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Abstract: Software is unavoidable in software development and maintenance. In
literature, many methods are discussed which fails to achieve efficient software
bug detection and classification. In this paper, efficient Adaptive Deep Learning
Model (ADLM) is developed for automatic duplicate bug report detection and
classification process. The proposed ADLM is a combination of Conditional Ran-
dom Fields decoding with Long Short-Term Memory (CRF-LSTM) and Dingo
Optimizer (DO). In the CRF, the DO can be consumed to choose the efficient
weight value in network. The proposed automatic bug report detection is proceed-
ing with three stages like pre-processing, feature extraction in addition bug detec-
tion with classification. Initially, the bug report input dataset is gathered from the
online source system. In the pre-processing phase, the unwanted information from
the input data are removed by using cleaning text, convert data types and null
value replacement. The pre-processed data is sent into the feature extraction
phase. In the feature extraction phase, the four types of feature extraction method
are utilized such as contextual, categorical, temporal and textual. Finally, the fea-
tures are sent to the proposed ADLM for automatic duplication bug report detec-
tion and classification. The proposed methodology is proceeding with two phases
such as training and testing phases. Based on the working process, the bugs are
detected and classified from the input data. The projected technique is assessed
by analyzing performance metrics such as accuracy, precision, Recall, F_Measure
and kappa.

Keywords: Software bug detection; classification; pre-processing; feature
extraction; deep belief neural network; long short-term memory

1 Introduction

For now, programming support is a time consuming and time-consuming part of software engineering,
where diagnosing and dealing with bugs and dealing with improvements are the most basic tasks. Many
attempts using programming test techniques like standard and dynamic testing, white in addition dark
boxes testing and other testing techniques are aimed at systematic error recognition [1]. Errors reported
by end customers, despite programming tests, should be explored in light of the fact that error reports
reveal errors not detected during the product testing phase. Besides, they further enhance the client
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knowledge of the product in addition update it to new end-customer needs. Programming error emergency
structures such as Bugzilla can be utilized to continue the product, particularly when getting error reports
from end customers and when the product is slammed [2]. Error reports can be considered, branded, and
in addition fingered in emergencies until assigned to designers. There are many issues in the error
reporting area, e.g., it is important to focus on error reports, especially some error reports such as security
error reports, which can directly affect the final client’s weak rates, which should not actually be resolved
when it is conceivable. There are several attempts towards a guaranteed guarantee of security error
reports [3,4]. Besides, the severity of each error report should be expected, which can be tested at an
early stage [5].

The complex relationship of error reporting observed by emergencies can be the location of identical
error intelligences that represent up to 70% of intelligences in the box of error emergency structures,
particularly aimed at open-source schemes with massive end client networks [6]. There can be two phases
to recognizing duplicate error reports, and they address complex issues. The first challenge is the
technique of extracting an element that detects highly productive components from error reports [7]. The
next test is the copy detection technique, which requires an indicator or classifier model. There are
several choices in the two attempts to work on providing the location of duplicate error reports [8]. The
first challenge is very fundamental in that separating the most efficient features will help in the best copy
discovery; For instance, it cannot likely to distinguish oranges and applies based on their length [9].
Similarly, the volume is louder when it comes to length, width and height. Therefore, the best free
highlights can accommodate duplicate authorization. This review center focuses on finding features that
are most helpful in further enhancing the location performance of duplicate error reports by incorporating
the best of the class components [10].

The conventional testing procedure can be consisting of high time and its fails to detect the bug
efficiently. The enhancement of the classification and detection time which decrease the human errors, the
Artificial Intelligence (AI) can be consumed in the structure. Different techniques are developed by the
experts to identify the software bug detection such as Bayesian Network and Artificial Neural Network
(ANN) [11], Support Vector Machine (SVM) [12]. The machine learning techniques are providing
efficient outcomes but its not suitable for high storage of datasets. So, recently, deep learning is
consumed to identify the software bug detection such as Deep Belief Neural Network (DBNN), Deep
Neural Network (DNN) and Convolutional Neural Network (CNN) [13]. In the software bug detection
also, feature selection can be utilized to efficient software bug detection. This selection and weighting
parameter selection is achieved with the assistance of the optimization algorithm such as Whale
Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Firefly Algorithm (FA) and Particle
Swarm Optimization (PSO) [14,15]. This selected the optimization algorithm is affected by the
convergence analysis. So, the optimal detection and classification should be designed in the paper.

