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Abstract: Community-acquired pneumonia (CAP) is considered a sort of pneu-
monia developed outside hospitals and clinics. To diagnose community-acquired
pneumonia (CAP) more efficiently, we proposed a novel neural network model.
We introduce the 2-dimensional wavelet entropy (2d-WE) layer and an adaptive
chaotic particle swarm optimization (ACP) algorithm to train the feed-forward
neural network. The ACP uses adaptive inertia weight factor (AIWF) and Rossler
attractor (RA) to improve the performance of standard particle swarm optimiza-
tion. The final combined model is named WE-layer ACP-based network
(WACPN), which attains a sensitivity of 91.87 ± 1.37%, a specificity of
90.70 ± 1.19%, a precision of 91.01 ± 1.12%, an accuracy of 91.29 ± 1.09%,
F1 score of 91.43 ± 1.09%, an MCC of 82.59 ± 2.19%, and an FMI of
91.44 ± 1.09%. The AUC of this WACPN model is 0.9577. We find that the max-
imum deposition level chosen as four can obtain the best result. Experiments
demonstrate the effectiveness of both AIWF and RA. Finally, this proposed
WACPN is efficient in diagnosing CAP and superior to six state-of-the-art mod-
els. Our model will be distributed to the cloud computing environment.

Keywords: Wavelet entropy; community-acquired pneumonia; neural network;
adaptive inertia weight factor; rossler attractor; particle swarm optimization

1. Introduction

Community-acquired pneumonia (CAP) is considered a sort of pneumonia [1] developed outside
hospitals, and clinics, along with infirmaries [2]. CAP may affect people of any age, but it is more
prevalent in very young and elderly groups, which may need hospital treatment if they develop CAP [3].
Chest computed tomography (CCT) is a crucial way to help radiologists/physicians to diagnose CAP
patients. Recently, automatic diagnosis models based on artificial intelligence (AI) have gained promising
performances and attracted researchers’ attention. For example, Heckerling, et al. [4] employed the
genetic algorithm for neural networks to foresee CAP. This approach is shortened to the genetic algorithm
for pneumonia (GAN). Afterward, Liu, et al. [5] proposed a computer-aided detection (CADe) model to
uncover lung nodules in the CCT slides. Strehlitz, et al. [6] presented several prediction systems by
means of support vector machines (SVMs) together with Monte Carlo cross-validation. Dong, et al. [7]
proposed an improved quantum neural network (IQNN) for pneumonia image recognition. Ishimaru,
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et al. [8] proposed a decision tree (DT) model to foresee the atypical pathogens of CAP. Zhou [9] introduced
the cat swarm optimization (CSO) method to recognize CAP. Wang, et al. [10] proposed an advanced deep
residual dense network for the image super-resolution problem. Wang, et al. [11] proposed a CFW-Net for X-
ray based COVID-19 detection.

However, the above methods still have room to improve. Their recognition performances, for example,
the accuracies, are no more than or barely above 91.0%. We analyze their models and believe the reason is
their training algorithms. After comparing recent global optimization algorithms, we find that particle swarm
optimization (PSO) is one of the most successful optimization algorithms, compared to otheroptimization
algorithms such as artificial bee colony [12] and bat algorithm [13]. Hence, we use the framework in
Zhou [9] but replace CSO with an improved PSO. In addition, we introduce the two-dimensional
wavelet-entropy (2d-WE) layer, introduce an improved PSO method—adaptive chaotic PSO (ACP) [14],
and combine it with a feed-forward neural network. The final combined model is named WE-layer ACP-
based network (WACPN). The experiments show the effectiveness of this proposed WACPN model. In
all, we exhibit three contributions:

(a) The 2d-WE layer is managed as the feature extractor.
(b) ACP is utilized for training the neural network to gain a robust classifier.
(c) The proposed WACPN is proven to give better results than six state-of-the-art models.

