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Abstract: Edge intelligence brings the deployment of applied deep learning (DL)
models in edge computing systems to alleviate the core backbone network con-
gestions. The setup of programmable software-defined networking (SDN) control
and elastic virtual computing resources within network functions virtualization
(NFV) are cooperative for enhancing the applicability of intelligent edge softwar-
ization. To offer advancement for multi-dimensional model task offloading in
edge networks with SDN/NFV-based control softwarization, this study proposes
a DL mechanism to recommend the optimal edge node selection with primary fea-
tures of congestion windows, link delays, and allocatable bandwidth capacities.
Adaptive partial task offloading policy considered the DL-based recommendation
to modify efficient virtual resource placement for minimizing the completion time
and termination drop ratio. The optimization problem of resource placement is
tackled by a deep reinforcement learning (DRL)-based policy following the Mar-
kov decision process (MDP). The agent observes the state spaces and applies
value-maximized action of available computation resources and adjustable
resource allocation steps. The reward formulation primarily considers task-
required computing resources and action-applied allocation properties. With
defined policies of resource determination, the orchestration procedure is config-
ured within each virtual network function (VNF) descriptor using topology and
orchestration specification for cloud applications (TOSCA) by specifying the allo-
cated properties. The simulation for the control rule installation is conducted
using Mininet and Ryu SDN controller. Average delay and task delivery/drop
ratios are used as the key performance metrics.

Keywords: Deep learning; partial task offloading; software-defined networking;
virtual machine; virtual network functions

1 Introduction
1.1 Motivation and Problem Statement

With future aspects of enabling network automation, the 3rd generation partnership project (3GPP), a
global organization for standard telecommunications, released technical specifications of various use
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cases, which includes the procedures of gathering primary network data features, machine learning (ML)
model training, and request-response interactions in the network data analytics function (NWDAF) [1]. In
addition, European telecommunications standards institute (ETSI) contributes reference models and
promising concepts in generic autonomic network architecture (GANA) and experiential networked
intelligence (ENI) for enabling artificial intelligence (AI) algorithms, including ML/deep learning (DL)
and self-organizing deployment policies [2,3]. With the preliminaries of superior testbeds and
architectural systems, the decision-making and management entities of intelligent modules can be
deployed within specified interfaces and network service demands which interact with operations support
system (OSS)/business support system (BSS). Therefore, the confluence of network functions
virtualization (NFV), software-defined networking (SDN), and edge computing allows an adaptive
configuration of intelligent model policies on resource pooling adjustment, networking abstractions, and
efficient slicing capabilities in multi-type Quality-of-Service (QoS) indicators with different criticality
requirements [4—7].

Applying intelligent models in SDN-based architecture has been converged for multiple purposes, such
as flow rules optimization, flow-aware classifications, estimation of QoS performances, and resource
orchestration by enabling the interaction interfaces between classifiers and controllers [8,9]. However, in
the era of the massive Internet of Things (IoT), the user equipment (UE) consists of low battery life and
resource constraints for abstracting and training the intelligent collaborative learning model. Partial
offloading policies can be considered for optimizing the completion time of local computation-intensive
tasks [10]. With task sizes exceeding the local resource properties, the available local power and
processing capacities have to consider executing a portion of the task, while another portion is offloaded
to the optimal edge node. The combined local execution, offloading time, and edge computing time are
primary elements to be critically forecasted and observed in order to alleviate the high possibility of task
termination. Therefore, the optimal edge node selection, virtual resource placement, and task offloading
scheduling are the major statement to tackle for further enhancement. To optimize this problem statement,
partial offloading decisions and scheduling policy determination can be handled for energy-efficient and
communication-efficient aspects by an optimization approach such as the convex technique [11,12].
However, deep reinforcement learning (DRL)-based optimization approaches are used for enabling
intelligent resource allocation and offloading decisions by tackling the minimization of weighted sum
completion time, consumed energy, and closed-loop resource control policies in systematic edge
computing platforms [13-15].