Main Contribution of the Work

v ADLM is developed for automatic duplicate bug report detection and classification process.
v The proposed ADLM is a combination of CRF-LSTM and DO. In the CRF, the DO can be used

towards chose the optimal weight values in network. The proposed automatic bug report detection
is proceeding with three stages like pre-processing, feature extraction in addition bug detection
with classification. Initially, the bug report dataset is gathered from the online system.

v In the pre-processing phase, the unwanted information from the input data are removed by using
cleaning text, convert data types and null value replacement. The pre-processed data is sent into
the feature extraction phase.
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v In the feature extraction phase, the four types of feature extraction method are utilized such as
contextual, categorical, temporal and textual. Finally, the features are sent to the proposed ADLM
for automatic duplication bug report detection and classification.

v The proposed methodology is proceeding with two stages like training and testing stages. Based on
the working process, the bugs are detected and classified from the input data. The proposed
methodology is assessed through analyzing performance metrices like accuracy, precision, Recall,
F_Measure in addition kappa.

v The projected technique can be contrasted with the traditional techniques like SVM, ANN, DNN in
addition DBNN respectively.

The remaining part of the article is pre-planned as follows; Section 2 provides the detail analysis process
of the software bug detection. Section 3 provides the detail description of the proposed method. Section
4 delivers the part clarification of the projected classification process. The results and discussion of the
projected technique can be explained in this Section 5. Finally, the summary of the article is given in the
Section 5.

2 Related Works

Dissimilar kinds of techniques can be obtainable towards identify and identification of software bug
from the software databases. Few of the works are analyzed in this portion.

Pandey et al. [16] have presented SBP using deep depiction and group learning (BPDET) methods. This
is matched through ensemble learning (EL) and Deep Representation (DR). Product measurements used for
SBP are generally routine. Stacked denominating auto-encoder (SDA) can be utilized aimed at in-depth
depiction of programming measurements, that can be a vigorous component learning technique. The
proposed model is mostly alienated into two phases: the deep learning level in addition the two layers of
the EL level (TEL). Rhmann et al. [17] have introduced composite calculations for software defects based
on change measurements. Programming imperfect anticipation emphasizes the utilization of error
detection designs for the ID of errors previous to product arrival. The use of error expectation models
helps to decrease the cost and effort required to develop programming. Incomplete expectation models
utilize actual information achieved from programming programs to produce designs in addition test the
design during future arrival of the product.

Malhotra et al. [18] have introduced the perfect framework for error prediction using AI methods with
Android programming. The primary objectives of the review were (I) to explore AI strategies using databases
derived from well-known open-source programming (ii) to utilize appropriate processing computations to
quantify the display of flaw expectation designs (iii) to utilize fact tests for potential correlation. Approval
of models on various approaches to AI methods and (iv) information packages. Use object-sorted
measurements to predict adequate classes using 18 machine learning practices in this review. Results
were approved between 10 overlay and discharge approval techniques. The reliability in addition
substance of the results can be assessed utilizing scalable testing in addition post-trial testing. Khan et al.
[19] have introduced unique AI methods to program imperfect expectation using seven extensively used
databases. Machine leaning algorithm-based performance was presented. Faseeha et al. [20] have
introduced a system for programming disability expectation by collecting highlight determination and
learning methods. The structure contains of four phases: 1) dataset selection, 2) pre-processing, 3)
classification and 4) outcomes. This system can be carried out on clean NASA MDP databases that are
generally accessible and the implementation is reflected using a variety of measures: F-scale, accuracy,
MCC in addition ROC. First of all, the implementation of all the trial techniques within the design within
each database was different and a strategy was identified that was most significant to each other and to
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each performance scale. Furthermore, the effects of the projected design with all hunting techniques can be
analyzed with the consequences of 10 significant managed classification methods.

