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Abstract: The Internet of Things (IoT) technologies has gained significant interest
in the design of smart grids (SGs). The increasing amount of distributed genera-
tions, maturity of existing grid infrastructures, and demand network transforma-
tion have received maximum attention. An essential energy storing model
mostly the electrical energy stored methods are developing as the diagnoses for
its procedure was becoming further compelling. The dynamic electrical energy
stored model using Electric Vehicles (EVs) is comparatively standard because
of its excellent electrical property and flexibility however the chance of damage
to its battery was there in event of overcharging or deep discharging and its mass
penetration deeply influences the grids. This paper offers a new Hybridization of
Bacterial foraging optimization with Sparse Autoencoder (HBFOA-SAE) model
for IoT Enabled energy systems. The proposed HBFOA-SAE model majorly
intends to effectually estimate the state of charge (SOC) values in the IoT based
energy system. To accomplish this, the SAE technique was executed to proper
determination of the SOC values in the energy systems. Next, for improving
the performance of the SOC estimation process, the HBFOA is employed. In
addition, the HBFOA technique is derived by the integration of the hill climbing
(HC) concepts with the BFOA to improve the overall efficiency. For ensuring bet-
ter outcomes for the HBFOA-SAE model, a comprehensive set of simulations
were performed and the outcomes are inspected under several aspects. The experi-
mental results reported the supremacy of the HBFOA-SAE model over the recent
state of art approaches.
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1 Introduction

Internet of Things (IoT) represents the network-oriented interrelationship of daily used structures. It
refers to the self-organizing wireless connection of devices focused on the interrelationship of day to day
objects [1]. The IoT mechanism aids to attain intercommunication among an individual and machine or
machine to machine [2]. The amalgamation of grid tools in utility network systems will definitely
influence amazing conversion in grid administration and electrical power usage in forthcoming years [3].
The systematic modifications in load regulation, accompanied by boosted dispersal of unconventional
power sources, recommends a new array of challenges in balancing expenses and production [4]. With
this rising implementation of unconventional power sources and increase in familiarity with plugin hybrid
electric vehicles (PHEVs) and every electric vehicle (EV), the demand is more effective electric
infrastructures [5]. Fig. 1 illustrates the process of energy management system.

The state of charge (SOC) is referred to as a critical criterion to represent the present and existing charge
of batteries [6]. But, it is very hard to forecast SOC of the battery because of the battery’s nonlinear features
and complex electrochemical reaction. For example, ampere-hour technique use present integration for
forecasting SOC which is considered to be a simple methodology and could be applied with relatively
lower energy consumption [7,8]. The electrochemical model depends on the external policies that use lots
and lots of parameters with incomplete differential equations to estimate the battery SOC. but, a massive
computational load highly raises the execution difficulty in practical use. In recent times, modeling
batteries through neural networks (NNs) is also been broadly executed. The application zones of NNs
deliver significant accessibility to the modeling procedure [9]. It could not necessary to evaluate the
model parameter independently at various SOC points. The implemented method explains the
interrelation among SOC and its influential elements with mathematical formulas [10].

Liu et al. [11] focus on developing an IoT-based energy management scheme based on edge computing
structure through deep reinforcement learning. Firstly, a summary of IoT-based energy handling is defined.
Next, the software and framework of an IoT-based scheme using edge computing are presented. In [12], IoT
energy management has a tendency to accomplish green energy response and transmission from demand and
supply. Consequently, smart industrial preparation should be capable of using energy productively to resolve
related problems.

Figure 1: Process of energy management systems
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Safara et al. [13] focus on energy utilization, in which the priority oriented routing (PriNergy) technique
is presented. The technique is depending upon the routing method for low-power and lossy networks (RPL)
that defines routing via content. Every network slot employs timing pattern while transmitting information to
the termination when taking network traffic, image, and audio information into account. In [14], a new
method is presented for handling energy consumption in a smart grids platform using profound
penetration of renewable resources. The presented method compares some predictive methods for precise
predicting of energy using day ahead and hourly preparation. Particle swarm optimization (PSO) based
support vector machine (SVM) regression technique outperformed by various other predictive methods in
terms of efficiency.

