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Abstract: As the importance of email increases, the amount of malicious email is
also increasing, so the need for malicious email filtering is growing. Since it is
more economical to combine commodity hardware consisting of a medium server
or PC with a virtual environment to use as a single server resource and filter mal-
icious email using machine learning techniques, we used a Hadoop MapReduce
framework and Naïve Bayes among machine learning methods for malicious
email filtering. Naïve Bayes was selected because it is one of the top machine
learning methods(Support Vector Machine (SVM), Naïve Bayes, K-Nearest
Neighbor(KNN), and Decision Tree) in terms of execution time and accuracy.
Malicious email was filtered with MapReduce programming using the Naïve
Bayes technique, which is a supervised machine learning method, in a Hadoop
framework with optimized performance and also with the Python program tech-
nique with the Naïve Bayes technique applied in a bare metal server environment
with the Hadoop environment not applied. According to the results of a compar-
ison of the accuracy and predictive error rates of the two methods, the Hadoop
MapReduce Naïve Bayes method improved the accuracy of spam and ham email
identification 1.11 times and the prediction error rate 14.13 times compared to the
non-Hadoop Python Naïve Bayes method.

Keywords: Hadoop; hadoop distributed file system(HDFS); MapReduce;
configuration parameter; malicious email filtering; Naïve Bayes

1 Introduction

Email plays a very important role in inter-company business and individual social life, and since it has a
legal effect for business handling, the importance of blocking malicious email is growing. The amount of
malicious email has increased to more than 45% of all email [1], resulting in a decrease in work
efficiency and increasing personal damage due to phishing. In this paper, the Naïve Bayes technique, one
of the machine learning methods, is applied to MapReduce programming based on the Hadoop
framework that optimizes execution time using commodity hardware to improve the prediction of spam
and ham with malicious email filtering. Among the open source methods that combine commodity
hardware with a virtual environment, representative ones are Spark based on the in-memory method and
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the disk method-based Hadoop. The Spark method is advantageous for businesses that require fast
processing based on small datasets, and the disk-based Hadoop framework may be more suitable if the
data are distributed to many places and occupy several terabytes of data [2].

In a brief comparison of Hadoop and Spark, it can be seen that a common feature is that they are
frameworks for big data to process large data sets. Their differences are that whereas Hadoop is a disk-
based framework that provides local operation, storage, and replication functions by node in a computer
cluster consisting of multiple nodes for large datasets, Hadoop has excellent expandability so that the
service can be very easily expanded, and Hadoop has a structure that supports data distribution and
redundant storage between nodes using the MapReduce programming model [3], while Spark is a
framework for processing datasets based on memory. Spark is evaluated to be about 100 times faster than
Hadoop [2], but Hadoop is more efficient to process data distributed to individual nodes at the same time.
Unlike Hadoop, Spark supports MapReduce, a software platform, in a memory-based method, and
Hadoop is a structure that supports disk-based MapReduce [4].

Methods to shorten Hadoop execution time include hardware improvement, network infrastructure
improvement, Hadoop configuration tuning, job scheduling (or task scheduling), and data locality
algorithm [5]. In this paper, the Hadoop execution time was shortened by selecting 19 parameters that
affect the execution time among more than 200 Hadoop configuration parameters and obtaining optimal
information based on an experiment-driven method. Based on the optimized Hadoop MapReduce
framework, Naïve Bayes classifier technology based on Bayesian theory belonging to the machine
learning classification algorithm was used to improve the accuracy of prediction of malicious email, spam
and ham email.

