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Abstract: Recently, computer aided diagnosis (CAD) model becomes an effective
tool for decision making in healthcare sector. The advances in computer vision
and artificial intelligence (AI) techniques have resulted in the effective design
of CAD models, which enables to detection of the existence of diseases using var-
ious imaging modalities. Oral cancer (OC) has commonly occurred in head and
neck globally. Earlier identification of OC enables to improve survival rate and
reduce mortality rate. Therefore, the design of CAD model for OC detection
and classification becomes essential. Therefore, this study introduces a novel
Computer Aided Diagnosis for OC using Sailfish Optimization with Fusion based
Classification (CADOC-SFOFC) model. The proposed CADOC-SFOFC model
determines the existence of OC on the medical images. To accomplish this, a
fusion based feature extraction process is carried out by the use of VGGNet-
16 and Residual Network (ResNet) model. Besides, feature vectors are fused
and passed into the extreme learning machine (ELM) model for classification pro-
cess. Moreover, SFO algorithm is utilized for effective parameter selection of the
ELM model, consequently resulting in enhanced performance. The experimental
analysis of the CADOC-SFOFC model was tested on Kaggle dataset and the
results reported the betterment of the CADOC-SFOFC model over the compared
methods with maximum accuracy of 98.11%. Therefore, the CADOC-SFOFC
model has maximum potential as an inexpensive and non-invasive tool which
supports screening process and enhances the detection efficiency.
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1 Introduction

Oral cancer (OC) is a lethal disease highly related to mortality and morbidity, and it comes under the
neck and head sections [1]. Numerous image processing systems are widely utilized for the earlier
diagnosis of OC that results in increased cancer survival rate and greater treatment efficiency. Medical
imaging method, computer-aided detection, and diagnosis makes potential change in cancer treatment,
now it can be diagnosed in the earlier stage by analyzing magnetic resonance imaging (MRI) scans, X-
ray and computed tomography (CT) images. It helps to easily examine the anatomical structure of oral
cavity and allows to precisely extract healthy regions from tumor areas. Defining the accurate class of OC
at earlier stages is a considerably difficult task [2]. Thus, computer aided application would be extremely
advantageous as it helps the medical doctor to offer a comprehensive treatment process and has a
classification of diseases in healthcare diagnosis process.

Conventionally, cancer treatment mainly depends upon the grading of tumors. But the grading and
discrepancy have added to imprecise prognosis in OC patients [3]. Despite the rising amount of
predictive markers, the entire disease prediction remains same [4]. It is due to the challenge in the
incorporation of this marker in the present staging scheme [5]. Better diagnostic and prognostic accuracy
assists the clinician in making decisions based on the proper treatment for survival [6]. Eventually,
machine learning (ML) technique (shallow learning) has been reported to provide better prognostication
of OC. Note that, the usage of ML technique has been reported to offer a better prognostication when
compared to the conventional statistical analysis [7]. The ML technique can exhibit promising outcomes
since it can discern the complicated relations among the variables included in the dataset [8]. Considering
the touted feasibility and advantage of the ML approaches in cancer prognostication, the application has
gained considerable interest over the last few decades. Because of that, it is poised to help the clinician in
taking decisions thus promoting and improving good management of patient health. Interestingly, the
advanced technology has resulted in the alteration of shallow ML to deep ML. Deep learning (DL)
technique has been touted to increases better management of cancer [9,10].

Song et al. [11] present for addressing this shortcoming by employing a Bayesian deep network able to
evaluate uncertainty for assessing OC image classifier reliability. It can be estimated the method utilizes a
huge intraoral cheek mucosa image data set captured utilizing our customized device in high-risk
populations for demonstrating that meaningful uncertainty data is created. Tanriver et al. [12] discovered
the potential application of computer vision and DL approaches from the OC field in the scope of
photographic image and examined the prospect of automated model to identify oral potentially malignant
disorder with 2-stage pipeline. Camalan et al. [13] established a DL approach for classifying images as
“suspicious” and “normal” and for highlighting the region of image most probably that contained from
decision-making with creating automated heat map. The author has established a model for classifying
images as healthy and abnormal with executing transfer learning (TL) on Inception-ResNet-V2 and
created automated heat map for highlighting the area of image most probable that contained from the
decision making.