2 Dataset and Preprocessing

The dataset is described in Zhou [9], where we have 305 CAP images and 298 healthy control (HC)
images. The detailed demographical information can be found in Ref. [9]. Assume the raw CCT dataset
is signified as FA, within which each image be signified as fa, and the number of entire images of both
classes is jFj ¼ 603, we get FA ¼ ffaðiÞ; i ¼ 1; 2; � � � ; jFjg. The size of each image can be obtained as:

hsize½faðiÞ� ¼ W0 � H0 � 3; (1)

where ðW0; H0Þ connotes the width and height of the image set FA and hsizeðxÞ outputs the size of x. Here
W0 ¼ H0 ¼ 1024. Figs. 1a and 1b depicts the schematic for preprocessing, which aims to grayscale the raw
images, enhance their contrasts, cut the margins and texts, and resize the images.
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Figure 1: Diagram of preprocessing
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Initially, the color CCT image set FA is transformed into grayscale images by holding the luminance
channel. The grayscaled CCT image set is symbolized as FB ¼ ffbðiÞ; i ¼ 1; 2; � � � ; jFjg.

Second, we use histogram stretching (HS) on all images FB ¼ ffbðiÞg to enhance the contrast. Take the
i-th image fbðiÞ as a case, its image-wise minimum, and maximum grayscale value f lb ðiÞ and f hb ðiÞ are
calculated as:

f lb ðiÞ ¼ minW0
pw¼1 minH0

ph¼1 fbðijpw; phÞ
f hb ðiÞ ¼ maxW0

pw¼1 maxH0
ph¼1 fbðijpw; phÞ

;

8<
: (2)

where ðpw; phÞ are temporary variables signifying the index of width and height along with the image fbðiÞ,
respectively. The HSed image set FC ¼ ffcðiÞ; i ¼ 1; � � � ; jFjg can be determined as:

fcðiÞ ¼ fbðiÞ � f lbðiÞ
f hb ðiÞ � f lbðiÞ

(3)

Third, margin & text cropping (MTC) is implemented to eradicate (a) the checkup bed at the bottom
zone, (b) the privacy-related scripts at the margin or corner zones, and (c) the ruler adjacent to the right-
side and bottom zones. The MTCed image set FD ¼ ffdðiÞ; i ¼ 1; � � � ; jFjg can be determined as
fdðiÞ ¼ fcði; pw; phÞ; pw 2 ½p1 þ 1; W0 � p2�; ph 2 ½p3 þ 1; H0 � p4�, where ðp1; p2; p3; p4Þ stand for
pixels to be cut from four directions (left, right, top, and bottom) with the unit of pixels. Note here the
size of fdðiÞ is hsize½fdðiÞ� ¼ W1 � H1. By means of straightforward maths calculation, we reckon that

W1 ¼ W0 � p1 � p2

H1 ¼ H0 � p3 � p4

�
(4)

Lastly, each image in FD is resized to the extent of ½W2; H2�, acquiring the resized image set
FE ¼ ffeðiÞ; i ¼ 1; � � � ; jFjg as feðiÞ ¼ hresize½fdðiÞ; ðW2; H2Þ�, where hresize signifies the resizing function.

Fig. 1c shows the extent of every raw image in FA is W0 � H0 � 3, and that of the final preprocessed
image in FE is reduced to W2 � H2. In addition, the value of data-compression ratio (DCR) z1 is obtained
as z1 ¼ W0 � H0 � 3=ðW2 � H2Þ ¼ 48. The value of space-saving ratio (SSR) z2 is calculated as
z2 ¼ 1�W2 � H2=ðW0 � H0 � 3Þ ¼ 97:92%. Fig. 2 shows two examples of the preprocessed image set.
We use 10-fold cross-validation in our experiment.

3 Methodology of WACPN

3.1 Discrete Wavelet Transform

Tab. 1 enumerates all abbreviations and their associated meanings. The advantage of wavelet transform
(WT) is that it holds both time/spatial and frequency information of the given signal/image. Nevertheless, the

Figure 2: Examples of the preprocessed image set
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discrete wavelet transform (DWT) is chosen to convert the raw signal rðtÞ into the wavelet coefficient domain
[15] in reality. Suppose the signal rðtÞ is one-dimension, first, we define the continuous wavelet transform
(CWT) Ecðsa; stÞ of rðtÞ as:

Ecðsa; stÞ ¼
Z 1

�1
rðtÞ � cðtjsa; stÞdt; (5)

in which E stands for the wavelet coefficient, c the mother wavelet. cðtjsa; stÞ is defined as:

cðtjsa; stÞ ¼ 1ffiffiffiffi
sa
p c

t � st
sa

� �
; sa . 0; st . 0; (6)

where the sa signifies the scale factor (SF) and st the translation factor (TF).