2 Background Knowledge and Related Work

2.1 Background Knowledge

Hadoop is a Java-based open source framework that can carry out distributed processing of massive
data. It is a framework that carries out distributed storage of data in a Hadoop Distributed File System
(HDFS) and processes data using MapReduce, a distributed processing system [5]. The main
characteristics of Hadoop are that the system construction cost is low because there is no license fee and
only a server cost is required since it is open source and that recovery processing is possible in the event
of data failure because data replication is supported. The Hadoop structure consists of the utility, Hadoop
Common, which is a library group, HDFS, which carries out distributed processing and storage of data,
MapReduce, which carries out calculation processing, and Hadoop Yarn, which manages resources and
job schedules. The HDFS manages data storage and data distribution to individual data nodes, and tracks
data storage locations, and MapReduce is a software framework that manages applications that process
large amounts of datasets and is responsible for determining the data nodes that should carry out
calculation processing because it has the ability to process calculation. Hadoop Yarn is composed of a
resource manager and a node manager and performs resource management and work schedule
management [6,7].

Among the Hadoop improvement methods, tuning by Hadoop parameters is efficient, and parameter
tuning methods can be classified into six types. Hadoop configuration parameters affect job performance
in various ways. Hadoop currently has more than 200 parameters, among which the main parameter items
for reducing Hadoop execution time include block size setting, number of map nodes setting, number of
reducer job nodes setting, map output data compression, temporary data processing setting, memory
buffer size setting, number of Map/Reduce task setting, etc. The six types of parameter tuning methods
are rule-based, cost-modeling, simulation-based, experiment-based, machine learning, and adaptive tuning
approaches. In this paper, the experiment-based approach was selected among the six type methods
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because in the case of the machine learning approach, which is the optimal method, and the adaptive tuning
approach, the parameter information obtained with the machine learning technique is sometimes
inappropriate for the real environment and the parameter information is affected by Hadoop version
changes causing cost problems. Therefore, the experiment-based approach can optimize and tune major
Hadoop parameter information reflecting system environmental information as much as possible. That is,
the adaptive tuning approach, which automatically extracts parameter information with the application, is
affected by the Hadoop version, and it seems that the application has difficulties in automatically
optimizing parameters by properly understanding the given system environment [8].

Among related papers that improve execution time by adjusting Hadoop parameters, the results of
improving the execution time of Hadoop Mahout by adjusting the block size, the number of replications,
and the memory buffer size were presented in [9,10]. MapReduce is a framework model for parallel
processing and distributed processing of large-scale datasets in the Hadoop environment. Map function
and Reduce function are performed independently [11], as in Expression Eq. (1). The Map function
creates a new array from an existing array, and the Reduce function reduces the value array to one value.

map functionðk1; v1Þ ! listðk2; v2Þ
reduce functionðk2; listðv2ÞÞ ! listðv3Þ (1)

Machine learning is divided into supervised learning, unsupervised learning, and reinforcement learning
[12,13]. Bayesian theory belongs to classification, and classification is a kind of supervised learning.
Classification is used to make category predictions for newly observed data through learning based on
existing data. Naïve Bayes is a classifier based on the Bayesian rule, that indicates the relationship
between the prior and posterior probabilities of two random variables, and the related expression is
expressed in Eq. (2) [14].

PðAjBÞ ¼ PðBjAÞ PðAÞ
PðBÞ (2)

– P(A): prior probability, probability of A (reason) that is determined before the outcome is produced.
– P(B|A): likelihood probability, probability for an outcome B to occur given that reason A has occurred.
– P(A|B): posterior probability, probability for reason A to occur given that outcome B has occurred.

2.2 Related Work

Hadoop is a distributed computing-based framework that processes massive data and has the
characteristic of processing data merging and sorting using MapReduce characteristics. The reason is that
the framework moves and merges distributed datasets across multiple data nodes and handles sorting
based on key values [6]. The configuration parameter tuning approaches to improve Hadoop performance
can be classified into six types: rule-based, cost-modeling, simulation-based, experiment-driven, machine
learning, and adaptive. The rule-based approach supports the user’s parameter tuning based on expert
experience, guidelines, and tuning instruction. The cost-modeling approach attempts to improve
performance by creating an efficient performance prediction model using an analysis cost function. The
simulation-based approach builds a performance prediction model based on modular or system simulation
and supports the user to perform simulations after changing into other parameter settings or cluster
resources. The experiment-driven approach is the method adopted in this paper, and is minimally affected
by the system environment such as Hadoop version and can perform parameter tuning to fit the real
system environment and data size through experiments, but has the disadvantage of taking long time. The
machine learning approach can perform parameter tuning through real system observation, but it is not
easy to secure training data sets, and there is a burden to improve low accuracy. The adaptive approach is
a method in which the application tunes the configuration parameters to fit changes in the system
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environment. It is effective for ad-hoc applications, but may lead to inappropriate configuration and
inefficient resource utilization [15].

