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Abstract: The main components of Cognitive Radio networks are Primary Users
(PU) and Secondary Users (SU). The most essential method used in Cognitive
networks is Spectrum Sensing, which detects the spectrum band and opportunis-
tically accesses the free white areas for different users. Exploiting the free spaces
helps to increase the spectrum efficiency. But the existing spectrum sensing tech-
niques such as energy detectors, cyclo-stationary detectors suffer from various
problems such as complexity, non-responsive behaviors under low Signal to
Noise Ratio (SNR) and computational overhead, which affects the performance
of the sensing accuracy. Many algorithms such as Long-Short Term Memory
(LSTM), Convolutional Neural Networks (CNN), and Recurrent Neural Networks
(RNN) play an important role in designing intelligent spectrum sensing techni-
ques due to the excellent learning ability of deep learning frameworks, but still
require improvisation in terms of sensing accuracy under dynamic environmental
conditions. This paper, we propose the novel and hybrid CNN-Cuttle-Fish Opti-
mized Long Short Term Memory (COLSTM), an improved version of LSTM that
is well suited for the dynamic changes of environmental SNR with less computa-
tional overhead and complexity. The proposed COLSTM based spectrum sensing
technique exploits the various statistical features from spectrum data of PU to
improve the sensing efficiency. Furthermore, the addition of shuttle-fish optimiza-
tion in LSTM has reduced the computational overhead and complexity which in
turn enhanced the sensing performances. The proposed methodology is validated
on spectrum data acquired using RaspberryPi-RTLSDR experimental test-beds.
The proposed spectrum sensing technique and the existing classical spectrum sen-
sing techniques are compared. Experimental results show that the proposed
scheme has shown the brighter enhancement of performance under different
SNR environments. Further, the improvised performance has been achieved at
low complexity and low computational overhead when compared with the other
existing LSTM networks.
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1 Introduction

Cognitive Radio (CR) [1] is an emerging technology, which fulfils the spectrum scarcity due to the
exponential growth of 5G and Internet of things (IoT) devices. Cognitive Radio technology [2] has
gained the hawk-eye research interest to fulfill the spectrum scarcity. Its goal is to opportunistically reuse
vacant spectrum bands or white spaces, ensuring that licensed users are not subjected to collisions and
interferences [3]. In the CR network, licensed users are referred to as Primary Users (PU), whereas
unlicensed users are referred to as Secondary Users (SU).

The basic goal of CR is to allow secondary users to access underutilized spectrum bands in an
opportunistic manner without interfering with prime users. This necessitates the employment of a high-
efficiency spectrum sensing system that recognizes the presence of primary users and utilizes the
spectrum bands without secondary users overlapping [4–7]. But detection performance in practice is often
compromised with multipath fading, shadowing and receiver uncertainty issues. To countermeasure these
issues, effective spectrum sensing methods are needed. Many spectrum sensing techniques are used for an
effective sensing of spectrum for utilizing the frequency band [8–10]. Although these spectrum sensing
techniques are used for allocating the spectrum bands, capturing the primary user activities under
environmental noise factors still remains to be challenge [11–14]. The primary user‘s statistical
information can be useful in the CR for an effective prediction of spectrum occupancy mechanism and
optimization of system performance with improved spectral efficiency. Recent advancements of machine
learning [15,16] and deep learning algorithms [17,18] in wireless communication has gained brighter
light of research from industry and academia. The key feature of CR network is its learning by itself from
the radio environment which makes the machine and deep learning suitable for the CR networks [19–21].

The hybrid combination of Convolutional Neural Networks (CNN) and Long Short Term Memory
(LSTM) plays a significant role in constructing an effective spectrum sensing model, according to the
existing literature [22]. But these models are designed based on noise free environments without the real
time spectral data. To solve this above problem, this paper proposes the novel HOLE-NETS (Hybrid
Optimized LSTM Enabled Networks) which ensembles the CNN and Optimized LSTM for the better
sensing of the primary users based on the statistical characteristics of primary users under noisy
environment. The main contributions of the paper are as follows

1. This paper proposes the Novel Hybrid Combination of CNN and LSTM in which the hyper
parameters of LSTM are optimized by Cuttle Fish mechanism to achieve high sensing accuracy.

2. The proposed model has been designed under different levels of noisy environment with less
computational overhead.

3. The proposed ensemble model has been tested with the real time datasets obtained from the
experimental test bed consist of Raspberry Pi Model 4 and RTL-SDR Tuners.