1.2 Paper Contributions

In this paper, a working flow on deep Q-learning (DQL)-enhanced virtual resource orchestration (DQL-
eVRO) policies are set on SDN/NFV-based architecture to observe the primary states, action-based
orchestration, and rewards which consider the minimization of weighted sum task termination ratio. A
deep neural network (DNN)-based classifier module (DNN-bCM) for delay-aware edge task computing in
terms of congestion windows, link delays, and bandwidth capacities to recommend optimal edge nodes is
proposed for labeling the efficiencies of available edge resources in the particular time slot. The
confluence of DQL-eVRO and DNN-bCM responds to an enhancement for adaptive partial task
offloading and virtual resource placement (APTOV) scheme in collaborative control softwarization, which
raised one deployment scenario in learning model interactions. The simulation is conducted to indicate
the performances of the proposed and reference schemes.

1.3 Paper Organization

The paper is organized as follows. Section 2 presents the system architecture of the proposed approach,
including the architectural framework for the control softwarization, communication model, computation
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model, and primary components of the agent. Section 3 describes the algorithm flows and enhanced
controller/orchestrator perspective, which is the main functional softwarization of the proposed APTOV
approach in collaborative SDN/NFV-based control. Section 4 shows the simulation setup and result
discussions. Section 5 presents the summary conclusion of the paper.

2 System Architecture

To estimate the optimal edge node, the DNN model can be formulated by feeding the network data
collected by OpenFlow (OF) based device/resource abstractions with support modules. Within NFV-based
architecture, edge servers (ES) in virtualized infrastructure manager (VIM) consist of virtualization layers
that abstract the computing resources and isolate multi-pools based on different critical computing tasks.
With well-classified offloading tasks, the orchestration of virtual resource placement for edge computing
is considered by allocated virtual machine (VM) properties.

The equipped extra server capacities within the edge node, small base stations (SBS), are presented for
assisting partial task offloading policies. Each local UE notifies the remaining energy and computing
resources as a portion of state spaces for the proposed DQL-eVRO agent. In the partition phase, the
existing available local capacity is a primary feature to consider before determining the edge offloading
task size. In the system model, each task consists of primary variables from task profilers such as task
sizes, required computing resources, and maximum available execution delay, which are denoted as a
three-tuple (p, @, 1), respectively [16-20]. The edge node resources are observed as state spaces for
formulating the total sum of partial computing delay in local and edge entities.

2.1 Communication Model

Let ES = {1,...k,...K} denote the set of NFV-based ES, which are equipped with a set of SBSs,
denoted as SBS = {1,...J,...J}, respectively. The values of K and J are equivalent. A set of local UEs
is denoted as UE = {1,.../,...L}, and each device / consists of resource limitation and independent
computation-intensive tasks, which refers to the full local model in each learning time slot ¢, denoted as
wy (), that partitioned into i subtasks, denoted as ;). Let SubT = {1,...i,...1} denote as the set of
sequential subtask notation. With identified local computing capacities and sustainable energy, the

availability of local computing is constrained, and the remaining subtasks are offloaded to selected SBS j
for computing in connected ES node k. The offloading delay, denoted as T f:j((tgk), for transmitting the
subtask ;) to SBS — ES (j, k) is expressed as Eq. (1) by acknowledging the subtask size p[a)l’,-(,)] and

uplink data rate R that is presented in Eq. (2). bwy ), pzjff;, c’lg;l(':'), and N represents the allocated

bandwidth, transmission propagation, channel gain, and Gaussian noise of each offloading subtask
between UE and SBS at particular time slot #, respectively.

off (k
Tl{j([t() = [orin] /Ruji .
e
Rijio) = bwijlog, (1 + % .

2.2 Computation Model

In the partial offloading aspect, the local computing, offloading, and edge computing delays are critical
for taking into consideration; however, the total number of subtask execution in different entities has to be
acutely tackled. Eqgs (3) and (4) present the primary formulation of local and edge computing delays, which
are mainly based on the available resource in local UE i and allocated resources in edge node & for that
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(k)

particular subtask, denoted as Ry, and R?h(’f) , respectively. A subtask execution delay in a single local and

ES node k at time ¢ is presented as T [’”Z,‘gl and T} edg ") respectively. The task size of particular subtask 7 in local

device /, denoted as ¢ [wlyl-(,)] , are considered for the computation delay. However, the sum of each subtask in
various entities has to be formulated for the reward efficiencies.