To improve Hadoop performance, about five configuration parameters, including block size, number of
reducers, the size of the replication node, and their set values were adjusted based on the experiment-driven
approach [16,17].

Kim et al. [18] presented a method for performance tuning by dividing a single large-capacity server
with large-scale performance and resources into multiple Virtual Machine(VM) servers and adjusting
Hadoop configuration parameters as a performance improvement method using hardware. It is another
method for processing massive data that can efficiently divide and use massive resources. Also, Jeon et
al. [19] suggested a Hadoop performance tuning method by reducing the size of data transmitted to the
network and minimizing disk I/O.

Spam filtering methods are largely divided into reputation-based filtering methods and content-based
filtering methods. Representative methods of reputation-based filtering include the blacklist method and
whitelist method. Representative methods of content-based filtering include machine-learning filtering
methods, and representative examples of machine-learning methods include Bayesian filtering, SVM
filtering, and boosting algorithm methods. The Bayesian filtering method was applied in this paper, and it
is a method used to generate a final probability estimate by combining the probabilities of individual
spams or hams of each word in the message [20]. In particular, Naïve Bayes is one of the unsupervised
methods among the Bag of Words (BoW) model-based learning methods, and the Naïve Bayes formula is
expressed in Eq. (3) [21].

c� ¼ argmax
c

pðcjwÞ ¼ argmax
c

pðcÞpðwjcÞ ¼ argmax
c

pðcÞ
YN

n¼1
pðwnjcÞ (3)

(w: each image is represented by w = {w1; w2 ,…, wn}, all patches are an image c: image category,
Q
:

mixture proportion).

Machine learning-based spam classification algorithms include SVM, Naïve Bayes, KNN and Decision
Tree. Among them, SVM and Naïve Bayes are the most efficient methods, but they have problems such as
low scalability and limited accuracy. Therefore, as a solution to the problems, accuracy, speed, and scalability
were improved by performing it in the MapReduce framework [22]. As another image filtering method, Liu
et al. [23] suggested a method of filtering image spam with three-layer classifiers (email header classifier,
image header classifier, and feature classifier). In detail, spam filtering is performed by a Naive Bayesian
classifier in the first layer, and by a SVM classifier in the second and third layers. In particular, email
headers are analyzed in the first layer, and the high-level and low-level features of images are analyzed in
the second and third layers.

3 Hadoop Parameter Control for Optimizing Hadoop Framework Tuning and Improved Accuracy of
Malicious Email Filtering Based on MapReduce Naïve Bayes

This paper analyzes email data and predicts spam or ham, which are harmful traffic, using the Naive
Bayes algorithm in the MapReduce program based on the Hadoop framework. To process massive data, a
Hadoop environment was selected where scale-out is easy and existing commodity hardware is combined
with a virtual environment to easily manage the distributed replication of data. To improve the prediction
accuracy of spam filtering, the Naive Bayes algorithm with the Bayesian theorem applied was used. Vyas
et al. [24] proved in experiments that the Naïve Bayes algorithm selected in this paper has the best speed
and accuracy among spam filtering methods. According to the experimental contents, Naïve Bayes is
2.1 times faster than Iterative Dichotomiser 3(ID3), which is second among the main spam filtering
techniques J48, Naïve Bayes, Sequential Minimal Optimization(SMO), and ID3. The accuracy of Naïve
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Bayes is 97.7% of that of ID3, which is in first place, and Naïve Bayes works for both continuous and
discontinuous properties in the same dataset.