Utama et al. [15] recommended SOC approximation with an artificial neural network (ANN) to decrease
the approximation error because of physical parameters and decrease computational cost by means of an IoT-
assisted embedded scheme. Asaad et al. [16] suggest a Battery Monitoring System (BMS) with coulomb
counting technique for SoC approximation and message based MQ Telemetry Transport (MQTT) as the
transmission method. The presented method is executed on hardware framework with the environment,
suitable sensing technique, central processor, and interfacing devices.

This paper offers a new Hybridization of Bacterial foraging optimization with Sparse Autoencoder
(HBFOA-SAE) model for IoT Enabled energy systems. The proposed HBFOA-SAE model majorly
employs SAE model for proper determination of the SOC values in the energy systems. Next, for
improving the performance of the SOC estimation process, the HBFOA is employed. In addition, the
HBFOA technique is derived by the integration of the hill climbing (HC) concepts with the BFOA to
improve the overall efficiency. For ensuring better outcomes for the HBFOA-SAE model, a
comprehensive group of simulations are executed and the outcomes are inspected under several aspects.

2 The Proposed Model

In this study, a new HBFOA-SAEmodel has been developed for proper determination of the SOC values
in the energy systems. Next, for improving the performance of the SOC estimation process, the HBFOA is
employed. In addition, the HBFOA technique is derived by the integration of the HC concepts with the
BFOA to improve the overall efficiency.

The study has established an HBFOA-SAEmethod for precise SOC estimates in HEV. Initially, the input
as well as output of presented method are defined. According to the concept of NN, the sampling procedure
of the SOC occur in step k; SOC kð Þ is taken into account as the input as it signifies the existing situation of
the battery. As the direct variable current I kð Þ is taken into account as the input, as well as the battery voltage
V(k) is denoted by the output. v k � 1ð Þ indicates the situation of the battery in the last phase and it means the
previous operational status.

V kð Þ ¼ OCV SOC kð Þð Þ þ RsI kð Þ þ URC kð Þ (1)

whereas Rs indicates the battery internal resistance, URC shows the RC circuit voltage associated with
URC k � 1ð Þ through the 1st order differential formula. To generate the input directly evaluated parameters,
URC k � 1ð Þ is taken into account as V k � 1ð Þ. Consequently, V k � 1ð Þ holds a direct link with V kð Þ. It
can be expressed in the following

V kð Þ ¼ f V k � 1ð Þ; I kð Þ; SOC kð Þð Þ; (2)

It undergoes estimates through the learning method. The input and output vectors of the presented
technique have been determined by p kð Þ ¼ V k � 1ð Þ I SOC kð Þ½ �T and V kð Þ.
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F p kð Þð Þ ¼ V kð Þ (3)

The input and output sample of p kð Þ � V kð Þf g is acquired previous to model training. Assume
p kð Þ ¼ xj and V kð Þ ¼ tj: The trained subset is denoted as f xj; tj

� �jxj 2 Rn; tj 2 Rm; j ¼ 1; . . . ;Ng.

2.1 Process Involved in SOC Estimation

Primarily, the proposed HBFOA-SAE model employs SAE model for proper determination of the SOC
values in the energy systems. Auto encoder (AE) is an unsupervised 3-layer NN containing input, hidden,
and output layers (also mentioned that reconstruction layer). The AE is slowly transformed into particular
feature vectors as abstract feature vectors that are well realizing the non-linear transformation in higher to
lower dimensional data spaces [17]. The work flow procedure of the automatic encoding is separated as
to 2 phases such as encoder and decoder and these 2 stages are demonstrated as:

The encoder procedure in the input to hidden layers:

H ¼ gh1 Xð Þ ¼ r WijX þ ’1

� �
(4)

The decoder method in the hidden to reconstruction layers:

Y ¼ gh2 Hð Þ ¼ r WjkH þ ’2

� �
(5)

