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Abstract: Cyberattack detection has become an important research domain owing
to increasing number of cybercrimes in recent years. Both Machine Learning
(ML) and Deep Learning (DL) classification models are useful in effective iden-
tification and classification of cyberattacks. In addition, the involvement of hyper
parameters in DL models has a significantly influence upon the overall perfor-
mance of the classification models. In this background, the current study develops
Intelligent Cybersecurity Classification using Chaos Game Optimization with
Deep Learning (ICC-CGODL) Model. The goal of the proposed ICC-CGODL
model is to recognize and categorize different kinds of attacks made upon data.
Besides, ICC-CGODL model primarily performs min-max normalization process
to normalize the data into uniform format. In addition, Bidirectional Gated Recur-
rent Unit (BiGRU) model is utilized for detection and classification of cyberat-
tacks. Moreover, CGO algorithm is also exploited to adjust the hyper
parameters involved in BiGRU model which is the novelty of current work. A
wide-range of simulation analysis was conducted on benchmark dataset and the
results obtained confirmed the significant performance of ICC-CGODL technique
than the recent approaches.

Keywords: Deep learning; chaos game optimization; cybersecurity; chaos game
optimization; cyberattack

1 Introduction

Cybercrimes are increasing at an alarming rate on a daily basis which brings a disturbing directive for
cybersecurity experts and specialists [1]. Hence, sophisticated board instruments that hold the capacity to
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recognize and forestall such occurrences in a convenient and smart manner are desperately required. The
general public safety of a nation depends in this scenario. In this paper, the focus is shed upon brilliant
cybersecurity frameworks or strategies to work in a smart way so as to secure the board. Normally,
cybersecurity is described as an assortment of innovations and cycles that is intended to safeguard the
PCs, organizations, projects, and information against malicious exercises, assaults, hurt, or unapproved
access [2]. As per the existing requirements, ordinary security arrangements like antivirus, firewalls, client
validation, encryption, and so forth may not be successful [3,4]. Information-driven learning strategies
have developed in a quick manner in recent years to ensure cybersecurity. On a daily basis, many new
malware (Malicious Software) assaults occur upon PCs and networks while most of the attacks are
addressed or found at a later time while some are left out. In the past two decades, AI approaches are
adjusted to the space of malware recognition/characterization which is endeavored towards
intercommunication for better treatment of malware attacks as hard as zero-day attacks [5]. Lately, deep
learning approaches are also involved to overcome the attacks done by malware variants [6].

Deep Learning (DL) systems turned into a functioning field to identify the intrusions that occurred in
network as a part of cybersecurity [7]. While numerous studies have been conducted in this regard, there
has been no studies conducted upon deep learning models, particularly on real-time datasets for intrusion
location, in a controlled setting. In today’s digital world, cybersecurity is a basic issue to handle [8,9].
IDS examines the network traffic or a particular PC environment to identify any malicious activity [10].
The fast development in Artificial Intelligence (AI) has brought about significant advancements in devices
that include design acknowledgment and unique identification.

Ullah et al. [11] presented an integrated DL technique for detection of cyberattacks in IoT. TensorFlow
DNN was presented in this study to identify the pirated software utilizing plagiarism source code. Both
tokenization and weighting feature approaches were utilized to filter the noisy data. Further, the important
aspects of all the tokens were focused in terms of source code plagiarism. Afterward, DL technique was
utilized to detect the source code plagiarism. The authors in [12] designed an adaptive DL technique to
achieve cybersecurity in which the authors enabled the recognition of attacks from social IoT. The
performance of deep learning method is related to typical ML technique, and distributed attack
recognition was performed against centralized recognition model.

Mihoub et al. [13] presented a novel structure integrating two elements such as DoS/DDoS detection and
DoS/DDoS mitigation. The detection element offers fine-granularity recognition, as it classifies particular
kind of attacks, and utilizes packet type from the attacks. In [14], advanced ML approaches were
employed to detect the cyberattacks for conducting the paradigm and verification. In this study, unique
test conditions were followed on several defects from GIS to demonstrate the efficiency of the presented
IoT structure. The partial discharge pulse sequence features were removed from all the defects to
represent the input to IoT structure.

