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Abstract: Image segmentation of sea-land remote sensing images is of great
importance for downstream applications including shoreline extraction, the mon-
itoring of near-shore marine environment, and near-shore target recognition. To
mitigate large number of parameters and improve the segmentation accuracy,
we propose a new Squeeze-Depth-Wise UNet (SDW-UNet) deep learning model
for sea-land remote sensing image segmentation. The proposed SDW-UNet model
leverages the squeeze-excitation and depth-wise separable convolution to con-
struct new convolution modules, which enhance the model capacity in combining
multiple channels and reduces the model parameters. We further explore the effect
of position-encoded information in NLP (Natural Language Processing) domain
on sea-land segmentation task. We have conducted extensive experiments to com-
pare the proposed network with the mainstream segmentation network in terms of
accuracy, the number of parameters and the time cost for prediction. The test
results on remote sensing data sets of Guam, Okinawa, Taiwan, San Diego, and
Diego Garcia demonstrate the effectiveness of SDW-UNet in recognizing differ-
ent types of sea-land areas with a smaller number of parameters, reduces predic-
tion time cost and improves performance over other mainstream segmentation
models. We also show that the position encoding can further improve the accuracy
of model segmentation.

Keywords: Sea-land segmentation; UNet; depth-wise separable convolution;
squeeze-excitation; position encoding

1 Introduction

Earth-observing satellites have been widely used for land use and land cover monitoring, natural
resource management, and national defense. The remote sensing data collected by these satellites provide
a great promise for data-driven modeling given their wide observation coverage, high imaging resolution,
rich spectral information, and high acquisition frequency. In particular, remote sensing imagery of sea-
land contains information of coastal landform, land surface and sea surface, which can reflect the change
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of coastal areas. Rapid and accurate segmentation of sea-land is critically needed for a variety of important
tasks such as coastline extraction, marine environmental monitoring and near-shore target detection. Such
technique can also be of far-reaching significance to development and management of China’s coastal
zone, the construction of national defense, and the monitoring of foreign coastal zone.

With the rapid development of deep learning [1-3], and its initial success in image discrimination,
classification and segmentation, deep learning-based approaches (e.g., convolutional neural networks) has
become the mainstream method for image-related tasks. One of the earliest attempts convolution-based
image segmentation is the FCN method [4], which differs from classical convolution network, it use
deconvolutional layers to achieve pixel-level classification of image. SegNet [5] is another segmentation
network that using the VGG-16 backbone with encoder and decoder structure. It also has more detailed
edge information of feature maps. UNet [6] proposed by Ronneberger et al. consists of symmetric
encoder and decoder structure and layer-skipping connections. This structure also makes the network less
demanding on the number of data samples. Attention UNet [7] proposed by Oktay et al. further adds
attention gate mechanism to UNet. The attention gate between up-down sampling feature maps is
performed to improve the relationship of up-down sampling. Chen et al. proposed the Deeplab [8,9]
family of convolution networks to further optimize the feature fusion of multi-scale feature maps. There
are also other works that leverage these segmentation techniques for specific applications. For example,
Peng et al. used image segmentation to complete segmentation of cardiac magnetic resonance images
[10]. Jiang et al. used adversarial segmentation to process multispectral fundus images [11]. Yang et al.
adopted deep learning techniques for segmenting Landsat-8 OLI image [12].

Remote sensing image has multi-spectral information which will appear that the same spectrum
corresponds to different objects, it is difficult to obtain accurate semantic information even for UNet with
tightly linked information of up-down sampling, and it will lead to misjudgment of the same spectral
target. Moreover, the large number of parameters in UNet and its time cost for prediction remain a major
concern when it is applied to large regions. Tanalysis address these issue, this paper extends UNet by
leveraging the squeeze-excitation [13] and the depth-wise separable convolution [14]. A new
donwsampling convolution module SDW1 (Squeeze Depth-Wise separable convl) and an upsampling
convolution module SDW2 (Squeeze Depth-Wise separable conv2) are created, and they are used to
modify sampling structure of Unet. The final proposed model SDW-UNet consists of staked layers of the
modified sampling structure. By using the squeeze-excitation and depth-wise separable convolution,
SDW-UNet allows weight optimization and allocation, improves the capability of information extraction,
reduces network parameters, and improves execution efficiency. Furthermore, given the promise of self-
attentive-transformer in image processing [15,16], we design an additional experiment in which the
position encoding obtained from the transformer is used to embed the feature map position information
and enhance the restoration of image information.