Pandey et al. [16] have presented SBP using deep depiction and group learning (BPDET) methods.
However, this method is consuming high processing time for identify the bugs from the databases.
Rhmann et al. [17] have introduced composite calculations for software defects based on change
measurements. Moreover, this technique is fails to achieve efficient accuracy level during identification
stage. Malhotra et al. [18] have introduced the perfect framework for error prediction using AI methods
with Android programming. Hence, this method consumes huge memory consumption during
implementation. Khan et al. [19] have introduced unique However; this method is trapped in local optima
problem. Faseeha et al. [20] have introduced a system for programming disability expectation by
collecting highlight determination and learning techniques. However, this method provides efficient
results for this specified dataset.

3 Proposed Methodology

Generally, the software bug source, various kinds of bugs are presented. Moreover, some bug tracking
systems given a software bug classification. Normally, different kinds of software bug detection techniques
with different uses. Compared with the conventional study, the bug classification techniques may not be
applied to the classification and detection of software bug. Hence, in this paper, ADLM is developed to
detection and classification of software bugs. The projected technique can be proceeding with the three
stages like pre-processing, feature extraction in addition classification with detection stage. The complete
block diagram of the projected technique is presented in Fig. 1.

Figure 1: Block diagram of proposed methodology
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At initial, the databases are gathered from the online system. After that, the data can be cleaned based on
null value removal, convert data types and cleaning text. To identify the bugs from the software data, the
feature extraction can be an vital step to extract the features. Different kinds of feature set are available to
extracting features from the pre-processed data. To perfect identification of bugs from the software data,
optimal feature extraction methods are utilized in the proposed methodology such as textual, temporal,
categorical and contextual. Finally, the extracted features can be sent to the classifier aimed at identifying
and detecting the bugs from the software data. The proposed classifier is designed by combination of
CRF-LSTM and DO optimizer. The CRF-LSTM network may be affected by the training error which
solved by utilizing DO optimizer. The detail description of the projected methodology can be explained
in the below section.

3.1 Pre-processing

The pre-processing phase can be vital towards removing unwelcome information obtainable in the input
databases. The null values are removed from the input report. Additionally, it is changed into numerical
parameters. The collected databases are cleaned the text by eliminating useless in addition frequent
words, removing redundant words, removing conjunctions, punctuation in addition stemming words.

3.1.1 Stop Word Removal
The stop word removal step is utilized to remove the stop word from the text. At last, the stemming

process is returned to the root by computing the suffix and prefix of the word. If the word is related to a
set of letters that have an interest in separation.

3.1.2 Stemming
Deleting the prefixes and additions of each word converts the correct inflection types of some words to a

similar source. For example, there is a so-called normal root or root segment that meets sets aside and
includes all of the parts. Based on the pre-processing stage, the required texts are collected and unwanted
features are removed from the input text tweets. Stop word removal is a procedure to remove the stop
word from the input database. The synonyms of words are separated with the consideration of pre-
processing stage [21].

3.2 Feature Extraction

Features are divided as data fields of bug reports and it describes and every feature is extracted by
utilizing unique method. Many different feature extraction methods are utilized to extract essential
features such as (1) textual, (2) temporal, (3) Categorical and (4) Contextual.

3.2.1 Textual Feature
Texture can be a set of features that isolate the text fields of software error reports. From these models is

the BM25F model, that can be the complete weighted average of the term frequency (TF) in addition the
reverse document frequency (IDF) for altogether normal terms in a couple of dubious duplicate
statements. The dominant query of this investigate lies in the TF-IDF features that determine whether the
BM25F model and other overall operations of TF in addition IDF are more effective in addition
expressive aimed at DBRD than the weighted average of TF in addition IDF. The mathematical
formulation of the textual feature can be presented in the following equation,

TFDðT ; DÞ ¼
XK
F¼1

wf � occurrencesðd½f �; tÞ
1� bf þ bf � length

Average Lengthf

(1)
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IDFðt; dÞ ¼ log
N

jfDed: ted½f �j (2)