T, zl{;(cta)l = ¢[wiin ] /R 3)

edge(k aloc(k
T = o] /R )

The full task computing delay at local UE / in time slot ¢, denoted as 7| ””)“1 is presented in Eq. (5) by
weighted summation of each subtask with conditional statuses of local and edge offloading destination,
denoted as cﬁf’l.‘(‘;’)l and c‘dg )<k), respectively. The conditional values are expressed in Egs. (6) and (7), where
the subtasks have to be offloaded to one entity, whether among edge nodes or local. cf?i‘('f)l =1 if subtask i
computes in local UE /; otherwise, cff’i‘("t‘)l = 0. In edge computing, subtask i requires computing in

selected one edge node k. And in this aspect, multiple subtasks in each whole local task have to be
scheduled, presented, and executed for offloading at both entities.

total __ ! local local ! edge( ) Off( ) edge(k)
i SRt i S S ( ity + Tri) ) ©)
o € 10,13 (6)
K d; ed!
e =1, e e {o,13 7

2.3 Problem Formulation

In this approach, the main objective of joint minimizing the partial offloading computation in a particular
entire local task, presented in Eq. (8), is by selecting the optimal edge node k£ with adequate resource
capacities and identifying the subtask batches for local computing based on the remaining local resources.
The constraints to achieve this prime goal are presented. The total execution time of a particular task
from local UE / in time slot ¢, T’ [’E’t‘)"l , cannot exceed the maximum endurable termination delay, r( [a),(,)] ),

of the whole converging task profiling, which is presented in Eq. (9). The summation of every subtask
size in a particular device /, that is scheduled for local or edge-k computation cannot exceed the

remaining local Ry or edge-k R?i.((’f;k) resources, respectively. In Egs. (10) and (11) present the local/edge

resource constraints prerequisite. Allocated bandwidth capacities bwy ) for each offloaded participant

total

towards j SBS require balancing with the total bandwidth capacity bw;*“, which is presented in Eq. (12).

The influential features of edge nodes require to be gathered via edge assisted information-rich module
interacting with programmable controls and interfaces for optimizing the termination reduction and
orchestrating the policies in adaptive agent softwarization [21-24].

min(T”’ml( Ik )) ®)

Ty < (o] )

> S o] < R (10)
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K L 1 edge(k) aloc(k)

Zk:l lel Zi:l cl.,i(gt) ¢ [wlvi(l)] < Rl,i(t) (11)
L

lel bwij < bwi™ (12)

The edge node recommendation is used to enhance the solution efficiencies by approximating the delay-
aware queuing and congestion states if local UE decides to offload several subtasks for computing in edge
node k at time slot #; however, in heavy congestion hours, the classifier has a challenging procedure to
identify the optimal edge for local UE according to the required experience-based capacities. Therefore,
the state observations of heavy congestion interval and VM property modification in NFV-based
architecture are jointly studied for adaptive closed-loop agent control in partial offloading policies [25-27].

2.4 Primary Components of Agent

With the setup environment following communication and computation models of the learning tasks,
sets of states, actions, and rewards are required in this approach to be well-observed, applied as policy
orchestration, and formulated as an achievement estimation in the proposed agent control, respectively.
To acquire these requirements, the setup environment and three primary components of the agent,
including epsilon (¢)-greedy exploration/exploitation balancing, g-learning execution, and online/target
networks as an activate approximator, have to be well-interacted and cooperative correspondingly. Fig. 1
presents the overview of the interaction between each primary component in the DRL agent. In the setup
environment, the support modules for observing the state of local partitioned tasks and edge capacity
features are proposed and equipped for sampling a particular state s(¢) as an input for the agent. At the
beginning phase, ¢-greedy allows the exploration execution by randomly selecting a random action a(¢)
without experience/value-based selection. For this phase, the online networks are still in the loss
optimizing process, and the target networks are not yet in use. After applying a(¢) to the setup
environment at a particular state s(¢), the reward r(¢) will be computed, and the setup environment will
modify the associated attributes based on a(¢) values and transit to the next-state s(¢ + 1) depending on
the transition probability P(s) at that particular step. The action selection follows the long-term reward -
value approximation ¢(¢) and policy n(¢) at that time step.