Now, we deduct the definition of DWT from CWT. The Eq. (5) is discretized by substituting sa and st
with two discrete variables (DVs) c and v,

Table 1: Abbreviation and meaning

Abbreviation Meaning Abbreviation Meaning

2d-DWT two-dimensional DWT HS histogram stretch

2d-WE two-dimensional wavelet entropy IW inertia weight

ACP adaptive chaotic PSO MCC Matthews correlation coefficient

AF activation function MDL maximum decomposition level

AI artificial intelligence MSD mean and standard deviation

AIWF adaptive IW factor MSE mean-squared error

AUC area under the curve MTC margin & text cropping

BP best position OFNN one-hidden-layer FNN

CAP community-acquired pneumonia PoP position of particle

CC cloud computing PMF probability mass function

CV cross-validation PSO particle swarm optimization

CWT continuous WT RA Rossler attractor

DCR data-compression ratio SB subband

DWT discrete WT SF scale factor

DV discrete variable SSR space-saving ratio

EB error bar TF translation factor

FMI Fowlkes–Mallows index WACPN WE-layer ACP-based network

FNN feed-forward neural network WB weight and bias

GAN genetic algorithm for pneumonia WT wavelet transform

HC healthy control VoP velocity of particle

HL hidden layer
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sa ¼ 2c

st ¼ v� 2c

�
(7)

where c signifies the DVof the SF sa, and v the DVof the TF st [16]. Moreover, the original signal rðtÞ is a DV
to rðqÞ, of which q signifies the DVof t. Like this, two subbands (SBs) can be calculated. The approximation
SB EAðqjc; vÞ is determined as:

EAðqjc; vÞ ¼ SD
X

o
rðqÞ � f �A

q� 2cv

2c

� �� �
; (8)

where fAðqÞ signifies the low-pass filter. SD is the down-sampling operation. The detail SB EDðqjc; vÞ is
determined as:

EDðqjc; vÞ ¼ SD
X

o
rðqÞ � f �D

q� 2cv

2c

� �� �
: (9)

where fDðqÞ signifies the high-pass filter.

3.2 2d-WE Layer

Suppose we handle a two-dimensional (2d) image Q; the 2d-DWT [17] is worked out by processing
row-wise and column-wise 1d-DWT in succession [15]. Initially, the 2d-DWT operates on the original
image Q. Later, four SBs ðZ1; O1; F1; A1Þ are generated, where the subscript i means i-th level
decomposition. Tab. 2 itemizes the description of four SBs. Note here MDL means the maximum
decomposition level.

Assuming h2d�DWT signifies a 2D-DWT decomposition operation, we deduce

A1 Z1
O1 F1

� �
¼ h2d�DWT ðQÞ: (10)

The subsequent decompositions run as:

Am Zm
Om Fm

� �
¼ h2d�DWT ðAm�1Þ; m ¼ 2; . . .M ; (11)

where M is the MDL and m the current decomposition level [18].

The subband A1 is further decomposed into four SBs ðA2; Z2; O2; F2Þ at the 2nd level. The SB A2 is
later decomposed to ðA3; Z3; O3; F3Þ, and then SB A3 is decomposed accordingly. Fig. 3 portrays a diagram
of 5-level 2d-DWT, whose pseudocode is represented in Algorithm 1. This study chooses a M -level
decomposition. The optimal value ofM is found via trial-and-error approach [19] and related in Section 4.1.

Table 2: Definition of four SBs

Symbol Meaning Symbol Meaning

Q Original image F Diagonal quadrant

Z Horizontal quadrant A Approximate component quadrant

O Vertical quadrant M MDL
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Algorithm 1: Pseudocode of 2d-DWT

Input Image Q

Step 1 Decompose the image Q into four subbands
A1 Z1
O1 F1

� �
.

for m ¼ 2:M

Step 2 The approximation subband Am�1 is decomposed into four subbands.

Am�1 7!h2d�DWT Am Zm
Om Fm

� �
end

Output Output the ð3M þ 1Þ SBs ðAM ; ZM ; OM ; FM ; ZM�1; OM�1; FM�1; . . . ; Z1; O1; F1Þ.