The current study develops Intelligent Cybersecurity Classification using Chaos Game Optimization
with Deep Learning (ICC-CGODL) model. The goal of the proposed ICC-CGODL model is to recognize
and categorize different kinds of attacks involved in the network. Besides, ICC-CGODL model primarily
performs min-max normalization process to normalize the data into a uniform format. In addition,
Bidirectional Gated Recurrent Unit (BiGRU) model is also utilized for detection and classification of
cyberattacks. Moreover, CGO algorithm is exploited to select the hyper parameters involved in BiGRU
model. A wide-range of simulation analysis was conducted on benchmark dataset and the results were
analyzed under different aspects.
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2 The Proposed ICC-CGODL Model

In this study, a new ICC-CGODL technique has been developed to accomplish cybersecurity. The
presented ICC-CGODL model primarily employs min-max normalization process to normalize the data
into a uniform format. Followed by, BiGRU model is utilized for detection and classification of
cyberattacks. Finally, CGO algorithm is exploited to choose the hyper parameters involved in BiGRU
model. The workflow of the presented model is given in Fig. 1.

2.1 Data Pre-Processing

Primarily, the presented ICC-CGODL model employs min-max normalization process to normalize the
data into a uniform format. In ML method, data normalization is usually applied to accomplish efficient
presentation. The feature value varies from small to large. Thus, the normalization procedure is utilized to
scale up the feature to unit variance as given below.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i¼1
ðxi � �xÞ2

vuut (1)

2.2 BiGRU Classification

After pre-processing, BiGRUmodel is utilized for detection and classification of cyberattacks. GRU-NN
is a fundamental procedure in LSTM which is also an RNN process. GRU integrates input and forgetting
gates into upgrading gates and is different from LSTM [15].

The structure of GRUmodel is given in Fig. 2. Let the count of hidden units be h, the small batch input is
offered a time step of t being Xt 2 Rn�d (the count of samples are n, the count of inputs has d), and the hidden
layer (HL) at earlier time step t1 isHt�1 2 Rn�h. The outcome HL h of single GRU at existing time step t is as
follows

Figure 1: Working process of ICC-CGODL model
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Rt ¼ rðXtWxr þ Ht�1Whr þ brÞ (2)

Zt ¼ rðXtWxz þ Ht�1Whz þ bzÞ (3)

�H ¼ tan hðXtWxh þ ðRtE � Ht�1ÞWhh þ bhÞ (4)

Ht ¼ ð1� ZtÞ � Ht�1 þ ZtE � ~Ht (5)

In which r signifies the sigmoid activation function, i.e., rðxÞ ¼ 1=1þ e�x, br and bz demonstrate the
bias of reset and update gates; � represents the matrix multiplication of two elements, Wxr; Whz; Whr, and
WXZ define the weights of connecting input layer and reset gate, HL and update gate, HL and reset gate, an
input layer and update gate correspondingly;Ht stands for candidate HL of the existing time step t; and Tanh
signifies the hyperbolic tangent activation function, and the formula is as follows.

tanh ðxÞ ¼ 1� 2

1þ e�2x
(6)

When the parameter is forecasted, the value of existing time is approximately linked with the value of
previous time and the value of next time. However, GRU is one-way NN infrastructure, and so Bi-GRU is
employed. Bi-GRU is bi-directional NN which gathers forward- and backward-propagating GRU units. The

existing HL state Ht of Bi-GRU is determined as existing input Xt, the output ~H of forwarded HL, and the

output Ht
 �

of backward HL at time step t � 1; then [16],

H
!

t ¼ GRUðXt; H
!

t�1Þ (7)

H
 

t ¼ GRUðXt; H
 

t�1Þ (8)

Ht ¼ wtH
!

t þ vtH
 

t þ bt (9)

whereas GRU (.) function defines that GRU network is employed to conduct nonlinear change; wt and vt
respectively are the weights of state H

!
t of forwarding HL and the state H

 
t of backward HL which is

equal to Bi-GRU at time t, and bt signifies bias.

2.3 CGO Based Hyperparameter Optimization

Lastly, CGO algorithm is exploited to choose the hyper parameters involved in BiGRU model [17,18].
CGO approach is inspired by the basic conception of chaos theory. The basic conception of chaos game and

Figure 2: Structure of GRU model
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fractal elements are utilized to express a scientific model for the presented method. Due to different natural
evolution procedures, a population of solution is preserved i.e., proposed by a random modification and
selection procedure [17]. It is expressed in the following equation.

S ¼
S1
:
Sn
¼

S11
S12

S1i
S1n

S21
S22
..
.

S2i
S2n

Sj1
Sj2

Sji
Sjn

� � �

. .
.

� � �

Sd1

..

.

Sdn

2
666664

3
777775

(10)

where i ¼ 1; 2 . . . n: J ¼ 1; 2 . . . : d: n represents the sum of eligible seeds in Sierpinski triangle, and d
signifies the dimensions. The initial location for eligible seeds is subjectively described in the searching
region.

Sj1 ð0Þ ¼ Sj1;min þ RðSj1; min � Sj1; maxÞ (11)

While R denotes the subjective value within [0, 1]. The initial seeds is presented herewith.