The rest of the paper is organized as follows: Section 2 presents the related works from different authors.
The preliminary views of CNN, LSTM and Cuttle Fish Optimization are presented in Section 3 and it also
discusses about the system model with working mechanism of proposed hybrid network based spectrum
sensing. The empirical test-bed descriptions are presented in Section 4, experimentation results and
comparative analysis are presented in Section 5. Finally the paper is concluded with future enhancement
in Section 6.

2 Related Works

The cooperative strategy is incorporated into Dueling Deep Q Networks (DDQN), the deep multi-user
reinforcement learning (DMRL) technique [23]. Without prior knowledge of network dynamics, DDQN can
effectively learn the relationships between channels and reduce the computing cost in the vast subspace of the
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multi-user scenario. A cooperative channel strategy based on identifies signals without releasing spectrum
information is being researched to reduce conflicts and boost network usefulness. Each user selects a
channel and transmits a packet with a defined probability in each time slot.

A new database is developed in [24] for cooperative spectrum sensing. The author adopted the
convolutional neural network (CNN) for maximizing the spectrum performance with minimal error rate.
OFDM signals are comprised with white Gaussian noise that has been used for generating the dataset.
VGG, LeNet, and AlexNet have been designed to obtain the optimum spectrum evaluated with proposed
database and results are compared with each other. The limitation of the proposed model is the wireless
network which included only 5 nodes in a network which is not suitable for real-time purpose.

The issues of combined spectrum sensing and optimum channel selection in distributed cognitive radio
systems were addressed in [25]. For recognizing the unused spectrum in a distributed context, the authors
suggested a decentralized based multi-agent Q-learning reinforcement model. The algorithms enable each
agent to generate a globally optimal Joint Spectrum Sensing (JSS) strategy, even if the individual agents
have limited but complementary channel coverage. In comparison to basic single-agent systems, in the
estimated values of interest, there is a faster convergence rate and less noise provides in these algorithm.
The limitation of the proposed system is deficiency in privacy and protection of individual usage.

Deep Neural Networks (DNN) was created in [26] for spectrum sensing. A deep learning-based model
called “DLSenseNet” is suggested for spectrum sensing that uses structural information from incoming
modulated signals. To detect false alarms in Cognitive Radio (CR) users and reduce mistake rates, the
suggested model is a modified version of a convolutional neural network. The suggested DNN-based
spectrum detector has a learning complexity restriction.

An approach to incorporate opportunistic spectrum sensing into the Nomadic Base Transceiver Station
(BTS) architecture, a hybrid Automatic Modulation Classification (AMC) based spectrum sensing model
was developed in [27]. Selected analogue and second generation (2G) digital modulation methods were
evaluated, and the accuracy of the best model obtained will allow for the most accurate detection of
spectrum holes within the bands under consideration]. A unique CNN-based Cooperative Spectrum
Sensing (CSS) strategy for CRN was developed in [28], which is the first attempt to apply deep learning
for CSS. CNN is used in DCS to learn the technique for combining the binary or real-valued individual
sensing outcomes of the SUs.

Multi-feature learning model with enhanced local attention for vehicle re-identification (MFELA) is
proposed in [29]. This framework uses global features for vehicle re-identification. But this framework
need an improvisation to handle occlusion conditions of vehicle datasets. The CNN based fine grained
vehicle classification type method is proposed in [30]. This framework significantly reduced the network
parameters to reduce computational overhead. But this framework need improvisation to handle real time
dataset to maintain the same accuracy.

3 Proposed Framework

3.1 System Model

Cognitive radio scenario is considered as multiuser. A primary user (PU) transmitter is used for
transmitting the primary user signals. The primary signal users are collected and sampled. These sampled
signals are used to train and test the proposed design and the architecture can take the decision to
determine the unknown samples in the network.

Consider X ðkÞ¼ f X x1ðkÞ; x2ðkÞ; x3ðkÞ . . . . . . . . . xðmÞkgt, where m represents the number of user
and k denotes the received signals from m users. X (k) denotes the discrete time sample present at mth

users. The paper uses the binary hypothesis testing process for spectrum sensing as mentioned in [31].
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H1: xðkÞ ¼ R NðkÞ þ Y ðkÞ (1)

H0: xðkÞ ¼ Y ðkÞ (2)

The signal vector R_N(k) is the one that is affected by channel fading and path loss. The distinct noise
vector with aero mean is represented by Y (k). As a result, according to [31], hypothesis H1 denotes the
presence of a principal user, while hypothesis H0 denotes its absence. These signal parameters are
separated into real and imaginary components which are used to train and test the proposed architecture.