The ð3M þ 1Þ SBs ðAM ; ZM ; OM ; FM ; ZM�1; OM�1; FM�1; . . . ; Z1; O1; F1Þ may contain
redundant features. Here we use the db4 wavelet. To decrease the number of features, we employ two-
dimensional wavelet entropy (2d-WE) layer. The pseudocode of 2d-WE is illustrated in Algorithm 2. For
each SB s in the generated ð3M þ 1Þ SBs, we imagine s to be a random DV S with H quantization
values ðs1; s2; . . . ; sh; . . . ; sHÞ. In the beginning, we gauge the matching probability mass function
(PMF) pðsÞ ¼ fphðsÞg.
phðsÞ ¼ hPrðS ¼¼ shÞ; h ¼ 1; 2; � � �H ; (12)

where hPr signifies the probability function.

Second, the entropy of the PMF pðsÞ is calculated as feðsÞ:
feðsÞ ¼ �

XH

h¼1 phðsÞ � log phðsÞ; (13)

where fe is the entropy function.

Lastly, the entropy values of the whole SBs are concatenated to grow a feature vector I.

I ¼
feðAM Þ feðZM Þ feðOM Þ feðFM Þ

feðZM�1Þ feðOM�1Þ feðFM�1Þ
. . . . . . . . .

feðZ1Þ feðO1Þ feðF1Þ

2
664

3
775; (14)

where the number of the features in I is NI ¼ ð3M þ 1Þ, which equals the number of SBs.
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Figure 3: Diagram of a 2d-DWT ðM ¼ 5Þ
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Algorithm 2: Pseudocode of 2d-WE

Input: ð3M þ 1Þ SBs: ðAM ; ZM ; OM ; FM ; ZM�1; OM�1; FM�1; . . . ; Z1; O1; F1Þ
for m ¼ 1: 3M þ 1

Choose the m-th SB s.

Compute PMF pðsÞ ¼ fphðsÞg. See Eq. (12).
Reckon entropy feðsÞ. See Eq. (13).
Record IðnÞ  feðsÞ.

End

Output: The concatenated 2d-WE feature vector I with NI features. See Eq. (14).

3.3 ACP Network

The NI features are thrown into a feed-forward neural network (FNN)—in which its inner connections
do not make a loop. One-hidden-layer FNN (OFNN), represented in Fig. 4, is established due to the universal
approximation theory. Assume ðx; tÞ stands for a training case as: x ¼ ½x1; x2; . . . ; xi; . . . ; xNI �T signifies
the input feature vector with NI -dimension, i denotes the neuron index at the input layer, t is the
corresponding target label t ¼ ½t1; t2; . . . ; tk ; . . . ; tNO �T ; where NO signifies the number of prediction
categories and k the node index at the output layer. Assuming n is the case index and N the number of
entire training cases, this study symbolizes the training case ðx; tÞ as fxðnÞ; tðnÞjn ¼ 1; ; . . . ; Ng. The
training of the weights/biases (WBs) of OFNN is considered an optimization problem that minimizes the
loss between the target t and the real output y. This study chooses the loss as the sum of the mean-
squared error (MSE) E:

E ¼
XN

n¼1
XNO

k¼1½ykðnÞ � tkðnÞ�2: (15)

Assume b2 is the activation function (AF) in the output layer, and ðB; SÞ are the WBs of neurons that
connect the hidden layer (HL) to the output layer. B ¼ fbðj; kÞg; j ¼ 1; . . . ; NL; k ¼ 1; . . .NO; and
S ¼ fsðkÞg; k ¼ 1; . . . ; NO: It is easy to reckon the output yk as
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ykðnÞ ¼ b2
XNL

j¼1
bðj; kÞzjðnÞ þ sðkÞ

" #
; (16)

where zjðnÞ; j ¼ 1; . . . ; NH signifies the output of j-th neuron in the HL. The description of zjðnÞ is

zjðnÞ ¼ b1
XNI

i¼1
aði; jÞxiðnÞ þ rðjÞ

" #
: (17)

where A ¼ faði; jÞg; i ¼ 1; . . . ; NI ; j ¼ 1; . . . ; NL and R ¼ frðjÞg; j ¼ 1; . . . ; NL are the WBs of the
neurons that connect the input layer with the HL, and b1 the AF linked to the HL.