Experiments on remote sensing data sets of Guam, Okinawa, Taiwan, San Diego and Diego Garcia show
that SDW-UNet improves the capability of feature extraction to remote sensing images, and reduces the
network parameters and prediction time. Besides the improved segmentation results, we also demonstrate
that the segmentation accuracy can be further promoted by leveraging the position encoding.

2 Pre-Work

Image segmentation [ 17—19] aims to classify the pixel points into different categories. In short, different
objects are represented by different color masks. The mature network structures take use of the feature
extraction module to obtain feature maps of different sizes and fuse these feature maps together, then use
a discriminator to determine the classes of pixels in the feature maps. The feature extraction module is the
core of the network, we explore this part in order to obtain module with high extraction power and low
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computational consumption. In addition, we also investigate the fusion part and propose a position encoding
module, which is expected to better preserve the pixel information of each layer feature maps.

We have considered two neural network structures, as shown in Fig. 1. The former achieves
segmentation through feature-extraction layers and the following aggregation layers of feature maps
processed by different dilation factors [20]. The latter is accomplished by an encoder-decoder structure.
Both constructions can perform the segmentation tasks well, and we would like to introduce the position
encoding for further experiments, while the second network construction is similar to the encoder-decoder
structure of transformer, which the feature map information of each stage can be processed well, so the
latter is chosen for exploration.
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Figure 1: Two structures

Position encoding is a method that uses location information to provide a secondary representation of
each word in sequence, and is represented for each pixel point in the feature map when it is used to
image. Position encoding is first used in NLP domain to obtain the information about the position of
word in sequence, as shown in Fig. 2. It is important for text sequences, where the meaning of a word
may deviate from the whole sentence if it is in a different position or in a different order of arrangement.
Recent research has shown that accuracy gains can also be obtained by using positional coding on images
[21]. Therefore, we add position encoding to the feature map based on SDW-UNet in order to explore the
performance improvement.
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Figure 2: Position encoding in NLP
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3 Methods

In this section, we will introduce the basic principles of depth-wise separable convolution and squeeze-
excitation in Section 3.1 and Section 3.2. Then we will describe the specific structure of convolution modules
SDWI1 and SDW2 in Section 3.3. Finally, Section 3.4 gives the network framework of SDW-Net, and
Section 3.5 introduces the application of position encoding on feature maps.

3.1 Depth-Wise Separable Convolution

To solve the problem of excessive amount of parameters in UNet, we use depth-wise separable
convolution to construct convolution modules, as shown in Fig. 3. Here each feature map channel is
processed using a single convolution kernel channel(lower part of Fig. 3). Compared with the standard
convolution operation that uses multi-channel convolution kernel to process one feature map(upper part
of Fig. 3), depth-wise separable convolution is better optimized for matrix multiplication using a smaller
number parameters and improves the computational efficiency.

Convolution kernel channel=3,number=3

Feature map channel=3

Figure 3: Depth-wise separable convolution

3.2 Squeeze-Excitation

We adopt a similar attention mechanism as used in Attention UNet, which uses attention gate for up-
down sampling feature maps, as shown in Fig. 4. Squeeze-excitation performs average pooling for each
channel of the feature map to obtain a one-dimensional vector. Then it uses two additional fully
connected layers to get the attention weights, which indicates the weight relationship for each channel of
the feature map and assigns higher weights to important channels. Finally, each feature channel is
multiplied by the corresponding attention weight to obtain the new feature map. Squeeze-excitation can
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effectively improve semantic information of feature maps, enhance the feature representation and
segmentation performance of network.

Feature map Feature map
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Figure 4: Squeeze-excitation