BM25Fextðd; QÞ ¼
X

Ied½f � \Q½f �
IDFðt; total text fields of bug reportsÞ � TFDðT ; d½f �Þ

k1 þ TFDðt; d½f �Þ (3)

SizeDiff ðd; QÞ ¼ SizeDiff ðd; QÞ ¼ absðjd½f �j � jQ½f �jÞ (4)

where, f can be described as index of the textual arenas of a bug report, Average Lengthf can be described as
average length of the all word in this field, d is defined as document, length is defined as the length of the
characters in the term (t), k is defined as number of textual fields, wf is defined as weight factor, k1 and Q can
be described as constant value for avoiding division by zero, || is defined as normalization and abs is defined
as absolute value [22].

3.2.2 Temporal
Temporal is a one of the feature sets which compute the interval time among two bug documents. The

low parameter of this feature presents the huge probability of resemblance of two bug documents. This
difference computed based below equations.

fidðd; QÞ ¼ absðd:BugId � Q:BugIdÞ (5)

fdateðd; QÞ ¼ absðd:open date� Q:open dateÞ (6)

3.2.3 Categorical
Categorical can be a one kind of feature which demonstrations how much two bug reports can be related

with the consideration of subtraction or equality comparisons of the specific categorical fields. These features
are computed based on below equations,

fproductðq; QÞ ¼ 1 if d:product ¼ Q:product
0 otherwise

�
(7)

fcompanyðq; QÞ ¼ 1 if d:company ¼ Q:company
0 otherwise

�
(8)

ftypeðq; QÞ ¼ 1 if d:type ¼ Q:type
0 otherwise

�
(9)

fpriorityðq; QÞ ¼ 1

1þ jd:priority� Q:priority
(10)

3.2.4 Contextual
It can be a type of feature which can be utilized to contrast textual fields of a bug document with a word

list consisting the select gratified such as Latent Semantic Indexing (LSI), Latent Dirichlet Analysis (LDA),
Performance of software and security. The results are achieved from the semi textural features denote how
much document involves exact settings.
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4 Proposed CRF-LSTM

In the proposed system, the proposed classifier is used to differentiate and identify software defects.
Independent LSTM and independent CRF models are first produced autonomously. The CRF structure
additionally gives the best results in the order phase, which suffers due to the very large data set and the
error rate of the arrangement. To implement the CRF model [23], LSTM is integrated with that CRF
structure. The proposed classifier design is outlined in Fig. 2.

4.1 CRF

In the CRF model, the features are utilized to take decision independently that can be tremendously
optimal for every output. Moreover, the classification self-sufficiently can be inadequate due to the output
has robust dependances. The CRF developed by Lafferty is an optimal solution for software bug
detection and classification. CRF is one of the efficient methods which provide efficient classification and
detection methods. Let, x = 〈e1, e2,.., en〉 can be described as a genetic input sequence, where e1 can
be described as vector of the ithword. Let, y = 〈y1, y2,.., yn〉 can be described as a set of LSTM conditions
every of that can be related with the respected label. The likely tag arrangements for a verdict x which is
computed based on below equations,

Pðyjx; w; BÞ ¼
Yn

i¼1
�iðyi�1; yi; xÞP

�y ey
Qn

i¼1�ið�yi�1 ; �yi; xÞ
(11)

�ið�yi�1 ; �yi ; xÞ ¼ expðwt
�yx

i þ b�y:yÞ (12)

where, b�y:y can be described as bias for the label pair (y
`, y) and wt

�y can be described as the weight vector. Here,
the utilization of all-out provisional probability computation aimed at CRF training. The log of likelihood can
be mathematically formulated as follows,

lðw; BÞ ¼
X
i

log p ðyjx; w; bÞ (13)

This maximum conditional likelihood algorithm can be utilized to train parameters which exploit the log
probability l(w;B). In the decipherment process, the LSTM is utilized and which is utilized to detect the
output arrangement which achieve the all-out score for output tag based on the below formulation,

Figure 2: Projected classifier design of CRF-LSTM
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y� ¼ argmax�yeypðyjx; w; bÞ (14)

4.2 LSTM

In CRF engineering, the weighting variable involved in the characterization must be precisely tuned. To
enable CRF, the secret layer of CRF is updated in the course of LSTM. Overall, LSTM [24] enjoys the
benefits of time series information in the light of planning ability between information and organizes
results with contextual information. The end door, input gateway and bypass door of the LSDM network
are closed as follows. The weight components of the memory cell, the output gateway, the input door and
the bypass door represent the as wc, wout, win and wf separately. In addition, the predictive vectors of the
doors mean as bc, bout, bin and bf separately.