Lim et al. [14] established a new DL structure called as D’OraCa for classifying oral lesions utilizing
photographic images. It can be primary for developing a mouth landmark recognition method to the oral
image and integrating it as to the oral lesion classifier method as guidance for improving the classifier
accuracy. It can be measured the efficacy of 5 distinct deep convolutional neural network (DCNN) and
MobileNetV?2 is selected as the feature extracting to presented mouth landmark recognition method. Lin
et al. [15] projected an effectual smartphone based image analysis approach, influenced by a DL
technique, for addressing the challenge of automatic recognition of oral disease. Primary, an easy yet
effectual centered rule image capture method has been presented to gather oral cavity images. Afterward,
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dependent upon this approach, a medium-sized oral data set with 5 categories of diseases has been generated,
and resampling approach has been projected to lessen the result of images variability in hand held
smartphones camera. At last, an existing DL network (HRNet) has been established for evaluating the
performance of our approach for OC recognition.

This study introduces a novel Computer Aided Diagnosis for OC using Sailfish Optimization with
Fusion based Classification (CADOC-SFOFC) model. The proposed CADOC-SFOFC model performs
fusion based feature extraction process using VGGNet-16 and Residual Network (ResNet) model.
Besides, feature vectors are fused and passed into the extreme learning machine (ELM) model for
classification process. Moreover, SFO algorithm is utilized for effective parameter selection of the ELM
model, consequently resulting in enhanced performance. The experimental analysis of the CADOC-
SFOFC model was tested on Kaggle dataset and the results reported the betterment of the CADOC-
SFOFC model over the compared methods.

2 Materials and Methods

In this study, a novel CADOC-SFOFC model has been devised to determine the existence of OC on
medical images. Initially, the CADOC-SFOFC model carried out the fusion based feature extraction
procedure using VGGNet-16 and ResNet model. In addition, feature vectors are fused and passed into the
ELM model for classification process. Finally, the SFO algorithm is utilized for effective parameter
selection of the ELM model as illustrated in Fig. 1.
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Figure 1: Block diagram of CADOC-SFOFC model

2.1 Dataset Used

The performance validation of the CADOC-SFOFC model on OC classification is performed using a
benchmark dataset from Kaggle repository (available at https:/www.kaggle.com/shivam17299/oral-
cancer-lips-and-tongue-images). The dataset includes lip and tongue images with two class labels. A total
of 87 images come under cancer class and 44 images under non-cancer class. Fig. 2 depicts a sample set
of tongue images.
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Figure 2: Sample images

2.2 Image Pre-Processing

Gabor filter (GF) is initially employed to preprocess the input images. It is an oriented complicated
sinusoidal grating modified using 2-D Gaussian envelope. For a 2-D coordinate (a,b) model, the GF
comprises real as well as imaginary components, as given in Eq. (1):

Gs0y.0y(a,b) = exp (— %) X exp <j(2n%/+ lﬁ)) (1)
where

ad =acos 0+ bsin 6 2)
b = —asin+bcos 0 3)

where 0 indicates wavelength and 6 implies orientation separation angle of Gabor kernel, iy denotes phase
offset, o represents standard derivation of Gaussian envelope, and 7 is the spatial aspects ratio.

2.3 Feature Extraction

In this study, two feature vectors namely Visual Geometry Group (VGG16) and ResNet models are
applied [16,17].

2.4 Feature Fusion and Classification

At this stage, the fusion of features is carried out into a matrix by the use of partial least square (PLS)
based fusion model [18]. Assume 7 (1) and 55 (2) denotes a pair of chosen feature vectors of dimension
Xy xK and X; x K. Assume 1 (/) as a fused vector of dimensions X3 x K. Besides, the central
parameters U and 7 indicates zero mean, where U € 1, (1) and Ve 15, (2) . Consider 6,, = UV and
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1 _, ~

Ovu = 5;((— - 1>5w> represents set covariance amongst vectors U and V. The PLS holds correlated
n

features to fuse them. The fusion procedure via PLS reduces the number of predictors. The

decomposition model between U and V can be represented using Eqs. (4) and (5):

d
U=> nns, (1) =E )
V=> nmns, ) =F ()
i=
In case of using PLS, two directions amongst u; and v; are obtained as given below:
{u;,vi} = argmax Cov(l_]Tu, I7Tv) 6)
uTu=vTv=1
{u;,v;} = argmax u’d,v, fori=1,2,3, ...d a=1 7
uTu=vTv=1