The parameter training is an optimization problem that guides us to search for the optimal WB
parametric vector h ¼ ðA; B; R; SÞ. The length of h is the number of parameters we need to optimize
and is calculated as Nh ¼ NI � NL þ NL � NO þ NL þ NO. The training algorithm we choose is adaptive
chaotic PSO (ACP) [14].

Recap that two attributes (position x and velocity v) are linked with each particle p in the standard PSO
algorithm. Those two attributes are defined as the position of the particle (PoP) and the velocity of the particle
(VoP). In each epoch, the fitness function E is re-calculated for the entire particles fpg in the swarm. The VoP
v is re-evaluated by keeping track of the two best positions (BPs).

The first is the BP a particle p has traversed till now. It is dubbed pBest and symbolized as xpB. The
second is the BP that any neighbor of p has traversed till now. It is a neighborhood best and is named
nBest and symbolized as xnB.

If p takes the entire swarm as its neighborhood, the nBest turns to the global best and is for that reason
named gBest. In standard PSO, the VoP v of particle p is updated as:

v xvþ b1r1ðxPB � xÞ þ b2r2ðxnB � xÞ (18)

where x signifies the inertia weight (IW) controlling the influence of the preceding velocity of the particle on
its present one. b1 and b2 stand for two positive constants named acceleration coefficients. r1 and r2 mean two
random numbers, uniformly distributed in the range of [0,1]. r1 and r2 are re-calculated whenever they occur.
The PoP x of the particle p is updated as:

x xþ vDt (19)

where Dt is the assumed time step and always equals 1 for simplicity.

The ACP algorithm proposed an adaptive IW factor (AIWF) strategy. It uses xAIWF to replace x.

xAIWF ¼ xmax � xmax � xmin

kmax
� k (20)

Here, xmax signifies the maximum IW, xmin the minimum IW, kmax the epoch once the IW goes to the
final minimum IW, and k the present epoch.

Another improvement in ACP is upon the two random numbers ðr1; r2Þ. In reality, ðr1; r2Þ are created
by pseudo-random number generators (RNG), which cannot guarantee the optimization’s ergodicity in
solution space since they are pseudo-random. Rossler attractor (RA) is a good choice to calculate the
random numbers ðr1; r2Þ. RA equations are defined:
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dx

dt
¼ �ðyþ zÞ

dy

dt
¼ xþ day

dz

dt
¼ db þ xz� dcz

;

8>>>>><
>>>>>:

(21)

where da, db, and dc are inherent parameters of RA. We choose da ¼ 0:2; db ¼ 0:4; dc ¼ 5:7 via the trial-
and-error method [20]. The corresponding curve is drawn in Fig. 5a. We agree r1 ¼ xðtÞ and r2 ¼ yðtÞ to
implant the chaotic properties of RA into the two parameters ðr1; r2Þ in standard PSO. The ðx; yÞ plane
of RA is displayed in Fig. 5b.

4 Experiments, Results, and Discussions

Ten runs of 10-fold cross-validation are used to relate a reliable performance of our WACPN model.
Besides, we use the following measures—sensitivity (Sen, symbolized as g1), specificity (Spc, symbolized
as g2), precision (Prc, symbolized as g3), accuracy (Acc, symbolized as g4), F1 score (symbolized as g5),
Matthews correlation coefficient (MCC, symbolized as g6), Fowlkes–Mallows index (FMI, symbolized as
g7), and the area under the curve (AUC)—to appraise the performances of different models.

4.1 Parameter Configuration

The parameters of this study are listed in Tab. 3. The sizes of the original images are 1024� 1024 if we
do not consider the number of color channels. The sizes of MTCed images are 624� 624, and the sizes of
preprocessed images are 256� 256. The DCR is z1 ¼ 48, and the SSR is z2 ¼ 97:92%. The MDL isM ¼ 4.
The number of features isNI ¼ 13. The number of neurons in HL is NL ¼ 8. The number of output neurons is
NO ¼ 2. The number of parameters to be optimized is Nh ¼ 130. The parameters in RA are
da ¼ 0:2; db ¼ 0:4; dc ¼ 5:7.

4.2 Wavelet Decomposition

Fig. 6 shows the wavelet decomposition results with M ¼ 4. The raw image is shown in Fig. 2a. The
reason why we choose M ¼ 4 is the trial-and-error method. We test other values of M and find M ¼ 4
can obtain the best result.