3.2 Preliminaries

This section details about the preliminary working principle of CNN, LSTM and Cuttle fish
optimization. Additionally working mechanism of the proposed framework is presented.

3.2.1 Convolutional Neural Network
Convolutional neural network (CNN) is a propelled advancement of Multi-Layer Perception MLP. CNN

is popular in the computer vision sector. Fig. 1 shows the different layers employed by the CNN for the
feature extraction and classification.

From the Fig. 1, it is clear that CNN is supervised feed forward multi-layered networks which usually
includes the multi-layer convolutional layers (CL), Layers with a pooling layer (PL) and layers that are
entirely connected (FC). These layers are connected from input to output, with one layer’s output feature
map serving as the input to the next layer, resulting in natural inter-layer flow [31].

3.2.2 Long Short Term Memory-An Overview
As mentioned in [32], Fig. 2 shows the LSTM consists of cell, input gate, output gate, and forget gate

make up the network. Cells are well-known for their ability to remember values over long periods of time.
The “cell input state is Ct, the cell output state is Gt, and its previous state is Gt-1, and the three gates’ states
are jt, Tf, and T0. Both Gt and ht are passed to the next neural network in the RNN, according to the topology
of the LSTM cell. The output and forget gates are used to update the memory of the LSTM, which combines
the output of the previous unit with the current input state.

We utilize the following equations in order to determine Gt and ht. To begin, determine the states of the
three gates as well as the cell input state, input gate: Cell, input gate, output gate, and forget gate make up the
network”.

INPUT LAYER CONVOLUTIONAL LAYERS FULLY 
CONNECTED 

LAYERS 
OUTPUT 
LAYER 

Figure 1: Convolutional neural network–Its layers and working mechanism
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The input gate is given as

jt ¼ hðGi
l:0t þ Gi

h:et�1 þ siÞ (3)

The forget gate is given as

Tf ¼ hðGf
l :0t þ Gf

h:et�1 þ sf Þ (4)

Output gate is calculated as

¼ hðG0
l :0t þ Go

h:et�1 þ soÞ (5)

Cell Input is given as

~Tc ¼ tanhðGc
l :Ot þ Gc

h:et�1 þ scÞ (6)

where G0
l ; Gf

l ; G
i
l; G

C
l are the weight matrices connecting the input gates to the output layers whereas

Gi
h; G

f
h; Go

h; G
C
h are the weight matrices connecting the gate inputs to the hidden layers. Also

si; sf ; so; sC are the bias vectors and tanh is considered to be hyperbolic function”.

3.2.3 Cuttle Fish Algorithm-An Overview
Cuttle Fish Algorithm is a novel approach which is based on the AI-inspired meta-heuristic by the

adaptive color characteristics of the Cuttle fishes. Replicated light from dissimilar layers such as
chromatophores, iridophores, and leucophores produces diverse colour patterns in cuttlefish. These cells
are piled together in cuttlefish, and it is the immediate combination of these cells that produces the wide
range of colour patterns. In a summary, this one-of-a-kind technology reproduces the light reflection
process over multiple layers, as well as the visibility of the matching pattern that cuttlefish employs to
match its chroma background. This method separates the cells into four groups, two of which are utilized
for global searching and the other for local searching. Fig. 3 illustrates the functioning algorithm. The
detailed working of the proposed cuttlefish algorithm is explained in [33,34].

Sigmoid
Sigmoid tanh

Sigmoid

tanh

Cell 
State/Long-

term Memory 

Hidden 
State/Short-

term Memory 

New cell 
state 

New 
Hidden 

t t

Output 

Input 

Figure 2: An overview of LSTM
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3.3 Proposed Framework

3.3.1 System Overview
Fig. 4 shows the proposed overall block diagram for the proposed framework. It works in the three

different phases such as Spectrum data collection, Convolutional Feature extraction and finally spectrum
sensing by the optimized LSTM networks. The detailed working mechanism of the proposed framework
is presented in preceding section.

3.3.2 Dataset Collection
In this phase, empirical test bed consists of Raspberry Pi 3 and RTL-SDR are used for collecting the

spectrum data with the different communication frequencies. Since our research work is proposed for the
sensing of primary users in noisy environment, signal captured from the test beds are added with
Gaussian white noise. The signal Y is represented as 2N samples which is represented below

Y ¼ ½Y 1; y2; y3 . . . . . . . . . x2N � (7)

Each sample is used as a source of information for the suggested architecture. Tab. 1 illustrates the
number of raw data collected from the empirical test bed.