Here, Wij 2 Rm�n signifies the weighted linked matrix amongst input as well as hidden layers.
Wjk 2 Rn�m denotes the weighted connection matrix amongst hidden as well as output layers. For
reconstructing the input data as correctly as feasible but decreasing the resource utilization under the
method trained, Wjk ¼ WT

ij commonly exist from the experiment. ’1 2 Rn�1 and ’2 2 Rm�1 are the bias
vectors of input as well as hidden layer correspondingly. gh1 �ð Þ and gh2 �ð Þ represents the activation
function of hidden as well as output layer neurons correspondingly that role is for mapping the network
summation outcome to zero and one. It can be utilized sigmoid function as activation function as:

gh1 �ð Þ ¼ gh2 �ð Þ ¼ 1

1þ e�x
(6)

With changing the parameters of encoding as well as decoding, the error amongst the output
reconstructed data and original data are minimized representing AE reconstructing the original data with
trained. The reconstruction error function JE W ; ’ð Þ amongst H and Y utilizes the mean squared-error
function as illustrated in Eq. (7), whereas N refers the amount of input instances.

JE W ; ’ð Þ ¼ 1

2N

XN
r¼1

kY rð Þ � X rð Þk2 (7)

The concept of sparse coding was initially presented for simulating the computation learning of the
receptive field of cells in mammalian primary visual cortex. We assume that the average activation q̂j
methods a constant q that is closer to zero.

KL qkq̂ð Þ ¼ q log
q
q̂j

þ 1� qð Þ log 1� q
1� q̂j

(8)

Now, the error function of the sparse AE comprises: regularization term and mean square error term. It is
given in the following:
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Jsparse W ; bð Þ ¼ J W ; bð Þ þ l
Xm
j¼1

KL qkq̂j
� �

(9)

Jsparse W ; bð Þ ¼ JE W ; bð Þ þ l
Xm
j¼1

KL qkq̂j
� �þ k

2

X3
r¼1

Xm
i¼1

Xmþ1

j¼1

ðwr
ijÞ2 (10)

2.2 HBFOA Based Parameter Optimization

At this stage, the HBFOA technique is derived by the integration of the HC concepts with the BFOA to
improve the overall efficiency. The original BFOA is theorized as swarming, chemotaxis, elimination-dispersal,
and reproduction. Generally, the swarming process has adverse impact on the BFOA accuracy [18].

Chemotaxis process: The bacteria movement can be inspired by the chemotaxis process. Here, tumbling
and swimming are the two major activities of bacteria. X i j; k; lð Þ characterizes the ith bacterium at jth

chemotaxis, kth reproduction, lth elimination-dispersal; c ið Þ indicates the chemotaxis step length; and D ið Þ
represents a random direction vector within (−1, 1).

xi jþ 1; k; lð Þ ¼ xi j; k; lð Þ þ C ið Þ D ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ið ÞTD ið Þ

q (11)

Reproduction operation: Here, the survival capacity of bacteria is measured according to the fitness
value. A small fitness value implies the bacterium has a high capacity to achieve nutrition for surviving,
then the bacteria are assumed healthier. The healthy half of the bacteria depends on the fitness value is
carefully chosen as parent to generate offspring in a similar place. The bacteria reproduction is shown in
the following, whereas ji j; k; lð Þ denotes the fitness value of ith bacterium at jth chemotaxis, kth
reproduction, lth elimination-dispersal.

Jhealth ¼
XNc

j¼1

ji j; k; lð Þ: (12)

Elimination-dispersal process: Once the evolutionary environment deteriorates, the bacteria migrates to
a novel location to avoid trapping into local optimal and the process is given below. Fig. 2 demonstrates the
flowchart of BFOA.