As for the tuning method, the Hadoop execution time was improved by selecting 19 Hadoop
configuration parameters, which are elements that greatly affect performance, among the Hadoop
configuration parameters based on an experiment-driven approach [25,26]. The parameters applied in this
paper are included in the three environment information setting files, hdfs_site.xml, mapred_site.xml, and
yarn_site.xml. Performance improvement experiments were performed by adjusting the number of
concurrent replication tasks, the memory size set in the container, the buffer size for sorting, the number
of threads, and the number of compressions. And in Yarn-site.xml, performance improvement
experiments were performed by adjusting the size of MapReduce’s container, the node manager memory
size, and the number of virtual CPU cores allocated to the container.

In order to shorten the execution time while increasing malicious email filtering accuracy with the
improved Hadoop framework, this paper conducted experiments using the Naïve Bayes theorem based on
MapReduce. According to the experimental results of Vyas et al. [24], the accuracy and execution time of
each of clustering, Java48 (J48), Naïve Bayes, SVM, and ID3, which are techniques used to separate
spam or ham email from normal email, were compared with each other and analyzed through
experiments. As a result of the experiment, it was concluded that SMO and ID3 are superior to Naïve
Bayes in terms of accuracy, but Naïve Bayes is the best in terms of execution time. The accuracy and
execution time values of these methods are described in Tab. 1, the accuracy is expressed as a graph in
Fig. 1, an execution time graph is shown in Fig. 2, and the calculation formula to obtain the accuracy
[27] is expressed in Eq. (4).

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
� 100 (4)

– True Positive (TP): Predicting the correct answer that is actually true as true (correct answer)
– False Positive (FP): Predicting the correct answer that is actually false as true (wrong answer)
– False Negative (FN): Predicting the correct answer that is actually true as false (wrong answer)
– True Negative (TN): Predicting the correct answer that is actually false as false (correct answer)

4 Improvement of Execution Time Through Hadoop Configuration Parameter Optimization and
Improvement ofMalicious Email FilteringAccuracywith theApplication ofMapReduceMachine Learning

4.1 Experiment Specification

Four commodity PCs were used in the experimental environment, the name node and secondary name
node were configured with one PC each, and the data nodes were configured with three PCs. The details of
hardware are shown in Tab. 2.

Table 1: Comparison between machine learning techniques [24]

Technique Accuracy Execution time TP TN FP FN

Clustering 53.915% 1.33 sec 1 0 1 0

J48 89.3617% 1.52 sec 0.84 0.955 0.045 0.16

Naïve Bayes 91.4894% 0.46 sec 0.84 1 0 0.16

SMO 93.617% 1.92 sec 0.88 1 0 0.12

ID3 93.617% 0.81 sec 0.88 1 0 0.12
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As for the experimental method, Hadoop framework tuning was optimized by adjusting the Hadoop
configuration parameters, that affect performance, and accordingly, eight test cases to be used in the test
were selected. For test case 1, the default values set during Hadoop installation were used, and for test
case 2 through test case 8, appropriate values for configuration parameters that affect execution time were
set to perform Hadoop framework tuning. For test case 2, dfs.replication, which controls the number of
dataset copies, was set to 2 and mapreduce.map.memory was set to 2048 MB and mapreduce.reduce.
memory.mb was set to 4096 MB and mapreduce.map.java.opts.max.heap was set to 1638 MB and
mapreduce.reduce.java.opts.max.heap was set to 3277 MB and mapreduce.task.io.sort.mb was set to
200 MB and mapred.reduce.parallel.copies was set to 20 numbers and yarn.scheduler.maximum-
allocation-mb was set to 4096 MB and yarn.scheduler.maximum-allocation-vcores set to 1 and

Figure 1: Accuracy comparison [24]