Seed1i ¼ Si þ xi�ðyi�Global best � zi�Mean ValueÞ (12)

Now xi; yi; zi indicate a subjective amount of 1 or 0 in probability method of rolling a dice. The
presentation of the described method for the succeeding seed is given as follows.

Seed2i ¼ Global best þ xi�ðyi�Si � zi�Mean ValueÞ (13)

A presentation of 3rd and 4th seeds can be described as follows

Seed3i ¼ Mean Valueþ xi�ðyi�Si � zi�Global bestÞ (14)

Seed4i ¼ SiðSki ¼ Ski þ RandÞ (15)

While k represents an arbitrary number within [0, 1]. The CGO method for xi that controls the motion
limitation of the seed [18].

xi ¼
2�rand

ð��randÞ þ 1
ð��randÞþ � �

8<
: (16)

In which Rand indicates a subjective quantity within [0, 1]. Now, � & � denotes an arbitrary value
within [0, 1].

3 Experimental Validation

The proposed ICC-CGODL model was experimentally validated using NSL-KDD Dataset (https://
www.unb.ca/cic/datasets/nsl.html) which comprises of different classes (Dos, R2l, Probe, U2r, and
Normal) and a total of 41 attributes. The proposed model was simulated in MATLAB and the results are
discussed herewith.

Fig. 3 shows a set of confusion matrices generated by the proposed ICC-CGODL model on distinct
training/testing (TR/TS) data sizes. On TR/TS of 90:10, the proposed ICC-CGODL model recognized
4633 samples as DoS, 96 samples as R2l, 1155 samples as Probe, 0 samples as U2r, and 6619 samples as
Normal. Also, on TR/TS of 80:20, the presented ICC-CGODL model classified 9064 samples as DoS,
149 samples as R2l, 2329 samples as Probe, 1 sample as U2r, and 13240 samples as Normal. Moreover,
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on TR/TS of 60:40, ICC-CGODL model categorized 18294 samples under DoS, 377 samples under R2l,
4548 samples under Probe, 15 samples under U2r, and 26792 samples under Normal.

Tab. 1 and Fig. 4 report the classification results accomplished by ICC-CGODL model on TR/TS of
90:10 dataset. The results imply that ICC-CGODL model recognized DoS class with accuy, precn, recal,
and specy values such as 99.47%, 99.19%, 99.38%, and 99.52% respectively. In addition, the proposed
ICC-CGODL model recognized R2l class with accuy, precn, recal, and specy values such as 99.84%,
85.71%, 96%, and 99.87% respectively. Simultaneously, the ICC-CGODL model recognized Probe class
with accuy, precn, recal, and specy values such as 99.69%, 98.38%, 98.30%, and 99.83% respectively.
Concurrently, the ICC-CGODL model recognized Normal class with accuy, precn, recal, and specy values
such as 99.51%, 99.68%, 99.38%, and 99.65% respectively.

Figure 3: Confusion matrices of ICC-CGODL model

976 CSSE, 2023, vol.45, no.1



Tab. 2 and Fig. 5 examine the classification results accomplished by ICC-CGODL model on TR/TS of
80:20 dataset. The results infer that the proposed ICC-CGODL model accepted DoS class with accuy, precn,
recal, and specy values such as 99.01%, 98.56%, 98.73%, and 99.18% respectively. Eventually, the ICC-
CGODL model recognized R2l class with accuy, precn, recal, and specy values such as 99.66%, 80.98%,
74.87%, and 99.86% respectively. Concurrently, ICC-CGODL model recognized Probe class with accuy,
precn, recal, and specy values such as 99.34%, 95.76%, 97.37%, and 99.55% respectively. Meanwhile,
the ICC-CGODL model recognized Normal class with accuy, precn, recal, and specy values such as
98.76%, 98.95%, 98.72%, and 98.81% respectively.

Tab. 3 and Fig. 6 portray the classification results achieved by ICC-CGODL model on TR/TS of
70:30 dataset. The results reveal that ICC-CGODL model accepted DoS class with accuy, precn, recal,
and specy values such as 98.68%, 98.13%, 98.41%, and 98.84% respectively. In line with, the ICC-
CGODL model recognized R2l class with accuy, precn, recal, and specy values such as 99.68%, 78.04%,
83.76%, and 99.81% respectively. Next, ICC-CGODL model recognized Probe class with accuy, precn,
recal, and specy values such as 99.25%, 95.31%, 96.31%, and 99.54% respectively. Afterward, the

Table 1: Classification results of ICC-CGODL model on TR/TS of 90:10

Training/Testing (90:10)

Class labels Accuracy Precision Recall Specificity

DoS 99.47 99.19 99.38 99.52

R2I 99.84 85.71 96.00 99.87

Probe 99.69 98.38 98.30 99.83

U2r 99.98 – – 99.99

Normal 99.51 99.68 99.38 99.65

Average 99.70 76.59 78.61 99.77

Figure 4: Cybersecurity results of ICC-CGODL model on TR/TS of 90:10
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proposed ICC-CGODL model recognized Normal class with accuy, precn, recal, and specy values such as
98.96%, 99.22%, 98.78%, and 99.15% respectively.