Figure 5: An example of RA with parameters of (da = 0.2, db = 0.4, dc = 5.7)
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4.3 Results of Proposed WACPN Model

Tab. 4 shows the ten runs of 10-fold CV via the parameters shown in Tab. 3, where pr ¼ 1; 2:; ::; 10
means the run index. The final row in Tab. 4 presents the mean and standard deviation (MSD) of the results of
10 runs. WACPN attains a sensitivity of 91.87 ± 1.37%, a specificity of 90.70 ± 1.19%, a precision of 91.01 ±
1.12%, an accuracy of 91.29 ± 1.09%, an F1 score of 91.43 ± 1.09%, an MCC of 82.59 ± 2.19%, and an FMI
of 91.44 ± 1.09%.

Table 3: Parameter Setting

Parameter Value Parameter Value

ðW0; H0Þ ð1024; 1024Þ M 4

ðp1; p2; p3; p4Þ 200 NI 13

ðW1; H1Þ ð624; 624Þ NL 8

ðW2; H2Þ ð256; 256Þ NO 2

z1 48 Nh 130

z2 97.92% ðda; db; dcÞ ð0:2; 0:4; 5:7Þ

Figure 6: Wavelet decomposition results

Table 4: Ten-run results of the proposed WACPN model

pr g1 g2 g3 g4 g5 g6 g7

1 93.44 91.28 91.64 92.37 92.53 84.75 92.54

2 92.13 93.29 93.36 92.70 92.74 85.41 92.74

3 91.15 89.93 90.26 90.55 90.70 81.09 90.70

4 93.77 90.27 90.79 92.04 92.26 84.12 92.27

5 90.82 90.94 91.12 90.88 90.97 81.76 90.97

6 89.84 89.93 90.13 89.88 89.98 79.77 89.98

7 91.48 90.27 90.58 90.88 91.03 81.76 91.03

8 91.48 89.26 89.71 90.38 90.58 80.77 90.59

9 93.77 91.95 92.26 92.87 93.01 85.75 93.01

10 90.82 89.93 90.23 90.38 90.52 80.76 90.52

MSD 91.87 ± 1.37 90.70 ± 1.19 91.01 ± 1.12 91.29 ± 1.09 91.43 ± 1.09 82.59 ± 2.19 91.44 ± 1.09

30 CSSE, 2023, vol.45, no.1



4.4 Effects of AIWF and RA

If we remove the AIWF from our WACPN model, the results using the same configuration are shown in
Tab. 5. Similarly, the results of removing RA from our WACPN model are shown in Tab. 6. After comparing
the results in Tab. 4 against the results in Tabs. 5 and 6, we can deduce that both strategies—AIWF and RA—
are beneficial to our WACPN model.

Fig. 7 represents the ROC curves together with their upper and lower bounds of the proposed WACPN
model and its two ablation studies (without AIWF and without RA). The AUC of WACPN model is 0.9577.
The AUCs of the models removing AIWF or RA are only 0.9319 and 0.9456, respectively, demonstrating
that both AIWF and RA help improve the standard PSO.