Execution Time

Figure 2: Performance comparison [24]

Table 2: Hardware specification for test

Item Name node system spec Data node system spec

CPU Core i7-7700 @ 3.6 GHz Core i5-7500 @ 3.4 GHz

Number of cores Quad-Core Quad-Core

OS version Ubuntu 16.04 Ubuntu 16.04

Memory DDR4 8 GB DDR4 8 GB

Network environment 1 Gbps Wire LAN 1 Gbps Wire LAN

Hadoop version 2.5.2 2.5.2

Python version 2.7/3.6 3.5.2
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mapreduce.output.fileoutputformat.compress.type set to block in the environment. For test case 3, unlike test
case 2, dfs.block_size was changed to 128 MB and dfs.namenode.handler.count was set to 10 and dfs.
replication was set to 3 and mapred.tasktracker.map.tasks.maximum was set to 7 and set mapred.
tasktracker.reduce.tasks.maximum was set to 7 and mapred.map.tasks.speculative.execution was set to
false. From test case 4 to test case 8, the Hadoop speed was tuned only by adjusting block size. The
reason why other parameters were not adjusted is that the parameters were judged to have been optimized
with the values set in test case 3. To test the execution time, dfs.block_size was set to 256 MB in test
case 4, set to 512 MB in test case 5, set to 1024 MB in test case 6, set to 256 MB in test case 7 and set
to 128 MB in test case 8.

As shown in Tab. 3, the execution time experiment was conducted by dividing the MapReduce program
to which Laplace smoothing technology was applied and the MapReduce program to which it was not
applied in the Hadoop framework environment. Laplace smoothing is a smoothing technique that helps
tackle the problem of zero probability by adding 1 to the frequency of occurrence in the Naïve Bayes
machine learning algorithm. The results shown in Tab. 3 were obtained when the MapReduce model was
applied based on the Hadoop framework and the values of the configuration parameters were changed
and tested in eight test cases. In the bare metal server environment where the Hadoop framework was not
installed, the experimental data size was 158.7 MB, and the execution times by test case and the
magnification of execution time of the bare metal Python application compared to that of the MapReduce
application were measured using malicious email data consisting of 1.5 million cases. Referring to Surya-
Murali [28] and, Mseltz [29], the programs were developed for a comparison of execution time and
accuracy between the Hadoop environment and the bare metal environment to measure execution time
and classify malicious email as shown in Fig. 3. In the Hadoop framework environment, the Naive Bayes
classification algorithm was applied based on 1.5 million malicious email test data to implement a
MapReduce program for training and a MapReduce program for classifying into spam and ham [30]. In
the bare metal environment without Hadoop, a Python-based program with the Naive Bayes classification
algorithm applied was implemented to measure the execution time and accuracy of classifying malicious
email into spam and ham [31].

Table 3: Performance comparison between Hadoop MapReduce server and bare metal server

Test case
type

With hadoop framework Without
hadoop

Execution time
multiplier ratio
(A/C)

MapReduce without
laplace smoothing
(A) (sec)

MapReduce with
laplace smoothing (B)
(sec)

Bare metal
server (C)
(sec)