Figure 2: Flowchart of BFOA
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For every bacterium

if rand < Ped

xi = VarMin + rand * (VarMax − Varmin)

end

end

For boosting the technique’s exploitation capability and quality of final solutions, AbHC is combined as
to the fundamental BFOA to support searching the neighborhoods for optimum solutions during this case
[19]. And the explanation of AbHC was signified mathematical as follows. In order to provide existing
solution Xi ¼ xi;1; xi;2; . . . ; xi;D

� �
; AbHC is iteratively created an improved solution

X
00
i ¼ x

00
i;1; x

00
i;2; . . . ; x

00
i;D

� �
on the fundamental of 2 control operators: N and b operators. The N

operator primary transfers Xi to a novel neighborhood solution. X
0
i ¼ x

0
i;1; x

0
i;2; . . . ; x

0
i;D

� �
that is

determined in Eqs. (13) and (14) as:

x
0
ij ¼ xij � U 0; 1ð Þ � N ; j ¼ 1; 2; . . . ;D (13)

N tð Þ ¼ 1� t

1

K

Max iter

1

K

(14)

whereas U O; 1ð Þ signifies the arbitrary number from the interval of zero and one; xij refers the value of
decision variable from the jth dimensional, t stands for the existing iteration, Maxiter signifies the
maximal amount of iterations, N denotes the bandwidth distance amongst existing solution and their
neighbor, D signifies the spatial dimensional, and the parameter K is a constant.

3 Performance Validation

In this section, the experimental validation of the HBFOA-SAE model is tested using three datasets
namely BJDST (Dataset-1), US06 (Dataset-2), and FUDS (Dataset-3). Tabs. 1–3 offer a detailed SOC
estimation outcomes of the HBFOA-SAE model under distinct number of hidden units (HUs).

Table 1: SOC estimation analysis of HBFOA-SAE technique on dataset-1

Dataset-1

No. of Hidden-Units MSE RMSE MAE MAPE Rank

HU-5 0.008456 0.091957 0.2556249 2.768846 6

HU-10 0.007406 0.086058 0.2238834 2.434186 1

HU-15 0.007427 0.086180 0.2245182 2.440832 3

HU-20 0.008130 0.090167 0.2457699 2.669890 4

HU-25 0.008170 0.090388 0.2469791 2.675020 5

HU-30 0.007730 0.087920 0.2336779 2.536030 2

Average 0.007887 0.088778 0.238409 2.587467
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Fig. 3 reports a detailed mean square error (MSE) examination of the HBFOA-SAEmodel under distinct
HUs and datasets. On dataset-1 and HU-5, the HBFOA-SAE model has provided a MSE of 0.008456.
Besides, on dataset-1 and HU-30, the HBFOA-SAE model has offered a MSE of 0.007730. In addition,
on dataset-2 and HU-5, the HBFOA-SAE model has gained a MSE of 0.001990. Besides, on dataset-
2 and HU-30, the HBFOA-SAE model has reached a MSE of 0.001843. Moreover, on dataset-3 and HU-
5, the HBFOA-SAE model has resulted to a MSE of 0.010553. Furthermore, on dataset-3 and HU-30, the
HBFOA-SAE model has provided a MSE of 0.009940.

Fig. 4 defines a detailed root mean square error (RMSE) examination of the HBFOA-SAE model under
distinct HUs and datasets. On dataset-1 and HU-5, the HBFOA-SAE model has provided a RMSE of
0.091957. Besides, on dataset-1 and HU-30, the HBFOA-SAE model has offered a RMSE of 0.087920.
Furthermore, on dataset-2 and HU-5, the HBFOA-SAE model has gained a RMSE of 0.041037.
Moreover, on dataset-2 and HU-30, the HBFOA-SAE model has reached a RMSE of 0.042930.
Additionally, on dataset-3 and HU-5, the HBFOA-SAE model has resulted to a RMSE of 0.102728.
Also, on dataset-3 and HU-30, the HBFOA-SAE model has provided a RMSE of 0.099700.

Fig. 5 reports a detailed mean absolute percentage error (MAPE) examination of the HBFOA-SAE
model under distinct HUs and datasets. On dataset-1 and HU-5, the HBFOA-SAE model has provided a
MAPE of 2.768846. Followed by dataset-1 and HU-30, the HBFOA-SAE model has offered a MAPE of
2.536030. Likewise, on dataset-2 and HU-5, the HBFOA-SAE model has gained a MAPE of 0.229894.