Initialize population (P [N]) with random solutions.
Assign values of r1, r2, v1, v2 

Evaluate fitness of the population and keep the best 
solution in Best 

Divide the population into 4 groups: G1,G2,G3 and G4

Calculate the average points of the best solution 
(Best) and store it in AVbest

Case (1, 2): for each cell in G1 generate new solution 
using reflection and visibility. Equation (3, 4) and 

calculate the fitness 

Case (3, 4): for each cell in G2 generate new solution 
using reflection and visibility. Equation (7, 4) and 

calculate the fitness 

Case (5): for each cell in G3 generate new solution 
using reflection and visibility. Equation (8, 9) and 

calculate the fitness 

Case (6): for each cell in G1 generate a random 
solution equation (2), and calculate the fitness 

Current solution = new solution 

Best = new solution  

Fitness >Best.fitness 

Fitness > current fitness 

Stopping 
criteria? 

Run Test  

Yes 
No 

Yes 

No

No

Yes 

Figure 3: General principle of CFA
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3.4 Hybrid Ensemble Learning Based Spectrum Sensing

The raw data collected from the empirical test bed is considered as input to proposed optimized hybrid
learning algorithm. These data are considered as the input matrix which comprises of real and imaginary
elements that are scattered across the H0 and H1. To visualize the difference between the data scattered
across H) and H1, CNN is used for an efficient feature extractor. The parameters of CNN used for
extracting the energy and correlation features. The CNN’s output is vectorized according to the sensing
period and fed into the appropriate LSTM cells.

According to the sensing periods, these LSTM cells can extract time-dependent characteristics. Finally,
the dense layer receives the LSTM cells’ outputs, which include energy, correlation, and time-dependent
features, which are used to alter the output dimension according to the label classes. Since the number of
classes and data are high, these network leads to high computational complexity and low sensing
accuracy. In order to overcome this drawback, the proposed framework uses the Cuttlefish Optimized
LSTM layer for further processing in order to reduce the computational complexity which in turn
increases the spectral efficiency. In this method of training, hyper parameters such as epoch, hidden
layers, learning rate are optimized in accordance to Cuttlefish lighting mechanism. The proposed
framework accuracy is coined with the fitness function. The above mentioned hyper parameters are
iterated until it meets its fitness function given in Eq. (8).

Fitness Function ¼ Maximum of ðAccuracy; Precision; Recall and F1� scoreÞ (8)

In the proposed framework, first the local solution is calculated using Eq. (8). Once the local solution is
calculated then it is again used as input of proposed framework to calculate the global solution using same
Eq. (8) to increase the accuracy.

Raw Data Collection

Proposed Hybrid Framework

Sensing of Primary Users

Spectrum Allocation

Primary Users

Figure 4: Overall block diagram for the proposed framework

Table 1: Raw data collected form the empirical test bed

Sl.no Number of data collected SNR levels(db)

01 4, 76, 402 −20 to 0

02 4, 76, 000 0 to + 20
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Algorithm-1 presents the working mechanism of the Optimized LSTM network .The working of the
proposed training network is presented in Algorithm-2

Algorithm 1: Cuttle Fish Optimization Based Training network(CFLSTM)

1 Input: Hyper parameters : Epochs, hidden layers, Bias Weights, Learning Rate

2 Output: High Spectral Sensing Efficiency

3 Initialize the hyper parameter

4 Calculate local solution 1 using fitness function Eq. (8)

5 Calculate global solution 2 using fitness function Eq. (8)

5 Find the best global solution

6 while stopping criteria not meet to do

7 Select hyper parameters in a random manner.

8 Calculate local solution 1 using fitness function Eq. (8)

9 Calculate global solution 2 using fitness function Eq. (8)

11 Calculate the best global solution

12 Update the hyper parameters

13 End while

Sl.no Algorithm-2// Working Mechanism of the Proposed algorithm

01 Input: Raw Spectral Data D(n) where n =

02 Output: Sensing of Users

03 While True:

04 [Energy, Correlation] = CNN(Y, t) where t = Sensing period

05 Time-Dependent Features T = LSTM(Energy, Correlation)

06 Sensing = Optimized_LSTM(T)

07 End

4 Empirical Experimental Test Bed

The testbed consist of RTL-SDR dongle interfaced with Raspberry Pi Model 3 and Windows 10 based
computer system for running the software. The software includes GNURADIO and Python 3.8. The
GNURADIO is used to capture the different spectrum data and Python 3.8 is used for implementing the
proposed spectrum sensing technique .The different frequencies of RTL-SDR configuration on raspberry
pi 4 is shown in Tab. 2. The captured spectrum data from the different frequencies are used in offline
mode for validating the proposed spectrum sensing
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5 Results and Discussion