Test case 1 5744 5771 1456 3.94

Test case 2 4980 5771 1456 3.42

Test case 3 5213 4887 1456 3.355

Test case 4 4897 5023 1456 3.362

Test case 5 5048 8352 1456 3.466

Test case 6 5032 5095 1456 3.5

Test case 7 5183 5147 1456 3.5

Test case 8 5029 5045 1456 3.5
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Given that, the execution time in test case 1 as shown in Tab. 3 was 5744 s (1 h 36 min), which was
15 min longer compared to 4887 s (1 h 21 min) in test case 3, it can be recognized that the influence of
the configuration parameter value is very large. Also, it can be recognized from the experiment that an
increase in the block size parameter is not necessarily related to the improvement of execution time. For
test case 6, the block size was 1024 MB, and the execution time was 5032 s, while for test case 3, the
block size was 128 MB, but the execution time was 4887 s. The execution time of test case 6 was 145 s
longer than that of test case 3, indicating that the performance was not improved proportionally when the
block size was allocated to be larger. In addition, the experiment showed that execution time is not
necessarily longer when the number of replication nodes is larger. According to the experimental results,
the number of replication nodes in test case 1 was set to 1 for setting one replication, whereas in test case
2, the number of replication nodes was set to two, and from test case 3 to test case 8, the number of
replication nodes was set to three, but test case 1, in which one replication node was designated, takes the
longest execution time. As the number of replication nodes increases, data is duplicated and distributed to
individual data nodes so that the execution time decreases thanks to the increase in data availability and
data locality [32]. However, even if the number of replication nodes is continuously increased, the
execution time does not change when a certain number has been reached, but rather the system load is
increased due to data replications [32]. Therefore, the user may want to increase the number of
replication nodes appropriately to fit the system environment. When compared with the execution time in
the bare metal server environment where the Hadoop environment is not installed, it can be seen that the
execution time in the bare metal server was 1456 s, which is 3431 s shorter than 4887 s for test case 3,
which took the least execution time in the Hadoop environment. The reason is that the Hadoop
framework operates on a virtual environment-based dataset replication and resource sharing between
nodes, and distributed data processing between nodes, which seems to make the execution time in the
Hadoop environment longer than the execution time in a bare metal server environment.

In Tab. 4, TP means cases where spam email is correctly predicted as spam and Hadoop MapReduce
Naïve Bayes malicious email prediction program with Laplace smoothing (Hadoop MapReduce Naïve
Bayes with Laplace smoothing) correctly predicted 484,977 spam emails while the bare metal Python
programs correctly predicted 307,120 emails. TN means cases where ham email is correctly predicted as

With Hadoop Framework Without Hadoop Framework (Bare Metal)

Test data(1.5 million numbers)

MapReduce application for 
training

MapReduce application for 
classification

Result (spam/ham 
classification)

Python application for 
training and classification

Test data(1.5 million numbers)

Result (spam/ham 
classification)

Figure 3: Test process for hadoop framework and bare metal server
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ham email, and the Hadoop MapReduce Naïve Bayes with Laplace smoothing correctly predicted
998,856 ham emails and the bare metal Python Naïve Bayes malicious email prediction program in non-
Hadoop environment (non-Hadoop Python Naïve Bayes) correctly predicted 999,454 ham emails. False
Positive FP means cases where actual ham email is falsely predicted as spam email and the Hadoop
MapReduce Naïve Bayes with Laplace smoothing falsely predicted 10,746 ham emails as spam email and
the non-Hadoop Python Naïve Bayes falsely predicted 147,916 ham emails as spam email. FN means
cases where actual spam email is falsely predicted as ham email and the Hadoop MapReduce Naïve
Bayes with Laplace smoothing falsely predicted 10,746 spam email as ham email and the bare metal
Python program falsely predicted 147,916 spam email as ham email. Based on these experimental results,
the Hadoop MapReduce Naïve Bayes with Laplace smoothing made more accurate predictions than the
non-Hadoop Python Naïve Bayes.

< Meaning of performance evaluation index in terms of experiment >

– TP: Correct prediction of actual spam email as spam email (correct answer)
– TN: Correct prediction of actual ham email as ham email (correct answer)
– FP: Wrong prediction of actual ham email as spam email (wrong answer)
– FN: Wrong prediction of actual spam email as ham email (wrong answer)

The performance evaluation indicators TP, TN, FP, and FN were compared graphically between the
Hadoop MapReduce Naïve Bayes with Laplace smoothing and the non-Hadoop Python Naïve Bayes in
Fig. 4. Based on the TP, TN, FP, and FN data shown in Tab. 4, the prediction error rate and accuracy
were compared between the Hadoop MapReduce Naïve Bayes with Laplace smoothing and the non-
Hadoop Python Naïve Bayes in Tab. 5. According to Tab. 5, the accuracy of Hadoop MapReduce Naïve
Bayes with Laplace smoothing is higher than that of non-Hadoop Python Naïve Bayes accuracy. The
accuracy calculation formula is shown in Eq. (4).