Table 2: SOC estimation analysis of HBFOA-SAE technique on dataset-2

Dataset-2

No. of Hidden-Units MSE RMSE MAE MAPE Rank

HU-5 0.001684 0.041037 0.101427 0.229894 2

HU-10 0.001990 0.044609 0.119858 0.261340 6

HU-15 0.001678 0.040963 0.101066 0.228768 1

HU-20 0.001896 0.043543 0.114196 0.257256 5

HU-25 0.001806 0.042497 0.108775 0.239646 3

HU-30 0.001843 0.042930 0.111004 0.242348 4

Average 0.001816 0.042597 0.109388 0.243209

Table 3: SOC estimation analysis of HBFOA-SAE technique on dataset-3

Dataset-3

No. of Hidden-Units MSE RMSE MAE MAPE Rank

HU-5 0.010553 0.102728 0.319017 4.091728 5

HU-10 0.009984 0.099920 0.301816 3.869974 4

HU-15 0.009298 0.096426 0.281079 3.600608 2

HU-20 0.009105 0.095420 0.275244 3.533280 1

HU-25 0.010826 0.104048 0.327270 4.193346 6

HU-30 0.009940 0.099700 0.300486 3.856720 3

Average 0.009951 0.099707 0.300819 3.857609
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Along with that, on dataset-2 and HU-30, the HBFOA-SAE model has reached a MAPE of 0.242348. At the
same time, on dataset-3 and HU-5, the HBFOA-SAE model has resulted in a MAPE of 4.091728. Lastly, on
dataset-3 and HU-30, the HBFOA-SAE model has provided a MAPE of 3.856720.

In order to further assure the enhanced performance of the HBFOA-SAE model, a comparative
examination with the deep learning based SOC (DLSOC) and optimal extreme learning machine (ELM)
models takes place under distinct measures as shown in Tab. 4 [20,21].

Fig. 6 demonstrates the MSE, RMSE, and SOC error values of the HBFOA-SAE model with existing
DLSOC and optimal ELM approaches under distinct temperatures on dataset-1. The experimental results
implied that the HBFOA-SAE model has shown effectual outcomes with minimal values of MSE,
RMSE, and SOC error. For instance, with 0°C, the HBFOA-SAE model has offered MSE, RMSE, and
SOC errors of 0.007887, 0.088778, and [−1.50+1.70] respectively. Similarly, with 25°C, the HBFOA-
SAE model has provided MSE, RMSE, and SOC errors of 0.007152, 0.084569, and [−1.75+1.75]
respectively. Similarly, with 45°C, the HBFOA-SAE model has provided MSE, RMSE, and SOC errors
of 0.006184, 0.078638, and [−2.12+2.20] respectively.

Figure 3: MSE analysis of HBFOA-SAE technique under three datasets

Figure 4: RMSE analysis of HBFOA-SAE technique under three datasets
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Figure 5: MSPE analysis of HBFOA-SAE technique under three datasets

Table 4: Comparative analysis of HBFOA-SAE technique with existing approaches under three
datasets

Drive Cycle Model Temperature MSE RMSE SOC Error (%)

Dataset-1 Optimal ELM 0°C 0.012512 0.111857 [−2.71+2.95]

25°C 0.007510 0.086660 [−2.04+2.78]

45°C 0.008457 0.091961 [−3.04+3.23]

DLSOC 0°C 0.009155 0.095680 [−2.77+2.98]

25°C 0.007895 0.088854 [−2.51+3.19]

45°C 0.006854 0.082790 [−2.24+2.89]

HBFOA-SAE 0°C 0.007887 0.088778 [−1.50+1.70]

25°C 0.007152 0.084569 [−1.75+1.75]

45°C 0.006184 0.078638 [−2.12+2.20]

Dataset-2 Optimal ELM 0°C 0.015412 0.124145 [−2.79+3.16]

25°C 0.034562 0.185909 [−2.99+3.57]

45°C 1.256423 1.120903 [−3.1+3.61]

