

GOMP can select Q � ðm� 1Þ=P elements in each iteration. When Q ¼ ðm� 1Þ=P, GOMP algorithm
recovery performance is better than the OMP where Q = 1.

l � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj
Qþ1ðQjxjÞ

p is a sufficient condition based on coherence statistics to recover the support vectors of

P-sparse signal in ‘P’ iterations using GOMP for noisy case. Simulations have been carried out to validate the
theoretical results and compare with the other greedy algorithms.

GOMP Algorithm:

Step 1: Input: H 2 Rm�n; y 2 Rn; P; Q � ðm� 1Þ=P
Step 2: Initialize: rt ¼ y ¼ 0

Step 3: For Each t � P

Step 4: Compute the correlation and find the first Q indices where correlation is it ¼ argmaxn2st jHnrt�1 j
Step 5: Select the first ‘Q’ largest value indices it ¼ fi1 . . . iQg
Step 6: Update sub band support indices St ¼ St�1 \ it

Step 7: Estimate the signal vector Ẑt ¼ argminz sup pðzÞ jjy� Hstzjj22
Step 8: Update residual rt ¼ y� HstẐst

Step 9: t ¼ t þ 1;

Step 10: Go to step 2
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Step 11: End For Return index set of sub band support indices €_S ¼ St;

Step 12: Output: Support vector indices S
_

Step 13: end

1.2 Preliminaries: Generalized Orthogonal Matching Pursuit (GOMP)

Algorithm for generalized orthogonal matching pursuit shown in GOMP algorithm has three parts
identification, augmentation and residual update. In the step 4, magnitude of the correlation between each
column of matrix H and residual is found and the values are arranged in descending order. Step 5: First Q
largest column indices it ¼ fi1 . . . iQg has been chosen. Step 6: Active support indices is concatenated
with the previous iteration support sets.

Line 7 finding the least square estimate of the signal vector, to find the residual rt is updated after
eliminating the active column indices from the measurements is shown in line 8. In other words, least
square will ensure projection of y on to the complement space PL

St
, this will ensure that the indices in St

in the current iteration cannot be selected repetitively in the upcoming iterations. The selected support
indices in the current iteration is projected to the orthogonal space in that way we can avoid the same
support indices will be chosen in the upcoming iterations.

2 Sufficient Condition

Coherence of sensing matrixH is maximum of absolute correlation between the two columns of H and it
is given by lðHÞ¼̂maxp6¼q jh�phqj; where h� is conjugate of h. To analyze the performance of the support
recovery algorithm some of the useful lemmas have been derived in the literature [12].

Lemma 1: Let H 2 Rm�n satisfies the RIP of orders P1 and P2 with P1 ,P2, then dP1 � dP2 .This is the
monotonocity property of the RIC.

Lemma 2: For any matrix H, the RIP constant dP bounded by dP � lðP � 1Þ where P is the sparsity of
the signal xðtÞ and l is the mutual coherence of matrix H.

Lemma 3: Suppose a matrix H satisfy RIP of order P and Q � P, then for any signal

x 2 RnjjHT
Qxjj22 � ð1þ dPÞjjxjj22

In this lemma 3 lower bound can be defined with the help of coherence l and sparsity of the signal P

max i2xnSHT
i P

L
SHxns � 1

N

X
j2W jHT

j P
L

S
HxnsxxnSj: (3)

The above expression plays a key role in proving the theorem 1. It holds good for generalized case of
OMP.

Remark 1: The condition Nðk þ 1Þ þ jxj � k � m in lemma 1 is to ensure the assumption that H
satisfies the RIP of order Nðk þ 1Þ þ jxj � 1 makes sense.

Theorem 1: Let H satisfy the coherence with l � 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj
Qþ1½ðQðPþ1Þþjxj�PÞ�1�l

p for an integer N with

1 � Q � ðm� 1ÞP. Then GOMP either identifies at least t0 indices in x if GOMP terminates after
performing t0 iterations with 1 � t0 � P or recovers x in P iterations provided that
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min
i2S

jjx½i�jj2.
2s

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj
Q

þ 1½ðQðP þ 1Þ þ jxj � PÞ � 1�l
s

The proof for the special case x ¼ P � 1 using Lemma 3 is as follows:

First we need to prove that the selection of Q elements contains at least one support index in iterations
will be considered as success. The proof for the first iteration should be carried at first. Let us assume

V ¼ fj1; j2 . . . ; jNg (4)

Instead of proving Ptþ1nPt \ x 6¼ f we will show

jHT
j11
rtj � . . . : � jHT

jNrtj � jHT
j2xcnV rtj (5)

max
j2x

jHT
i rtj. jHT

jN rtj (6)

By expression (5), HT
jQrt � 1

Qmax
j2x

jHT
i rtj Thus, to show Ptþ1nPt \ x ¼ ’, it suffices to show

max
i2W

jHT
i rtj.