yéayer(i) :f(w(l) . S(t)i + béayer(i)) (13)

Batch experience at step 7, denoted as e(¢), contains the notations of {s(¢), a(t),r(¢),s(¢ + 1)}. The mini-
batch divergence breaks the correlations of sequential order from the primary batch experience to improve
the model efficiencies and follow the Markov decision process (MDP) statement for better independent
decision-maker. {s(¢),a(t),r(t)} are used to optimize the online networks with the input features from
s(¢) and the output from selected action a(¢). With defined output, the loss can be optimized in the DNN
model. The output yi“yer(i) formulation in layer i of neuron z is presented in (13) by considering the
activation method of combination between vectors of weight connectors w(; and bias bi“yer(i) that
interrelate to the state s(¢); in layer i. Fig. 2 presents the node of the general learning model, including the
sum weight from numerous connectors, rectifier linear unit (ReLU) activation, and the output layer with
sigmoid activation. To minimize the loss and update the weight optimally, gradient and Adam optimizer
are used; moreover, the output layer is the sum activated weight and input state features [28—32].

3 Adaptive Partial Task Offloading and Virtual Resource Placement

In this section, the primary aspects of the proposed approach are described. The convergence of DNN-
bCM and DQL-eVRO for an enhancement of APTOV scheme in collaborative SDN/NFV network
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softwarization is emphasized by illustrating the algorithm flows of each aspect and enhanced controller/
orchestrator perspective, which is the main functional control policy softwarization.

1. State s(t) observation

v

DRL Agent

2. Selects action a(t) . Setup
(i) Epsilon-greedy G Sleameg (i) Fu_nctic?n Environment
exploration approximation
| A A

- Explore initial state: 3. Samples rewards r(f)

$(0) ~ P(s(0))
- Explore optimal action until 4. Samples the next state s(t+17)
decaying cannot be made
q) =>m () =a(t) e(t)={s(t).a(t),rt), st+1)}

(iii) Function approximation |

spaces |

Online networks

Exchange weight 6 with e(t)={s(t),a(t),r(t)} for loss optimization

in every c steps

Q-value
spaces | | [n actions]

Target networks
with e(t)={s(t+1)} for g-maximized action selection

Figure 1: Interaction of primary components in DRL agent

3.1 A Deep Neural Network-Based Classifier Module

In this classifier module, the primary phases to indicate the class labels of prioritization and policy-
configured output for optimizing ES selection are shown. Fig. 3 illustrates the interactions between the
five main stages in the control entity, including the collection, data adjustment, training/validation/testing,
and recommendation phases, with the data plane. With OF-based protocol interfaces, the data plane and
control plane are communicated with capabilities of device/resource gathering and programmable rule
installations. The support modules are utilized in this system to observe the UE and ES information. In
the collection phase, the features are accumulated for abstracting as a batch of the input dataset. The data
adjustment phase carries on the procedure by detecting and eliminating the inadequate or dummy
variables. With sufficient adjustment, the training labels for the learning model are obtained with specific
indications of partitioned task criticality levels.
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Figure 3: Interactions between the data and control planes with flow connectivity of the five primary phases:
collection, data adjustment, training/testing, validation, and recommendation phase

Algorithm 1: Procedure flow of DNN-based learning model for classifier modules and recommendation
orchestration

Require: data features x,, and labels y from data adjustment phase X = {x,x2,...%xu, ¥}

Ensure: With corresponding input features {x;, xz, . . . x,, }, the learning model requires classifying
the label y as the recommended ES for offloading.

import the modules as high-level operations and prediction
2: declare the model container

read the collected data as data

(Continued)
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Algorithm 1 (continued)