3.3 Structure of Convolution Modules

In this paper, we propose an enhanced UNet model using SDW1 and SDW2. SDW1 is designed to
replace the downsampling process of UNet, as shown in Fig. 5 left. Similar to the inverse residual
structure of MobileNetV2 [22], in the lower part, the number channel is increased by 1 x 1 convolution
with a multiplication of a, then the Depth-Wise separable convolution and the Squeeze-excitation module
are used to extract information and improve the weight distribution, and finally the number of channel is
reduced by 1 x 1 convolution. In the upper part, the model achieves extract information by Depth-Wise
separable convolution, and then uses Squeeze-excitation to improve weight assignment and uses a 1 x
1 convolution to refine information. Finally a shortcut branching similar to ResNet [23] is used to skip-
connect feature maps from different layers and achieve feature fusion. SDW?2 is proposed to replace some
structures of upsampling, as shown in Fig. 5 right. The depth-wise separable convolution and Squeeze-
excitation module are used to improve network performance, then the number of channel is reduced by
1 x1 convolution. This design of SDWI1 and SDW2 reduce the number of parameters greatly while
maintaining the capability of information extraction and restoration. It is also noteworthy that our
proposed SDW1 and SDW2 modules are applicable to many other segmentation architectures that
involve downsampling and upsampling processes.

In order to speed up the convergence of network during training, the Batch Normalization [24] method is
used after each convolution layer in sampling, so that the feature maps satisfied distribution law with mean
0 and variance 1. For better extracting low-dimensional feature information, the ReLu activation function
Eq. (1) which used in UNet is replaced with the ReLu6 activation function Eq. (2).

y = max(0, ) M)
v = min(max(0, x), 6) )

Compared with the ReLu activation function, ReLu6 activation function sets the part larger than 6 to 6,
as shown in Fig. 6. It can effectively moderate the phenomenon that the ranges of weights differ too much
and reduce the loss of low-dimensional information.
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Figure 5: SDW1 and SDW2
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Figure 6: ReLu and ReLu6

3.4 Structure of SDW-UNet

We combine the new structure into UNet. First, two 3 X 3 convolutions are used to enhance the channel
dimension, then the maximum pooling layer is stacked with SDW1 to build a downsampling structure to
achieve information extraction, the upsampling convolution is stacked with SDW2 to build an
upsampling structure to achieve information reduction. The layer-skipping connection is performed
between up-down sampling feature maps at the same stage, in order to enhance connection of sampling.
Lastly we use 1 x 1 convolution to output the result. The network structure of SDW-UNet is shown in Fig. 7.

3.5 Structure of Position Encoding

Positional encoding is often used to record the positional information of the original data in the field of
NLP, which is important for text sequences, where the meaning of a word may deviate from the whole
sentence if it is in a different position or in a different order of arrangement. Previous research has
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demonstrated that positional coding can also be applied to the image to record the location information of
pixel points. There are three attributes of length-width-channel for satellite imagery and thus it requires
the modeling of the spatial information when designing position encoding. Fig. 8 shows how we design
the position encoding. We generate a zero matrix with its length, width, and channel numbers same with
the corresponding feature map, and we assign a specific number for each matrix entry. Then we take the
specific number values from relative position bias table and fill them into the zero matrix. These feature
matrices contain position information and are fused with the corresponding feature maps for enhancing
the restoration ability of image information. These matrices remain trainable during the model
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4 Experiment and Evaluation
4.1 Data Sets

The data sets used for experiment are from Beijing Il remote sensing satellite, which covering Okinawa,
Taiwan, Guam, San Diego and Diego Garcia, with a resolution of 0.8 m, and captured in years 2019,
2020 and 2021. These images are cropped and filtered to 512 x 512 pixel images, then annotated them to
generate labels with white represents land and black represents ocean amount 320. The data sets are
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divided into training sets and testing sets in ratio of 9:1, the training sets are sent to network for training in
order to build model, and the testing sets are used to achieve comparison and analysis of experiment.

relative position bias table
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Figure 8: Position encoding

4.2 Experimental Environment

The experiments in this paper are trained by RTX3090 24GB GPU, the programming environment is
python3.6, the deep learning framework is Pytorchl.6+torchvision0.7. We use Adam as optimizer, the
initial size of learning rate is 5 10, and learning rate is adaptive adjusted by ReduceLROnPlatea with
decay factor of 0.9. The Batchsize is set to 8, and image size is uniformly scaled to 256 x 256.
Considering limited amount of data, the epoch of training is set to 40 to prevent over-fitting. The loss
function is selected as MSELoss, final we save the lowest loss model at the end of training.

4.3 Experimental Results and Analysis

To demonstrate the advantages of SDW-UNet, we select four convolution segmentation networks as
comparison: UNet, Attention UNet, SegNet and Deeplabv3+(xception16). We use 32 images in our tests
and we consider the metrics including IOU (Intersection-over-Union) Eq. (3), network parameters, and
the prediction cost.

loU = TP/(TP + FP + FN) 3)

IOU has comprehensive evaluation criteria, where TP represents positive prediction and positive true
value, FP represents positive prediction but negative true value, and FN represents negative prediction but
positive true value. Network parameters refers to how many parameters the network contains, which
directly determines the size of model file and also affects the memory usage during model predict.
Network prediction time cost refers to the relative time consumed when using model to predict images,
representing the efficiency of network.