1

Q
max
j2x

jHT
j rtj (7)

residual in the algorithm at tth iteration can be expressed as

rt ¼ y� Hstxst ¼ ðI � HstðHT
st
HstÞ�1HT

St
Þy ¼ PL

St
ðHxxx þ vÞ

¼ PL
St
ðHx\St þ HxnStxxnst þ vÞ

¼ PL
St
Hxnstxxnst þ PL

st
v

(8)

Thus, by Eq. (8) and the triangular inequality

max
i2x

jHT
i rtj � max

i2xnst
ðjHT

i P
T
St
HxnSt xxnSt j � jHT

i P
L
St
vjÞ (9)

1

N

X
j2W jHT

j rtj �
1

N

X
j2W jHT

j P
L
St
HxnSt xxnSt j þmax

j2W
jHT

i P
L
St
vj (10)

It is a two-step process to fond the lower bound. To find the lower bound on maximum of IT is a two step
process to find the lower bound on maxi xjHT

i rtj: A lower bound on maxi2x jHT
i rtj will be derived, and it

requires Q � P. Thus, to show (10), it suffices to show

b1.b2 (11)

b1 ¼ max
i2xnst

jHT
i P

L
St
Hxnst j �

1

N

X
j2W jHT

j P
L
St
Hxnst xxnSt j (12)

b2 ¼ max
i2xnst

jHT
i P

L
St
vj þmax

j2x
jHT

j P
L
St
v (13)

max
i2xnst

jHT
i P

L
St
vj ¼ jHT

i0
PL
St
v (14)

max
j2W

jHT
i P

L
Stvj þmax

j2x
jHT

j0P
L
St
v (15)
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b2 ¼ jjHT
i0\j0P

L
St
vjj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jjHT

i0[j0P
L
St
vjj2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ dQðP þ 1Þ þ jxj � pÞjjvjj2

q
(16)

Lower bound on b1 will be derived

0 � t � jx \ Stj ¼ l � jxj � 1

b1 �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj
Q

þ 1dQðP þ 1Þ þ jxj � lÞjjxxnst jj2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijxj � l
p (17)

jjxxnst jj2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx� 1j
Pð1þ dQðP þ 1Þ þ jxj � PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAVR:SNRjjvjj2

qs
(18)

jjxxnst jj2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj � lmini2x

p
jxij (19)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj � lð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAVRjjxjj2=

ffiffiffiffiffiffi
KÞ

pqr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx� 1j
Pð1þ dQðP þ 1Þ þ jxj � PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAVRjjHxjj2

qs

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx� 1j
Pð1þ dQðP þ 1Þ þ jxj � PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAVR:SNRjjvjj2

qs

jjHxjj ¼ jjHxxxjj2 (20)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ dQðP þ 1Þ þ jxj � PÞ

q

b1 �
1�

ffiffiffiffiffiffiffi
jxj
Q

s
þ 1dQðP þ !Þ þ jxj � P

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAVR:SNRjjvjj2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1þ dQðP þ 1Þ þ jxj � PÞp (21)

ð1�
ffiffiffiffiffiffiffi
jxj
Q

s
þ 1dQðP þ !Þ þ jxj � PÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MAVR:SNRjjvjj2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1þ dQðP þ 1Þ þ jxj � PÞp .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ dQðP þ 1Þ þ jxj � Pjjvjj2

q
(22)

min
i2S

jjx½i�jj2.
2s

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj
Q

þ 1dQðP þ 1Þ þ jxj � P

s (23)

Hence the proof.
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Remark: from the expression (23) it has been proved that if elements of the sparse signal satisfy the
constraint, then the GOMP algorithm will identify at least one support index in t iterations. Figs. 2 and 3
show the performance comparison of GOMP and OMP algorithms at various Signal to Noise Ratio
(SNR) level for different sparsity. It shows that GOMP has superior performance over the OMP at every
SNR levels for the same sparsity. A sufficient condition has been derived in the previous section.
Simulations have been carried out to validate the performance of the GOMP algorithm.