The malicious email prediction performances of Hadoop MapReduce Naïve Bayes with Laplace
smoothing and non-Hadoop Python Naïve Bayes are compared in the graph shown in Fig. 5.

Table 4: Performance evaluation index comparison between both methods

Item Hadoop MapReduce Naïve Bayes
malicious email prediction with
laplace smoothing

Bare Metal Python Naïve Bayes
malicious email prediction in
non-Hadoop

Number of file data 1,500,976 1,500,976

Number of successful file reads 1,494,579 1,454,489

Number of fail file reads 6,397 46,487

TP 484,977 307,120

TN 998,856 999,453

FP 10,746 147,916

FN 10,746 147,916

Number of correct answers 1,483,833 1,306,573

Number of incorrect answers 10,746 147,916
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For the algorithm for Hadoop performance improvement and malicious email prediction filtering, the
MapReduce model was constructed with a two-step MapReduce method, referring to Mseltz [29]. The
bare metal python algorithm was configured to perform training and malicious email prediction filtering
based on the multinomial Naïve Bayes model, referring to Surya-Murali [28]. The algorithm of each
program is described in Tab. 6. To prevent the probability from becoming 0 during filtering classification,
1 is added to the numerator as in Eq. (5).

P̂ðtjcÞ ¼ Tct þ 1P
t02V Tct0

� �þ B0 (5)

– P̂(t|c): the multinomial conditional probability
– |V|: the number of terms in the vocabulary V (including all text classes)
– Tct: the count of word t in class C

To classify malicious email into spam and ham, the posterior probability of class c is expressed
as Eq. (6).

cmap ¼ argmax
c2C½log P̂ðcÞ þ

X
1�k�nd

log P̂ðtk jcÞ� (6)

cmap: Value classified as spam or ham for malicious email

Figure 4: Performance evaluation indicator comparison graph between the two methods

Table 5: Comparison of prediction error rate and accuracy between both methods

Item Hadoop MapReduce Naïve Bayes malicious
email prediction with laplace smoothing

Bare Metal Python Naïve Bayes malicious
email prediction in non-hadoop environment

Prediction
error rate

0.72% 10.17%

Accuracy 99.28% 89.83%

210 CSSE, 2023, vol.45, no.1



The libraries used in the bare metal Python Naïve Bayes program are pandas, numpy, countvetorizer,
and multinomial Naïve Bayes, and the process for filtering and classification through learning is
described in Tab. 6.

4.2 Experiment Analysis

Hadoop tuning was optimized through the optimization of Hadoop configuration parameters. Execution
time in the Hadoop environment was longer than that in the non-Hadoop Linux environment, because in a
virtual environment, resource sharing, data replication, and data node resource allocation take longer in a
virtual environment than in a bare metal environment. However, since the bare metal environment is
operated by the server alone, the disadvantage is that it is difficult to share resources with other servers.

Figure 5: Comparison graph of prediction error rate and accuracy between the two methods

Table 6: Model process for malicious email prediction

Step 1) MapReduce Naïve Bayes program process with Laplace smoothing for Training
I Store test data in Hadoop directory
II Retrieve test data from Hadoop directory by Mapper program
III Remove punctuation characters (comma, period, etc.) in test data
IV Store cleaned data in Hadoop directory by Reducer program
V Training for classifying malicious data
Step 2) MapReduce Naïve Bayes program process with Laplace smoothing for classification of malicious

email
I Retrieve cleaned data from Hadoop directory (from Step1 III)
II Read test data from Hadoop directory by Mapper program
III Predict whether read data is spam or ham by Reducer program
IV Classify malicious data as spam and ham
< (without Hadoop) non-Hadoop Python Naïve Bayes Malicious Email Prediction>
I Read test data from system directory
II Execute training model using test data
III Predict whether read data is spam or ham by multinomial Naïve Bayes classifier Predict (vectorize.