DLSOC 0°C 0.012456 0.111606 [−2.94+2.94]

25°C 0.025468 0.159587 [−3.3+2.82]

45°C 1.162424 1.078158 [−3.19+3.7]

HBFOA-SAE 0°C 0.001816 0.042615 [−2.1+1.9]

25°C 0.021424 0.146368 [−2.5+1.1]

45°C 0.851236 0.922625 [−2.75+1.26]
(Continued)
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Table 4 (continued)

Drive Cycle Model Temperature MSE RMSE SOC Error (%)

Dataset-3 Optimal ELM 0°C 0.012654 0.112490 [−2.64+3.34]

25°C 0.156423 0.395503 [−2.32+3.46]

45°C 0.351260 0.592672 [−3.17+3.31]

DLSOC 0°C 0.011250 0.106064 [−2.58+3.26]

25°C 0.135624 0.368272 [−2.29+3.16]

45°C 0.298453 0.546309 [−2.71+3.26]

HBFOA-SAE 0°C 0.009951 0.099755 [−2.1+3.12]

25°C 0.095123 0.308420 [−1.2+2.1]

45°C 0.125423 0.354151 [−1.54+2.3]

Figure 6: Comparative analysis of HBFOA-SAE technique with existing approaches on Dataset-1

710 CSSE, 2023, vol.45, no.1



Fig. 7 exhibits the MSE, RMSE, and SOC error values of the HBFOA-SAEmodel with existing DLSOC
and optimal ELM approaches under distinct temperatures on dataset-2. The experimental results implied that
the HBFOA-SAE model has shown effectual outcomes with minimal values of MSE, RMSE, and SOC error.
For instance, with 0°C, the HBFOA-SAE model has offered MSE, RMSE, and SOC errors of 0.001816,
0.042615, and [−2.1+1.9] respectively. In the same way, with 25°C, the HBFOA-SAE model has
provided MSE, RMSE, and SOC errors of 0.021424, 0.146368, and [−2.5+1.1] respectively. At last, with
45°C, the HBFOA-SAE model has provided MSE, RMSE, and SOC errors of 0.851236, 0.922625, and
[−2.75+1.26] respectively.

Fig. 8 establishes the MSE, RMSE, and SOC error values of the HBFOA-SAE model with existing
DLSOC and optimal ELM approaches under distinct temperatures on dataset-3. The experimental results
implied that the HBFOA-SAE model has shown effectual outcomes with minimal values of MSE,
RMSE, and SOC error. For instance, with 0°C, the HBFOA-SAE model has offered MSE, RMSE, and
SOC errors of 0.009951, 0.099755, and [−2.1+3.12] respectively. Likewise, with 25°C, the HBFOA-SAE
model has provided MSE, RMSE, and SOC errors of 0.095123, 0.308420, and [−1.2+2.1]

Figure 7: Comparative analysis of HBFOA-SAE technique with existing approaches on Dataset-2
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correspondingly. Also, with 45°C, the HBFOA-SAE model has provided MSE, RMSE, and SOC errors of
0.125423, 0.354151, and [−1.54+2.3] respectively.

After examining the results and discussion, it is confirmed that the HBFOA-SAE model has shown
effective SOC estimation outcomes.

4 Conclusion

In this study, a new HBFOA-SAEmodel has been developed for proper determination of the SOC values
in the energy systems. The proposed HBFOA-SAE model majorly employs SAE model for proper
determination of the SOC values in the energy systems. Next, for improving the performance of the SOC
estimation process, the HBFOA is employed. In addition, the HBFOA technique is derived by the
integration of the HC concepts with the BFOA to improve the overall efficiency. For ensuring the better
outcomes for the HBFOA-SAE model, a comprehensive set of simulations were performed and the
outcomes are examined under several aspects. The experimental results reported the supremacy of the
HBFOA-SAE model over the recent state of art approaches. In future, hybrid DL models can be included
to improve the prediction outcomes.

Figure 8: Comparative analysis of HBFOA-SAE technique with existing approaches on Dataset-3
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