They are integrated into single matrix and resultant vector was gained with X3 x K dimension. The fused
vector can be denoted as #7g () . Then, they are fed into the ELM model to classify them. It can be formulated
as follows. The structure of ELM is shown in Fig. 3. Consider L hidden layer nodes, the activation function
g(x) can be denoted as follows [19]:

L
> Bigiw) =
i=1

T =0 ©

ﬁig(ui~bl_j + Bi) (8)

M=

j=1

where L signifies hidden layer, f; indicates output weight vector, u; represents input weight vector
approaching hidden layer, B; implies offset value, /' denotes output hidden layer node, u;.u; represents
inner product of u;, and O implies predicted outcome. Eq. (19) can be rewritten as follows:

BELM = arg min || fTH — Op)|| (10)
B

For enhancing the stableness of the ELM model, the minimization function can be provided using
Eq. (11):

1 R
min [|B] + 5 ¢ Z el st BTh(u) = i — e, (11

where ¢; signifies training error, ¢; specifies equivalent labels to the samples u;, and ¢ represents penalty
variable.
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Hidden Layer

Figure 3: Structure of ELM model

2.5 Parameter Tuning

At the final stage, the SFO algorithm is utilized for effective parameter selection of the ELM model,
consequently resulting in enhanced performance. The SFO is a new nature-inspired metaheuristic
approach which is demonstrated once a set of hunting sailfish (SF) [20]. It demonstrates optimal efficacy
associated with common metaheuristic approach. In the SFO approach, it is considered as SF is candidate
solution and the place of SF in the exploration region signifies the parameter of issue. The position of i
SF from the k” searching iteration is characterized as SF;;, and the corresponding fitness is estimated by
f (SF,-J(). The sardines are also crucial contributors to the SFO method. It is regarded as school of
sardines which move from the searching region. The location of i sardine was illustrated as S;, and the
corresponding fitness was calculated by f(S;). In the SFO method, the SF possesses the optimal location
that has been selected as leading SF that affects the acceleration and manoeuvrability of sardines under
attack. Moreover, the position of injured sardine in each round is selected as an optimal location for
cooperative hunting in SF. The algorithm aims at avoiding beforehand removal solution. injured sardines
and Elite SF are Y, denoted in the following equation:

lezewSp = Yellitesp - )\i X (random(O, 1) X ( L P e S) - Ycl’urrentsp> (12)
whereas Y7, indicates the existing location of SF and arbitrary (0, 1) denotes the random value ranges

within [0-1].
The parameter )\; describes the coefficient from the i iteration and values are given by:
Ai =2 x rand(0,1) x SD — SD (13)

In which SD represents the sardine density that indicates the quantity of sardines in each iteration. The
parameter SD is given by:

N,
SD=1- <L> (14)
Nsr + Ns

Here Ngr and Ny signifies the quantity of SF and sardines. At first, the hunt, SF is energetic, in addition,
sardines aren’t injured or tired. The sardines are quickly escaped. However, with nonstop hunting, the
strength of SF attack was reduced gradually. Meanwhile, the sardines are tired, and also the alertness of
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the position of SF is minimized. Therefore, the outcomes, the sardines are hunted. As per the algorithmic
process, a novel location of sardine Y, denoted in the following:

news

news elitesr ~— 1o

Y!, = random(0,1) x (Yi Y +ATP> 15)

Now Y Oilds denotes the older location of sardine and arbitrary (0, 1) characterizes the arbitrary value
ranges within [0—1]. ATP indicates the SF attack power. The parameter A7P is evaluated by:

ATP =B x (1 — (2 x Itr x &) (16)

whereas B and ¢ indicate the coefficient that is employed for minimizing the attack power within [B-0] and /zr
indicates the amount of iterations. While the attack power of SF minimized the hunting time, this decreases
the convergence rate. When ATP is high, that is, greater than 0.5, the location of each sardine is upgraded. On
the other hand, « sardines with f§ variable upgrade their locations. The amount of sardines upgraded the
location is described by:

o = Ng x ATP (17)

Then, Ng shows the amount of sardines in each iteration. The amount of parameters of the sardines
upgraded the place can be accomplished by:

B =d; x ATP (18)