4 X = list(data)

5 define features of x and y

6: define shape of the dataset by float(features.shape [0])

7 split the training, validation, and testing set

8 define regularization strength by learning rate o

9 with namescope of weights:

10: random the variables of wy;

11: with namescope of biases:

12: random the variables of b/@er()

13: with namescope of layer i:

14: add neural network of matrix product of [layer(i), w,], b )]
15: declare cumulative sum of regularized weight container

16: for each weight w(;) do

17: apply regularization on wy;

18: execute the cumulative sum and append to the container
19: formulate the loss function + regularized values

20: apply gradient descent optimizer with o to minimize the loss
21: save the model and run with modification

The priority determination is assisted by the maximum endurable termination delay t( [a)l(,)]). The
dataset with adequate features and labels is used as an input dataset for the training and testing phases.
When the process of learning model is complete, the validation phase is responsible for evaluating the
performance precision and accuracy. If the validation returns a satisfying performance, the model output
will be transferred for installing the policy and flow configurations in the recommendation phase;
otherwise, the training/testing phase will be re-executed for further enhancement. The synchronization
between recommendation and collection phases indicates features to be updated and improve experience-
based efficiencies of the model in long-term aspects. Algorithm 1 shows the execution procedure of
DNN-bCM by following the softwarized deployment aspect. The procedure covers the training/testing
phase after adjusting the data by jointly presenting the sequences of regularization process, loss, gradient
descent optimizer, and model saving for further modification. The optimization towards optimal ES is
evaluated critically in the validation phase. The modification of update features allows the data collection
to enhance for further recommendation and define the main criteria to tackle in various state possibilities
within multiple congestion statuses.

3.2 Deep Q-Learning-Enhanced Virtual Resource Orchestration

To enhance the elasticity and adaptability of the proposed softwarization framework, the
recommendation of an optimal edge node is converged with the DQL-enhanced VM allocation for
advancing adaptive partial task computation. This section delivers the primary aspect of the allocation
statement by describing the procedure of agent interaction with the proposed states, actions, and reward
indication. The implicit mechanisms for agent controller/orchestrator are configured for long-term control.
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In the initialization and setup environment phases, the hyperparameters and elements of the DQL-based
model have to be well designed and adjusted in order to emerge with the state conditions. The elements of
DQL-based approaches, g-value function, DNN online/target approximation, and experience replay for
training an optimal policy of the proposed scheme are presented. To adaptively control the
communication and computation resources for partial task offloading, the state observation in the
proposed environment is significant to gather for the proposed agent, including the resource statuses, task
information, and communication values. The collective state observations in ¢ step are presented in (14)
as a set of s;, which will input for online networks to approximate the g-value of action. The actions in

this scheme consist of the efficiency of DNN-bCM decision-maker cff(é’t;(k) and R;li?f)(k) configuration from

the transmitted local models to the edge node.
S = {P[wz,im], o[wiin], Rijoy, Ry bW, P ,C}gj(l:l)} (14)

With e-greedy strategy, the exploration phase randomly selects an action a, to re-modify the decision and

allocation capacity {cif‘(g;;(k),RZ?(’f)(k)} for training and capturing the alternative efficiency level in the early

phase. In the exploitation phase, the scheme formulates the action selection with maximum g-value output.
After the action is applied to the setup environment, s;,1 and r; are obtained by state transition and valuation
of joint minimizing sufficiency from the partial offloading computation in a particular full local task reward
formulation as T, ;(Ott)"l (.|k ). The latency of the edge computation model is formulated by the required CPU

cycles for executing the tasks over the allocated server capacities. In this scheme, the required resources
are the summation of computational costs from requested VNF in a particular rendered VNF forwarding
graph (VNFFG) with the offloaded partial task requirement. The existing allocation of VNF and the
computational costs of particular VNF in core control are considered. s, and a, feed into the online
networks for state input and g-value of actions denoted as Q(a,). However, to minimize the loss and
optimize the model parameters 0;, the target g-value has to be formulated with an optimal reward
function. 0 denotes the next-step model parameters. The target networks formulate the target g-value,
denoted as Y/, in DQL-based agent by splitting the procedure of action selections and g-value calculation
as (15) in order to handle the over-optimistic value estimation. Target 0, is iteratively optimized and
synchronized with the online networks every 1000 steps. y represents the discount factor, which
determines the weight of reward certainty in the future steps.