4.2.1 Forget Gate
Forget gate is the most recent input from the last end memory module is Xi, denoted by the bypass door

Fi. The enforcement capacity of the bypass door is denoted as φa , and it is selected in a general practice with
the prototype of the strategic sigmoid, which activates how much information is placed in the upper cell. The
forget gate is numerically created as follows,

ht ¼ uaðWF � ½ht�1; xt� þ bf Þ (15)

4.2.2 Input Gate
The memory cell can be controller with the assistance of input gate that expressed as shadows,

it ¼ uaðWin � ½ht�1; xt� þ binÞ (16)

4.2.3 Output Gate
The memory cell output can be skillful with the thought of output gate,

ot ¼ uaðWout � ½ht�1; xt� þ boutÞ (17)

4.2.4 Memory Cell
This layer is projected with tanh, and it creates a vector of new up-and-comer values that include the

found state,

CTðtÞ ¼ tanhðwc � ½ht�1; xt� þ bcÞ (18)

ht ¼ ot � tanhðCTÞ (19)

In the memory cell, the state of the old memory cell is updated with the thought of the new memory
cell CT,

CT ¼ f 1 � CT�1 þ iT � CTðtÞ (20)

From the proposed classifier, CRF has been upgraded with the help of LSTM network architecture.
CRF’s product communication has been improved with the help of the LSTM system. The proposed
classifier is used to organize and identify software bugs from information sites.
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4.3 Dingo Optimizer

Nature was the most impressive educator from the beginning. Creatures that have always lived on Earth
have a system of extraordinary elements for tolerance. Social interactions are one of them, it will change. In
light of the overall investigation of the social behavior of the organism, it can be well categorized as part of
the classification. The first class relies on natural elements, i.e., close to property access and difficulties
caused by various species. Another class relies on personal conduct or excellence. With this in attention,
Dingo inspires our work towards strictly adhere to social relationships. Dingo is a type of reed. -Dingo’s
logical name can be Canis lupus (wolf) Dingo, which was later altered after Canis Familiar (Corine) [25].
Dingos are chaotic, virgin and deeply friendly creatures. Dingos are talented trackers that live up to the
normal size 1215 pack. The social progressive system is deeply organized, at the very top of the alpha
pecking order, in addition it can be male or female. It can be differentiated related on tasks such as
simply determining, enchanting and hunting. The primary and most basic part is usually called the alpha,
which is considered the head of the set of dingos. This reflects the fact that discipline and association are
a higher priority than power. The test occupied by Alpha can be sent to the pack. As a rule, each person
in a pack recognizes the alpha through keeping their ends down.

4.3.1 Mathematical Model
This dingo optimizer is containing different characteristics such as searching, encircling and attacking

prey. This mathematical model of the dingo optimizer is presented in this section.

~dD ¼ j~a: ~ppðX Þ �~PðIÞj (21)

~PðI þ 1Þ ¼~ppðIÞ �~b:~dðDÞ (22)

~a ¼ 2: A1
�!

(23)

~b ¼ 2~b: A2
�!�~b (24)

~b ¼ 3� I � 3

imax

� �� �
(25)

However, at the point of inquiry indicated by the idea, experts usually do not calculate the condition of the
prey (at best). Numerically planning a dingo hunting program, we acknowledge that complete pack individuals,
counting alpha, beta in addition others, have excellent information around the possible area of prey.

da
!¼ ja1!:pa

!�~Pj (26)

db
!¼ ja1!:pb

!�~Pj (27)

0d0
�! ¼ ja1!:po

!�~Pj (28)

P1
�! ¼ j Pa

�!
:~b� da

!j (29)
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P2
�! ¼ j Pb

�!
:~b� db

!j (30)

P3
�! ¼ j P0

�!
:~b� d0

!j (31)

To compute the dingo intensity, the mathematical formulation is presented as follows,

ia
!¼ log

1

fa�ðie�100Þ
þ 1

� �
(32)

ib
!¼ log

1

fb�ðie�100Þ
þ 1

� �
(33)

io
!¼ log

1

f0�ðie�100Þ
þ 1

� �
(34)

where, da
!

can be described as dingo with best search, db
!

is defined as second-best search in addition d0
!

is
defined as search result.