In which d; characterizes the amount of parameters from the i"" iteration. When the sardine was hunted,
the fitness is greater than the SF. Here, the location of SF Y. is upgraded by newest location of hunted
sardine Y{ for hunting novel sardine. It can be expressed by:

Yo = Y if £(Si) <f(SF)) (19)

For adjusting the ELM parameters, the SFO algorithm computes a fitness function for accomplishing
maximum classifier results. It derives a fitness function using the error rate and the fitness value should
be as low as possible. It can be defined as follows.

b isclassified l
fitness(x;) = ClassifierErrorRate(x;) = number of misclassified samples

100 20
Total number of samples - (20)

3 Results and Discussion

In this section, the experimental validation of the CADOC-SFOFC model is performed using benchmark
dataset from Kaggle repository. A set of four confusion matrices achieved by the CADOC-SFOFC model on
distinct sizes of training/testing (TR/TS) data is illustrated in Fig. 4. With TR/TS data of 90:10, the CADOC-
SFOFC model has recognized 4 instances under cancer and 9 instances under non-cancer classes.

At the same time, with TR/TS data of 80:20, the CADOC-SFOFC model has recognized 18 instances
under cancer and 8 instances under non-cancer classes. Followed by, with TR/TS data of 70:30, the CADOC-
SFOFC model has recognized 25 instances under cancer and 13 instances under non-cancer classes. Lastly,
with TR/TS data of 60:40, the CADOC-SFOFC model has recognized 38 instances under cancer and
14 instances under non-cancer classes.

Tab. 1 and Fig. 5 exhibits detailed OC classification outcomes of the CADOC-SFOFC model on distinct
sizes of TR/TS data. The experimental outcomes implied that the CADOC-SFOFC model has gained
effectual outcomes on various TR/TS data.
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Figure 4: Confusion matrices of CADOC-SFOFC model
Table 1: Overall classification outcomes of CADOC-SFOFC model
Class Labels Accuracy Precision Recall Specificity F-Score
Training/Testing (90:10)
Cancer 92.86 100.00 80.00 100.00 88.89
Non-Cancer 92.86 90.00 100.00 80.00 94.74
Average 92.86 95.00 90.00 90.00 91.81
Training/Testing (80:20)
Cancer 96.30 94.74 100.00 88.89 97.30
Non-Cancer 96.30 100.00 88.89 100.00 94.12
Average 96.30 97.37 94.44 94.44 95.71

(Continued)
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Table 1 (continued)

Class Labels Accuracy Precision Recall Specificity F-Score
Training/Testing (70:30)
Cancer 95.00 100.00 92.59 100.00 96.15
Non-Cancer 95.00 86.67 100.00 92.59 92.86
Average 95.00 93.33 96.30 96.30 94.51
Training/Testing (60:40)
Cancer 98.11 97.44 100.00 93.33 98.70
Non-Cancer 98.11 100.00 93.33 100.00 96.55
Average 98.11 98.72 96.67 96.67 97.63
Training / Testing (90:10) Training / Testing (80:20)
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Figure 5: OC classification of CADOC-SFOFC model under distinct TR/TS data
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For instance, with TR/TS of 90:10, the CADOC-SFOFC model has classified cancer images with
acccuy, precy, recaj, specy, and Fy.,. of 92.86%, 100%, 80%, 100% and 88.89% respectively. In line
with, under TR/TS of 80:20, the CADOC-SFOFC model has classified cancer images with acccu,, prec,,
recay, specy, and F.or of 96.30%, 94.74%, 100%, 88.% and 88.89% respectively. Moreover, with TR/TS
of 70:30, the CADOC-SFOFC model has classified cancer images with acccu,, prec,, reca;, spec,, and
Foore of 95%, 100%, 92.59%, 100% and 96.15% respectively. At last, with TR/TS of 60:40, the
CADOC-SFOFC model has classified cancer images with acccu,, prec,, reca;, spec,, and Fy.,.. of
98.11%, 97.44%, 100%, 93.33% and 98.70% respectively. Moreover, with TR/TS of 80:20, the CADOC-
SFOFC model has provided average acccu,, prec,, reca;, specy,, and Fy.,.. of 96.30%, 97.37%, 94.44%,
94.44% and 95.71% respectively. Furthermore, with TR/TS of 70:30, the CADOC-SFOFC model has
provided average acccu,, prec,, reca;, spec,, and Fy.,.. of 95%, 93.33%, 96.30%, 96.30% and 95.71%
respectively.