The experimental findings for the suggested algorithm are reported in this section. To train and test the
models, the proposed technique is built with Keras libraries and a TensorFlow backend. Nearly 9, 52,
402 datasets were collected under different SNR conditions that are used for training and testing the
proposed technique. The performance metrics such as Prediction accuracy (Pa), Precision (P), Recall (R),
Probability of detection (Pd), and Probability of False Alarm (Pf) are the performance measures used for
evaluation (Pf). The chance of announcing the presence of the primary user when the spectrum is actually
occupied is Pd, while the likelihood of declaring the existence of PU when the spectrum is truly vacant is
Pf. For varying SNR values of the received signals, both probabilities were determined. The averaged
value of the chance of false alarm and the probability of miss detection was used to generate the
performance metric SE (Pm). The likelihood of miss detection is the chance of declaring the spectrum
empty when the PU is actually there. The mathematical expression used for calculating above
performance metrics is given in Tab. 3.

5.1 Model Validation and Hyper Parameter Tuning

70% of the total samples are fed in batches to train the proposed network, while 30% of the data is used
to test the network to validate the suggested model. The hyper parameters are tuned in accordance to the
proposed optimization algorithm as mentioned in Algorithm-1. Tab. 3 gives the mathematical expression

Table 2: Specifications for the RTL_SDR for different frequency bands

Tuners Elonics
E4000

Rafael
micro
R820T

Rafael
micro
R828D

Fitipower FC0013 Fitipower
FC0012

FCI
FC2580

Specifications 52–
2200 MHz
with a gap
from 1100 to
1250 MHz
(varies)

24–
1766 MHz

24–
1766 MHz

22–1100 MHz
(FC0013B/C, FC0013G
has a separate L-band
input, which is
unconnected on most
sticks)

22–
948.6 MHz

146–308
MHz and
438–924
MHz

Table 3: Mathematical expression for calculating the different performance metrics

Sl.no Performance metrics Mathematical expression

01 Prediction accuracy(Pa), TP þ TN

TP þ TN þ FP þ FN
02 Recall TP

TP þ FN
� 100

03 Precision TP

TP þ FN
04 Probability of detection(Pd) Total number of primary user(PU)/Total number of users

(PU + noise signals)

05 Probability of missing ratio(Pm) 1–(Pd)

06 Probability of false alarm(Pf) Number of noise signals diagnosed/Total number of users
(PU + noise signals)
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for calculating the different performance metrics and Tab. 4 presents the optimized hyper parameters used for
training the network. To start with, to exhibit the attributes of the proposed enhanced locator, we determined
the diverse presentation measurements, for example, exactness, accuracy, review, particularity and F1-score
at various SNR conditions for various recurrence innovations of exploratory proving grounds. Figs. 5, 6 and
7 shows the performance metrics of the proposed algorithm using different frequency technologies under low
and high SNR scenario. Tab. 5 shows the comparative analysis of time complexity with existing systems.

From the Figs. 5 to 7, performance of the proposed framework is high (98.5% accuracy, 98.4%
precision, 98.3%recall, 98.25%specificity, 98.4% F1-score) even under low SNR condition. Besides, to
approve the qualities of the proposed detecting method under various Pf, we determined the recipient
working attributes ROC bends of the proposed strategy is contrasted and the other learning based
spectrum detecting procedures. Figs. 8, 9 and 10 show the ROC curves of the different spectrum sensing
techniques under various tuning spectral frequencies at high SNR ratio(SNR = 20 dB).