3 Numerical and Simulations

In the simulation, the unknown sparse signal is defined as

xðtÞ ¼
X

L
j¼1

ffiffiffiffiffiffiffiffiffiffi
EjWj

p
sin cðWjðt � tjÞ cosWjðt � tjÞÞ (24)

where L is the number of occupied bands, Ej is the energy coefficient, Wj is the jth sub-band in the wide
bandwidth, tj is the time offset between tj and t = 0, and xj is the carrier frequency. Simulations have
been carried out in MATLAB 2019a. In all the trials tj in Wj is randomly chosen in MHz, and Ej is
randomly chosen. Elements of sensing matrix are identical, independent Gaussian distribution. Non zero
elements in the P-sparse vector x are evenly distributed in all possible locations. Support recovery
performance of the GOMP algorithm has been evaluated over 500 independent trials for different sparsity
levels and Signal to Noise ratio (SNR). We evaluate the performance for support recovery with GOMP
over 500 independent trails for different sparsity levels and SNR. The measurement matrices involved in
this paper are all Gauss random matrices while the reconstruction algorithms considered for the
comparison are OMP, Subspace Pursuit (SP), and CoSAMP algorithms.

Number of support indices selected in each iteration should satisfy the constraint Q � ðm� 1Þ=P.
Support recovery performance of GOMP algorithm has been plotted for different number selection
elements in every iteration range from 1 to 7 at various SNR levels, sparsity P = 6. In Fig. 1 number of
selections varied and the performance of the GOMP algorithm has been studied. The number selection
element Q = 7 has the superior support recovery performance than that of the traditional OMP (Q = 1). In
Fig. 4 computation time has been plotted for different sparsity. It is obvious that computational time is
slightly higher than the OMP, CoSAMP.

Figure 1: Detection performance of GOMP algorithm for different number of selection indices in each
iteration at various signal to noise ratio levels
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In this paper, successful recovery of support vector indices with respect to SNR for given sparsity of P
using generalized orthogonal matching pursuit is shown in the Fig. 2. Sparsity of the signal x will be varied
between 2 and 22. It is evident from the Fig. 3 that the algorithm can able to recover the signal support
successfully only when there are few non-zero elements.

We note that the precise reconstruction probability and the computation time of the sparse signal vary
with the level of sparsity. Reconstruction results for the different algorithms are presented in Fig. 5, where the
x and y axes represent the level of sparsity and probability of exact recovery, respectively. Percentage of

Figure 2: Detection performance of the OMP (Special case where number of selection element per iteration
Q = 1) algorithm for different sparsity P varies from 2 to 22 at various SNR levels

Figure 3: Detection performance of the GOMP algorithm for different sparsity P varies from 2 to 22 at
various SNR levels
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successful detection of support vectors at lower SNR range in GOMP is better compared to the other
algorithm because GOMP recovers at least one true support vector in each iteration.

4 Conclusions

In this paper, it has been proved that l � 1ffiffiffiffiffi
ðjxjQ

p
þ1ÞðQðPþ1Þþjxj�P�1Þ

with a condition on signal amplitude

for the accurate support recovery of P-sparse signal based on the coherent statistics. Further number of
support index chosen in each iteration is Q � ðm� 1Þ=P . This condition is more flexible than the

Figure 4: Graph between different sparsity level and computation time for different greedy algorithms

Figure 5: Detection performance of various greedy algorithm plotted between signal to noise ratio in
deciBel and percentage of successful detection
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Q � P. When the number of elements chosen is equal to 1, the GOMP converges to OMP. In the noisy case,
it is a sufficient condition based on the coherence statistics to recover the support vector accurately in t
iterations. Simulation has been carried out GOMP algorithm support recovery performance superior to the
other methods at different SNR and sparsity levels. It is evident from the simulation that the GOMP has
superior detection performance over other greedy algorithms like OMP, CoSAMP, and SP at different
sparsity and SNR.
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