Y= l’z(.‘th(ozl)al) + 70 <st+1,argmax O(se41,a; 0,); 9;> (15

However, the DQL-based model consisted of unstable training episodes with insufficient reward
accumulation. In every 1000 steps, the proposed scheme formulates the collected batches for future
optimization. The proposed controller and orchestrator leverage the resources with the weight-assisted
offloading task. The virtual deployment unit (VDU) capabilities and properties are parameterized for
configuring each VNF descriptor based on the modified weights of the network approximation. The
discrete state priorities of the collected experience batch are classified for the prior adjustment of
computational resource utilization. VNFFG descriptor includes the forwarding path of defined properties,
policies, and VNF forwarders with connection point/virtual link capabilities for rendering into service
chains. The predetermined resources in the edge server and each VNF placement are updated for
intermediate reward calculation. Therefore, each virtual resource pool is defined as specific slicing with
clustered model service types. The local model computation efficiency rate in each edge server is
improved by instruction sets of each clustered traffic flow and virtualization extraction. The model
interactivity between proposed action spaces and orchestrator is considered to express the triggering
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chains on gathering virtual resource pools in order to serve the partial model task communication and
computation based on specific congestion states. The collection of functions that map accordingly to the
virtual blocks of resources in the perspective of model actions is tackled for long-term end-to-end
sufficiency. Therefore, the execution of partial task offloading feasible accesses an optimal edge server
with adequate resource pools.

4 Results and Discussions

To efficiently simulate the APTOV approach, connectivity between agent output and SDN/NFV-based
environment has to consider; however, with constraints of virtual interfaces, the output-configured relation is
applied between DQL-based agent and mininet/mini-nfv/Ryu orchestration topology [7,23]. With partial task
creation and offloading experiment, the consideration of task amounts, number of ES, virtual pool capacities,
transmission bandwidth, server resources, local resources, and partial task sizes are included to evaluate the
performance and proposed environment setup. Within 100 full local tasks, the partial division with the size of
450 KB is executed. In this environment, the number of ES is 5. The transmission bandwidth and server
resources are 5 MHz and 15 GHz, respectively [24,33]. The transmission power is in the range of 40 mW
to 100 mW. The simulation of computation and communication models for 7 1{‘;(;;’, T l.{(z()k)’ and T ffﬁf ®) was
conducted for assisting the agent experiments. '

With 310 slot times, the agent applied four different learning rate values for best fitting the conditional
environment. The cumulative negative/positive rewards in each episode of OpenAl-Gym-based DQL agent
are obtained for evaluating the agent execution. The agent used the initialization function to gather vectors of
state possibilities and the approximation function to generate the exploration. The allocation function
optimizes the percentage of resource placement. In each episode, the intermediate rewards have been
calculated numerous times and accumulated to illustrate the model efficiencies and enhancement. With
the output of the proposed APTOV agent, the controller/orchestrator configuration is made to show the
QoS indicators. The outputs are configured into the descriptors corresponding to the ci‘f‘ftj(k) and R%?f)(k)
action values.

With partial task offloading decisions and resource determination, the flow rule installation and life-
cycle orchestration are made within the controller and create/update/delete functions in the VNF manager.
The reference schemes are defined by indicating the differences between various policies for offloading
and resource adjustment in terms of experience-based, resource-maximized, and single DNN-based
approaches, which are denoted as EB-A, RM-A, and DNNB-A, respectively. The primary features of
congestion windows, link delays, and allocatable bandwidth capacities in the dataset are gathered by
simulation software, which is collected at each ES corresponding with each UE. The data was inputted
into the DL mechanism to extract the features and optimize the model parameters. The train, validation,
and test sizes are adjusted to 70%, 15%, and 15%, respectively. The loss and accuracy of model training/
inference are evaluated before configuring the class labels in the DQL-eVRO. By using TensorFlow/
Keras platform, the overall accuracy of the final learning model reached 99.86%. The experience-based
approach offloaded the partial tasks based on the latency-maximized experience within the batch
container comparison, which adjusts the resources corresponding to experience replay. The resource-
maximized approach considered the resource allocation policies, which supervised placing the adjustable
available resources at every congestion condition. For single DNN-based approaches, the resource
features and local task information are gathered; however, the edge recommendation is fixed, and the VM
capacities have challenging functionality to adaptively place and map in high congestion states.