Fig. 6 demonstrates a clear training and validation accuracies of the CADOC-SFOFC model on test
dataset. The training and validation accuracies are measured under varying numbers of epochs. It is
exhibited that the CADOC-SFOFC model has gained increased values of training and validation accuracies.

Training and Validation Accuracy

0.95

0.90

0.85

0.80

Accuracy

0.75 4

0.70
—— Training
—— Validation

T T T T T
0 5 10 15 20 25

Epochs

Figure 6: Training and validation accuracies of CADOC-SFOFC model

Fig. 7 validates the training and validation losses of the CADOC-SFOFC model on test dataset. The
training and validation losses can be determined with a rising number of epochs. It is displayed that the
CADOC-SFOFC model has extended reduced values of training and validation losses.

Fig. 8 highlights the ROC curves of the CADOC-SFOFC model obtained under distinct sizes of TR/TS
data. The figures reported that the CADOC-SFOFC model has accomplished effectual OC classification
under two classes namely cancer and non-cancer. It is also noticed that the CADOC-SFOFC model has
gained maximum ROC values under two classes.

Fig. 9 demonstrates the precision-recall curves of the CADOC-SFOFC model attained under dissimilar
sizes of TR/TS data. The results represented that the CADOC-SFOFC model has reached maximum OC
classification under two classes namely cancer and non-cancer. It is observed that the CADOC-SFOFC
model has showcased improved precision-recall values under two classes.
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Figure 7: Training and validation losses of CADOC-SFOFC model
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Figure 8: Precision-recall curves of CADOC-SFOFC model under distinct TR/TS data
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Figure 9: ROC of CADOC-SFOFC model under distinct TR/TS data

For assessing the enhanced outcomes of the CADOC-SFOFC model, a comparison study with recent
models [21-23] is made in Tab. 2 and Fig. 10. The results implied that the ADCO-DL, Inception-v4, and
DenseNet models have reached lower OC classification results. Followed by, the artificial neural network
(ANN)-support vector machine (SVM) and C-Net models have tried to showcase moderately improved
classification outcomes. Though the random forest (RF) model has accomplished reasonable OC
classification results with acccu,, prec,, reca;, and F.or of 97.09%, 92.34%, 93.86%, and 94.09%, the
CADOC-SFOFC model has surpassed existing methodologies with maximum acccu,, prec,, reca;, and
Focore 0f 98.11%, 98.72%, 96.67%, and 97.63% respectively.

Table 2: Comparison study of CADOC-SFOFC model with existing models

Methods Accuracy Precision Recall F-Score
ADCOL-DL 85.69 91.32 90.92 85.90
Inception-v4 Model 87.85 92.36 85.78 85.69
DenseNet Model 88.78 91.40 83.69 83.98
RF Model 97.09 92.34 93.86 94.09
ANN-SVM Model 95.12 93.59 92.62 90.97
C-Net Model 96.89 90.41 90.18 94.67
CADOC-SFOFC 98.11 98.72 96.67 97.63
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Figure 10: Comparative analysis of CADOC-SFOFC model with recent approaches

The enhanced performance of the CADOC-SFOFC model is due to the inclusion of SFO based
parameter optimization process. After investigating the above mentioned results and discussion, it can be
ensured that the CADOC-SFOFC model has the ability to outperform the other methods with improved
OC classification outcomes.

4 Conclusion

In this study, a novel CADOC-SFOFC model has been devised to determine the existence of OC on
medical images. Initially, the CADOC-SFOFC model carried out the fusion based feature extraction
procedure using VGGNet-16 and ResNet model. In addition, feature vectors are fused and passed into the
ELM model for classification process. Finally, the SFO algorithm is utilized for effective parameter
selection of the ELM model, consequently resulting in enhanced performance. The experimental analysis
of the CADOC-SFOFC model was tested on Kaggle dataset and the results reported the betterment of the
CADOC-SFOFC model over the compared methods. Therefore, the CADOC-SFOFC model has
maximum potential as an inexpensive and non-invasive tool which supports screening process and
enhances the detection efficiency. In future, the detection efficiency can be improvised by the design of
advanced DL based classifier models.
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