Table 2: Classification results of ICC-CGODL model on TR/TS of 80:20

Training/Testing (80:20)

Class labels Accuracy Precision Recall Specificity

DoS 99.01 98.56 98.73 99.18

R2I 99.66 80.98 74.87 99.86

Probe 99.34 95.76 97.37 99.55

U2r 99.95 33.33 9.09 99.99

Normal 98.76 98.95 98.72 98.81

Average 99.35 81.52 75.75 99.48

Figure 5: Cybersecurity results of ICC-CGODL model on TR/TS of 80:20

Table 3: Classification results of ICC-CGODL model on TR/TS of 70:30

Training/Testing (70:30)

Class labels Accuracy Precision Recall Specificity

DoS 98.68 98.13 98.41 98.84

R2I 99.68 78.04 83.76 99.81

Probe 99.25 95.31 96.31 99.54

U2r 99.97 – – 100.00

Normal 98.96 99.22 98.78 99.15

Average 99.31 74.14 75.45 99.47
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Tab. 4 and Fig. 7 portray a detailed overview on the classification results of ICC-CGODL model on TR/
TS of 80:20 dataset. The results infer that the proposed ICC-CGODL model established DoS class with
accuy, precn, recal, and specy values such as 99.54%, 99.33%, 99.42%, and 99.61% respectively.
Eventually, ICC-CGODL model recognized R2l class with accuy, precn, recal, and specy such as 99.88%,
89.20%, 96.76%, and 99.91% respectively. Concurrently, the ICC-CGODL model recognized Probe class
with accuy, precn, recal, and specy values namely, 99.72%, 98.55%, 98.42%, and 99.85%.

Fig. 8 demonstrates the training/validation accuracy values achieved by ICC-CGODL approach on test
dataset. The figure implies that ICC-CGODL approach produced the maximum training/validation
accuracies on test data with an increase in epoch count.

Fig. 9 establishes the training/validation losses reported by ICC-CGODL approach on test dataset. The
outcome infers that the proposed ICC-CGODL approach reached the least training/validation losses on test
data with an increase in epoch count.

Figure 6: Cybersecurity results of ICC-CGODL model on TR/TS of 70:30

Table 4: Classification results of ICC-CGODL model on TR/TS of 60:10

Training/Testing (60:40)

Class labels Accuracy Precision Recall Specificity

DoS 99.54 99.33 99.42 99.61

R2I 99.88 89.20 96.76 99.91

Probe 99.72 98.55 98.42 99.85

U2r 99.99 100.00 68.18 100.00

Normal 99.47 99.57 99.43 99.51

Average 99.72 97.33 92.44 99.78
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Figure 7: Cybersecurity results of ICC-CGODL model on TR/TS of 60:40

Figure 8: Training/validation accuracies of ICC-CGODL model
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Finally, a brief comparative study was conducted between ICC-CGODL model against recent models
and the results are shown in Tab. 5 and Fig. 10. The experimental results indicate that the proposed ICC-
CGODL model accomplished the maximum accuy of 99.72% whereas RF, DT, SVM, NB, and KNN
models attained less accuracy values such as 99.47%, 99.80%, 89.18%, 92.12%, and 98.57%. These
values confirm that the proposed ICC-CGODL model outperformed existing methods.

Figure 9: Training/validation losses of ICC-CGODL model

Table 5: Comparative classification results of ICC-CGODL model

Methods Accuracy

ICC-CGODL 99.72

Random forest model 99.47

Decision tree model 99.80

SVM model 89.18

Naïve bayes model 92.12

KNN model 98.57
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4 Conclusion

In this study, a new ICC-CGODL technique has been developed to accomplish cybersecurity. The
presented ICC-CGODL model primarily employs min-max normalization process to normalize the data
into a uniform format. Followed by, BiGRU model is utilized for cyberattack detection and classification.
Finally, CGO algorithm is exploited to choose the hyper parameters involved in BiGRU model. A wide-
range of simulation analysis was conducted on benchmark dataset and the results confirmed the
significant performance of ICC-CGODL technique compared to recent approaches. Therefore, the
presented ICC-CGODL technique can be employed for cyberattack detection and classification. In future,
feature selection approaches can be included to decrease the computational complexity.
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