Tab. 1 shows the performance comparison between SDW-UNet (boosting multiplier o =2) and other
networks. It can be seen that SDW-UNet has the highest IOU on 32 test images, reaching over 95%, and
has the lowest number of parameters only 1/3 of UNet. It is slightly slower than SegNet and Deeplabv3+
in terms of network prediction time and faster than UNet and Attention UNet. It can be concluded that
SDW-UNet can extract sea-land information more effectively with high efficiency and smaller size.

We select six different types of images to visualize the results, these images contain complex and simpler
scene information with different sea features, as shown in Fig. 9. By observing the results of different
networks, it can be seen that SDW-Unet has better segmentation performance for both complex and
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simple scenes, especially in the position of red rectangle marked box, which reduces the false detection of
similar features on sea-land.

Table 1: Comparison of different network performance metrics

10U Network parameters Network predict times
UNet 0.9462 3453 m 478 s
Attention UNet 0.9457 34.88 m 5.11s
SegNet 0.9452 29.44 m 342s
Deeplabv3+(xception16) 0.9441 54.61 m 3.40s
Our Method(a.=2) 0.9520 12.62 m 431s
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Figure 9: Visualization of results
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In this paper, SDW1 is designed by adding channel boosting multiplier a in the first layer of 1 x
1 boosting convolution. To investigate the effect of channel’s number on network performance metrics,
the value of a is modified from 1 to 5, and the results obtained are shown in Tab. 2 and Fig. 10. Results
show that with the increasing value of multiplicity o, the network parameters and prediction times are
also increased, which in turn leads to higher IOU values. a allows the convolutional layer maps image to
higher dimension, which means that more feature information can be extracted. But the high dimension
makes the mapping process more complex and time-consuming. When the multiplicity a changes from
1 to 2, the larger IOU increase is obtained with smaller parameters and time increase.

Table 2: Comparison of different a performance indicators

10U Network parameters Network predict times
a=1 0.9500 11.04 m 4.17s
a=2 0.9520 12.62 m 431s
a=3 0.9529 14.55m 4.52s
a=4 0.9541 16.83 m 4.69 s
a=>5 0.9554 19.95m 491s
20 A 4.9
0.955 A
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Figure 10: Comparison of different a performance indicators

Finally we explore effect of the proposed position encoding on 10U, the number of parameters and
prediction time cost. The network structure is shown in Fig. 11. We chose SDW-UNet with o = 2 as basic
framework and add position encoding to the corresponding feature map. The experiment results are
shown in Tab. 3. These results indicate that position encoding can retain pixel location information of
feature maps during feature fusion and improve the ability of image information reproduction effectively,
but it brings a larger number of parameters and thus increases the prediction time. This needs to be
considered for use when it comes to mobile deployments and other lightweight requirements.
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Figure 11: SDW-UNet with position encoding
Table 3: SDW-UNet with position encoding
a=2 10U Network parameters Network predict times
SDW-UNet 0.9520 12.62 m 431s
SDW-UNet+position encoding 0.9556 44.08 m 4.52s

5 Conclusion

This paper proposes a new deep segmentation model SDW-UNet network for sea-land remote sensing
image segmentation tasks. It introduces the standard UNet as the base model, leverages the SDW1 and
SDW2 modules to create a new sampling structure, in order to extract sea-land information and improve
the segmentation capability of network. Moreover, these proposed modules reduct the number of model
parameters significantly, which mitigate the need for large training data and improve the run time
efficiency. We design three types of experiments: (1) comparing the SDW-UNet’s performance metrics
with mainstream classical networks; (2) testing the effect of boosting multiplier o on SDW-UNet’s
performance, and exploring the optimal multiplication factor meanwhile; (3) exploring the effect of the
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proposed position encoding on IOU, the number of parameters and prediction time. Experiments on remote
sensing data sets show that SDW-UNet has better recognition ability in sea-land segmentation, possessing
lower network parameters and less prediction time. Meanwhile the proposed position encoding improves
the ability of image information reproduction.
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