Fig. 4 illustrates the graphical delay comparison between APTOV and reference approaches. In terms of
delay, the proposed approach considered the congestion state by deploying the setup environment and
proposed agent with the capability of configuring allocation actions to orchestrate the communication
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resource in peak-hour intervals and accelerate the offloading process. In this aspect, the delay-critical
evaluation determined the partial offloading success rate without fully taking risks of high termination
drops. Within SDN/NFV-based softwarization architecture, the elastic computing resource mapping and
programmable rule installation enhance the optimal edge selection for resource-efficient and latency-
efficient objectives. APTOV achieved an average delay of 9.4612 ms within 310 sconds experiment,
which is 95.6222, 81.9085, and 30.2743 ms lower than EB-A, RM-A, and DNNB-A, respectively.

Average Delay
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o I

EAPTOV mEB-A ®mRM-A = DNNB-A

Figure 4: Comparison of average delay

Fig. 5 presents the partial task delivery ratio of APTOV and reference approaches within 310 s of
simulation. This performance metric covers the successful rates of subtask ;) uploading towards
SBS — ES (j, k). By optimal offloading edge recommendation, the communication model with sufficient
allocated bandwidth, propagation power, and channel gain could perform the distribution effectively.
APTOV used a DQL-enhanced controller and orchestrator to primarily assist the DNN-bCM decisions
and improve the VM capacity placement in heterogeneous multi-dimensional model updates. With
sufficient reward-maximized action selection, APTOV delivers the offloading task efficiently through OF-
based interfaces and support modules for long-term agent control. With a global view of data
infrastructure topology, partial offloading decisions can be determined with various options to maximize
the end-to-end completion time. APTOV achieved an ending delivery ratio of 99.98%, which is 1.7862%,
0.98%, and 0.38% higher than EB-A, RM-A, and DNNB-A, respectively. Fig. 6 shows the graphical
comparison of the drop ratio between proposed and reference schemes. The high drop ratio allowed the
full task termination and insufficient uses of network and computation resources. With APTOV control
and orchestration in SDN/NFV-based approach, the drop ratio is alleviated for future massive intelligent
edge application scenarios, where partial task offloading is deployed, particularly for model training/
inference in edge intelligence scenarios.
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5 Conclusion and Future Work

In this paper, an adaptive decision with efficient virtual resource allocation for partial task offloading is
presented by collecting and adjusting the data within leveraged edge computing and SDN/NFV-based
network softwarization. The system model for training/testing the optimal edge recommendation in DNN-
bCM considered the interaction between local devices, ES, and SDN/NFV-based control with proposed
DQL-eVRO to tackle the alternative offloading destination with a modified flow rule setup. The
confluence between DNN-bCM and DQL-eVRO introduced the APTOV approaches for adaptive task
offloading and efficient resource mapping, followed by the reward formulation by minimization models
of partial task computation delay in local, offloading delay towards selected edge node, and computation
delay in recommended ES. The proposed simulation correspondingly configured and orchestrated the
agent actions to enhance the QoS performances for time-sensitive networking applications, particularly in
high congestion and peak-hour conditions. DQL-based approach aimed to offer the self-managing closed-
loop control in network virtualization and softwarization environment.

In future studies, the virtual link connectivity for mininet/mini-nfv/Ryu and DQL-based agents will be
further extended. Moreover, the scheduling and partition procedure with task profiler information will be
further studied by using double deep-g-networks and artificial neural networks to meet the ultra-reliable
low-latency QoS requirements for mission-critical applications.
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