Table 5: Ten-run results without AIWF

pr g1 g2 g3 g4 g5 g6 g7

1 89.51 90.60 90.70 90.05 90.10 80.11 90.10

2 89.84 86.58 87.26 88.23 88.53 76.47 88.54

3 89.84 90.27 90.43 90.05 90.13 80.10 90.13

4 90.49 87.92 88.46 89.22 89.47 78.45 89.47

5 89.18 90.27 90.37 89.72 89.77 79.44 89.77

6 91.48 87.58 88.29 89.55 89.86 79.15 89.87

7 93.44 93.29 93.44 93.37 93.44 86.73 93.44

8 89.51 89.93 90.10 89.72 89.80 79.44 89.80

9 92.46 92.62 92.76 92.54 92.61 85.07 92.61

10 88.52 88.59 88.82 88.56 88.67 77.11 88.67

MSD 90.43 ± 1.56 89.77 ± 2.15 90.06 ± 1.96 90.10 ± 1.63 90.24 ± 1.58 80.21 ± 3.25 90.24 ± 1.58

Table 6: Ten-run results without RA

pr g1 g2 g3 g4 g5 g6 g7

1 94.43 94.97 95.05 94.69 94.74 89.39 94.74

2 89.84 87.58 88.10 88.72 88.96 77.45 88.97

3 93.44 90.94 91.35 92.21 92.38 84.43 92.39

4 90.16 91.61 91.67 90.88 90.91 81.77 90.91

5 89.51 91.95 91.92 90.71 90.70 81.46 90.71

6 87.54 87.25 87.54 87.40 87.54 74.79 87.54

7 91.15 87.92 88.54 89.55 89.82 79.13 89.83

8 89.84 89.60 89.84 89.72 89.84 79.43 89.84

9 90.16 88.59 89.00 89.39 89.58 78.77 89.58

10 93.44 94.30 94.37 93.86 93.90 87.73 93.91

MSD 90.95 ± 2.16 90.47 ± 2.75 90.74 ± 2.59 90.71 ± 2.29 90.84 ± 2.24 81.44 ± 4.58 90.84 ± 2.24
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4.5 Comparison with State-of-the-Art Models

The proposed WACPN model is judged with six state-of-the-art models: GAN [4], CADe [5], SVM [6],
IQNN [7], DT [8], and CSO [9]. The evaluation results on the same dataset via ten runs of 10-fold CV are
listed in Tab. 7.

Error bar (EB) is an excellent tool for ease of visual evaluation. Fig. 8 presents the EB of model
comparison, from which we can observe that the proposed WACPN model is superior to six state-of-the-
art models. The causes are triple. First, the 2d-WE layer stands as a proficient way to designate CCT
images. Second, ACP is efficient in training FNN. Third, we fine-tune and select the best parameters for
the RA. In the future, our model may be applied to other fields [21,22].

Figure 7: ROC curves

Table 7: Results of proposed WACPN and SOTA models (Unit: %)

Model g1 g2 g3 g4 g5 g6 g7

GAN [4] 85.54 ± 1.57 85.97 ± 1.12 86.20 ± 1.00 85.75 ± 1.02 85.86 ± 1.07 71.52 ± 2.03 85.86 ± 1.07

CADe [5] 86.59 ± 0.96 85.57 ± 1.45 86.02 ± 1.14 86.09 ± 0.62 86.29 ± 0.56 72.18 ± 1.23 86.30 ± 0.56

SVM [6] 87.34 ± 1.29 85.84 ± 1.23 86.33 ± 1.06 86.60 ± 0.95 86.83 ± 0.95 73.21 ± 1.91 86.83 ± 0.95

IQNN [7] 88.36 ± 0.92 86.24 ± 1.55 86.82 ± 1.21 87.31 ± 0.61 87.57 ± 0.54 74.65 ± 1.20 87.58 ± 0.53

DT [8] 82.69 ± 1.79 84.73 ± 1.08 84.73 ± 0.81 83.70 ± 0.80 83.68 ± 0.93 67.44 ± 1.58 83.70 ± 0.92

CSO [9] 91.64 ± 0.99 90.64 ± 2.11 90.96 ± 1.81 91.14 ± 1.12 91.29 ± 1.04 82.31 ± 2.22 91.29 ± 1.03

WACPN 91.87 ± 1.37 90.70 ± 1.19 91.01 ± 1.12 91.29 ± 1.09 91.43 ± 1.09 82.59 ± 2.19 91.44 ± 1.09

Note: Bold means the best.

Figure 8: EB of model comparison
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5 Conclusions

A novel WACPN method is proposed for diagnosing the CAP in CCT images. In WACPN, the 2d-WE
layer works as feature extraction, and the optimization algorithm—ACP—is exercised to optimize the neural
network. This proposed WACPN model is verified to have better results than six state-of-the-art models.

Three defects of the proposed WACPN model exist: (i) Deep learning models are not exercised.
The reason is the small amount of our image set. (ii) Strict clinical validation is not tested either on-site
or in cloud computing (CC) environments. (iii) The model is a black box, which does not go well with
patients and doctors.

To work out the three limitations, first, we shall utilize the data augmentation method to enlarge the
number of images in the dataset. Second, our team shall circulate the proposed WACPN model to the
online CC environment (such as Azure) and summon specialists, clinicians, and physicians to examine its
efficiency. Third, trustworthy or explainable Ais, which may provide the heatmaps pointing out the
lesions, are two optional models to assist in adding explainability to the proposed WACPN model.
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