transform(data))
IV Classify malicious data as spam and ham
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That is, there is a limit to adopting a bare metal framework for a malicious email filtering system just because
the execution time is short, and a peculiarity in the Hadoop tuning process is that execution time does not
necessarily improve even if the block size among configuration parameters is increased. Also, execution
time does not necessarily improve just because the number of dataset copies is small. For these reasons, it
is the most reasonable to derive and optimize the most appropriate configuration parameter values in a
given environment for Hadoop tuning through experiments based on an experiment-driven approach.

In this paper, in addition to research to find a Hadoop performance optimization method, our study
sought a method to increase the accuracy of malicious email classification by comparing and analyzing
the accuracy of malicious email filtering using the MapReduce Naïve Bayes with Laplace smoothing
based on the Hadoop framework optimized for tuning and the filtering system accuracy of the Python
Naïve Bayes program in a non-Hadoop environment. The Hadoop MapReduce Naïve Bayes method with
Laplace smoothing showed a prediction error rate that was 14.13 times smaller than the non-Hadoop
Python Naïve Bayes method as a result of training and classification by applying the Laplace smoothing
method. In terms of accuracy, the Hadoop MapReduce Naïve Bayes method with Laplace smoothing is
1.11 times more accurate than the non-Hadoop Python Naïve Bayes method. Therefore, for the spam and
ham classification of large-capacity malicious email, the MapReduce Naïve Bayes method with Laplace
smoothing in the Hadoop framework environment can be used to make more accurate predictions for
malicious email filtering.

5 Conclusion and Future Work

The Hadoop framework applied in this paper has the disadvantage of being slower than the bare metal
server used alone in a non-Hadoop environment because it uses several commodity servers based on a virtual
environment and duplicates the dataset with a distributed computing method. In order to improve these
shortcomings, eight types of test cases were configured by selecting 14 Hadoop configuration parameters
that have a significant impact on performance, based on an experiment-driven approach, with various
tests, and an environment with optimized performance as in test case 3 described in Tab. 2 was set. Other
features of the Hadoop framework are that the efficiency of resource use is improved by combining and
distributing multiple resources, the construction cost is low by using open source, there is no license
restriction, and system reliability is improved by increasing data stability, as data is duplicated and stored
in multiple data nodes.

For spam filtering using machine learning techniques, Naïve Bayes was chosen because it has the
highest speed and accuracy among six spam filtering methods (clustering, J48, Naïve Bayes, SMO,
minimal optimization, and ID3). Also, as a result of comparing the prediction error rate when a Laplace
smoothing algorithm was applied to the MapReduce programming model in the Hadoop framework
environment and the prediction error rate in the bare metal server environment, the Hadoop MapReduce
Naïve Bayes algorithm was found to be much more accurate than the non-Hadoop Python Naïve Bayes
algorithm. According to the results of analysis of eight test cases, the Hadoop MapReduce Naïve Bayes
method with Laplace smoothing had a malicious email filtering’s prediction error rate that was
14.13 times less than the non-Hadoop Python Naïve Bayes method and 1.11 times higher accuracy than
the non-Hadoop metal Python Naïve Bayes method. As a result, it can be seen that the Hadoop
MapReduce Naïve Bayes method with Laplace smoothing has higher prediction accuracy than the non-
Hadoop Python Naïve Bayes method, and the Hadoop MapReduce Naïve Bayes method with Laplace
smoothing is judged to be the most suitable solution for filtering malicious email.

As a future plan, we will extract sentiment information from unstructured social media test data using the
Hadoop MapReduce function and machine learning methods (Naïve Bayes, SVM, and linear regression) and
conduct a comparative analysis of each machine learning method through sentiment analysis.
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