4.3.2 Attacking Prey
If the condition worsens, it indicates that the dingo has completed the chase by following the prey. To

develop the technique numerically, the value of~b is directly reduced. Note that the modification purpose of
da
!

is reduced by ~b. It is also known as ~b, which is an arbitrary value in the range [ − 3b, 3b] where b is
reduced from 3 to 0 during compression. When the →Dα is at irregular overlays [1, 1], the next level of
a hunting expert may be in any situation between its current and prey status.

4.3.3 Searching
As mentioned by the package, dingo’s often chase prey. They usually move forward to chase and attack

predators. In the same way,~b is used for arbitrary properties, where if the value is incorrect-1, it indicates the
prey making a short distance away, but if the value is considered to be more significant than 1, it refers to the
pack. Moving towards prey.

Step by step procedure

The dingo optimizer is utilized to select optimal weight parameters in CRF-LSTM for software bug
detection.

Step 1: Initial Population

In the initial condition, the random weighting parameters are initialized. Additionally, the population of
the dingo optimizer is initialized.

dnðn ¼ 1; 2; ::; nÞ (35)

Step 2: Fitness Function evaluation

After that, the fitness function is evaluated based on Mean Absolute Error (MAE). The MSE should be
reduced with the help of DO. The fitness function is formulated as follows,

FF ¼ MinðMAEÞ (36)

MSE ¼ 1

n

Xn
i¼1

jY �
i � Yij (37)
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Related on the fitness function, the optimal weighting values can be chosen in the proposed
classification.

Step 3: Updating Process

The updating process is essential to update the best solutions based on the fitness function evaluation.
The dingo positions are updated based on the Eqs. (22)–(28).

Step 4: Termination Condition

Finally, the maximum iteration is checked. This algorithm meets the termination condition, the results
are saved. With the help of the DO, the optimal weight values can be chosen which empowers the optimal
software bug detection. The performance of the projected technique is assessed in the underneath unit.

5 Outcome Evaluation

The reliability of the proposed technique is evaluated in this area and legalized. The proposed strategy is
validated by considering individual estimates such as accuracy, precision, review, awareness, transparency,
and F_Measure individually. The proposed technique is different and the current strategies, for example,
SVM, ANN, DNN and DBNN separately. The proposed strategy can be carried out by thinking about the
collected information base. The handling limits of the proposed technique are given in the Tab. 1. The
proposed technique is verified by factual estimates. The implementation estimates of the true estimates
are given below in this section.

5.1 Dataset Description

These days bug global stabilization structures like Bugzilla are common. Used in programming efforts to
store and monitor error information in the framework Error reports. Upgrading programming programs, these
error global stabilization structures contain the largest error reports. There are currently about 137 companies,
associations and missions. Use Bugzilla to track the confusion of items registered on the Bugzilla site [26].
As pointed out by Intelligence, until March 2019, Bugzilla oversaw More than 546,000 error reports for
Eclipse and 1,543,000 separately for Mozilla. When an error is detected, an error report is installed. An
analyzer to portray the client or its nuances, e.g., expressions, related properties and steps to repeat this

Table 1: Parameters of proposed approach

S no Description Value

1 Inertia factor 0.7298

2 Maximum iteration 100

3 Initial population 50

4 Momentum 0.9

5 Learn rate drop period 5

6 Initial learn rate 0.2

7 Max epochs 0.05

8 Minimum batch size 15

9 Initial learn rate 500
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error. Error in the global stabilization framework, an Error One crash, another component, document update,
or a restructuring on the other hand. Evaluation metrics of proposed approach is presented below;