Table 4: Hyper parameters optimized used for training and testing the proposed network

Sl. no Hyper parameter details Optimized parameters

01 Epochs 400

02 Hidden layers 20

03 Batch size 42

04 Learning rate 0.001

Figure 5: Performance metrics of the proposed algorithm under 1100 to 1250 MHz & 438–924 MHz

Figure 6: Performance metrics of the proposed algorithm under 22 to 1100 MHz & 146–308 MHz
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Figure 7: Performance metrics of the proposed algorithm under 52–2200 MHz and 1100–1250 MHz

Figure 8: Performance metrics of the proposed algorithm under 1100 to 1250 MHz & 438–924 MHz

Figure 9: Performance metrics of the proposed algorithm under 22 to 1100 MHz & 146–308 MHz

Table 5: Comparative analysis of computational time

Different algorithms Time (h)

HOLE-Networks 5

CNN-LSTM (SGD) 9

CNN-LSTM (ADAM) 12

LSTM 14
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It can be observed that the deep learning based spectrum sensing technique has outperformed the
traditional sensing techniques. In the first two spectrum sensing techniques, CNN is used to extract the
signal patterns of the received spectral data corresponding to different sensing periods. Though CNN is
good in extracting the signal features, the integration of Cuttle fish optimization on the LSTM has slight
edge over the other hybrid learning (CNN + LSTM). Figure shows the ROC curves of the different
spectrum sensing schemes under different tuning conditions at Low SNR (SNR = −20 dB). It is evident
that the deep learning based spectrum detectors have outperformed the other traditional spectrum sensing
techniques. At the Low SNR, optimized hybrid deep learning algorithm has outperformed the other
hybrid learning technique. From the above figures, it is found that the both hybrid deep learning based
sensing technique has shown equal performances at high SNR scenario but the proposed algorithm has
outperformed the other learning schemes at low SNR under various tuning spectral frequencies. Then to
prove the effectiveness of the proposed hybrid spectrum sensing techniques under different SNR levels,
we demonstrate the Pd-SNR performance of proposed schemes with that of the other deep learning based
sensing techniques which are shown in Figs. 11, 12, 13 and 14.

In this evaluation, probability of false alarm rate is set to 0.1 in accordance to IEEE 802.22 standard.
From the Figures, it is clear that the proposed schemes exhibits the superior performance than the other
existing deep learning and traditional spectrum sensing technique. Although performance degradation is
observed HOLE-Networks has outperformed the other learning algorithms even in low SNR conditions.
Finally, to prove the efficiency of the proposed optimizer in the hybrid deep learning algorithm, we have
compared the other optimizer’s performance in sensing the different spectrum users. Fig. 15, presents the
computational training time of the networks used for the spectrum sensing From the Fig. 15, it is found
that the proposed network consumes less computational time than other existing optimizers and learning
model because of COLSTM incorporation and which is highly suitable for low SNR scenarios also.

Figure 10: Performance metrics of the proposed algorithm under 52–2200 MHz & 1100–1250 MHz
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Figure 12: Pd vs. SNR Curves for the different spectrum sensing techniques under 1100 to 1250 MHz and
438–924 MHz

Figure 11: ROC curves: 1100 to 1250 MHz and 438–924 MHz (Top), 22 to 1100 MHz and 146–308 MHz
(Middle), 52–2200 MHz and 1100–1250 MHz (Botom)
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6 Conclusions

In this paper, we proposed an ensemble profound learning-based CNN-Optimized LSTM based range
detecting method. The proposed HOLE-NETWORK based Sensing technique is designed for an efficient
spectrum sensing under dynamic changes of noise environments. The proposed technique indirectly
absorbs mandatory features in the noisy spectrum data such as energy, correlation and time-dependent
temporal features. Furthermore, to achieve the high spectral efficiency and less computational overhead,
we have integrated the Cuttle Fish algorithm for the better optimization of hyper parameters in LSTM
layers of training network. The extensive experimentation is carried out using the Raspberry Pi Model
4 interfaced with RTL tuner and performance of the proposed algorithm is evaluated and compared with
the other existing hybrid learning based on the sensors information. Implementation results demonstrate
that the anticipated algorithm has outperformed other hybrid models in terms of sensing efficiency under
different SNR regimes. Hence the proposed framework finds its application in Security applications of
IoT. Since the proposed algorithm works in the supervised fashion, adaptive learning in accordance to the
dynamic environment still needs the brighter light of improvisation. In future the reinforcement learning

Figure 15: Computational training time analysis for the different algorithms used for the spectrum sensing

Figure 13: Performance metrics of the proposed algorithm under 52–2200 MHz and 1100–1250 MHz

Figure 14: Performance metrics of the proposed algorithm under 52–2200 MHz and 1100–1250 MHz
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is adopted with proposed learning framework to improve the results further to support the secured
applications. However, addition of reinforcement with hybrid learning is a lime-light research in recent days.
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