Accuracy:

It is classified from an absolute number to a number of accurately recognized information examples. The
recipe for precision was introduced as follows,

Accuracy ¼ TN þ TP

TN þ FP þ TP þ FN
(38)

Precision: It is classified as part of the positive difference, which is actually correct. Precision
successfully implemented the total probability and implementation scale. The definition of review
introduced is as follows,

Precision ¼ TP

TP þ FP
(39)

Recall: It can be categorized as a ratio of precisely recognized positive examples, to add positive events
detected as follows:

Recall ¼ TP

ðTP þ FNÞ (40)

Specificity: It is classified as a ratio of precisely recognized adverse events to include planned negative
events in the following,

specificity ¼ TN

ðTN þ FPÞ (41)

F_Measure: F_Measure 0 to 1 should be introduced. Worst value is 0 and best value is 1. F_Measure
can be specified as follows,

FMeasure ¼ 2TP

ð2TP þ FP þ FNÞ (42)

where, TP represent the true positive, TN represent the true negative, FP represent the false positive and FN
represent the fault negative.

5.2 Experimental Results

To prove the efficiency of our proposed approach, we compare our approach with existing methods. The
result obtained from the proposed approach is listed below;

The complete examination of the projected methodology is illustrated in Fig. 3. The comparison
validation of the accuracy is given in Fig. 4. In Fig. 4, the proposed methodology has been attained
100 for 10 documents. Similarly, the SVM, ANN and DNN, DBNN has been achieved 98.45, 96, 94 and
92 for 10 documents. Based on the analysis, the projected technique is attained optimal accuracy. The
comparison validation of the specificity is given in Fig. 5. In Fig. 5, the proposed methodology has been
achieved 100 for 10 documents. Similarly, the SVM, ANN and DNN, DBNN has been achieved 98.45,
96, 94 and 92 for 10 documents. Based on the validation, the projected technique is attained optimal
specificity. The comparison validation of the sensitivity is given in Fig. 4. In Fig. 5, the proposed
methodology has been achieved 99.87 for 10 documents. Similarly, the SVM, ANN and DNN, DBNN
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has been achieved 99.23, 97, 92 and 91 for 10 documents. From the analysis, the projected methodology has
been attained optimal sensitivity. The comparison analysis of the F_Measure is presented in Fig. 6. In Fig. 6,
the proposed methodology has been achieved 100 for 10 documents. Similarly, the SVM, ANN and DNN,
DBNN has been achieved 95.14, 93.15, 97.15 and 95.12 for 10 documents. Based on the analysis, the
projected technique is attained optimal F_Measure. The comparison analysis of the computation time is
given in Fig. 7. In Fig. 7, the projected methodology has been attained 1 s for 10 documents. Similarly,
the SVM, ANN and DNN, DBNN has been achieved 2, 3.5, 5 and 7 s for 10 documents. Based on the
validation, the projected technique is attained optimal computation time.
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6 Conclusion

In this paper, ADLM for automatic duplicate bug report detection and classification process. The
proposed ADLM is a combination of CCRF-LSTM and DO. In the CRF, the DO has been used to
choose the optimal weight values in network. The proposed automatic bug report detection will be
proceeding with three stages such as pre-processing, feature extraction in addition bug detection with
classification. Initially, the bug report database has been gathered from the online system. In the pre-
processing phase, the unwanted information from the input data is removed by using cleaning text,
convert data types and null value replacement. The pre-processed data has been sent into the feature
extraction phase. In the feature extraction phase, the four types of feature extraction method have been
utilized such as contextual, categorical, temporal and textual. Finally, the features have been sent to the
proposed ADLM for automatic duplication bug report detection and classification. The proposed
methodology has been proceeding with two phases such as training and testing phases. Based on the
working process, the bugs have been detected and classified from the input data. The proposed
methodology has been evaluated by analyzing performance metrices such as accuracy, precision, Recall,
F_Measure and kappa. Our method attained the maximum accuracy of 100%, sensitivity of 100%,
specificity of 98.7% and F-measure of 97.5% which is high compared to SVM, ANN, DNN and DBNN.
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