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Abstract: This research focuses on the home health care optimization problem
that involves staff routing and scheduling problems. The considered problem is
an extension of multiple travelling salesman problem. It consists of finding the
shortest path for a set of caregivers visiting a set of patients at their homes in order
to perform various tasks during a given horizon. Thus, a mixed-integer linear pro-
gramming model is proposed to minimize the overall service time performed by
all caregivers while respecting the workload balancing constraint. Nevertheless,
when the time horizon become large, practical-sized instances become very diffi-
cult to solve in a reasonable computational time. Therefore, a new Learning
Genetic Algorithm for mTSP (LGA-mTSP) is proposed to solve the problem.
LGA-mTSP is composed of a new genetic algorithm for mTSP, combined with
a learning approach, called learning curves. Learning refers to that caregivers’
productivity increases as they gain more experience. Learning curves approach
is considered as a way to save time and costs. Simulation results show the effi-
ciency of the proposed approach and the impact of learning curve strategy to
reduce service times.

Keywords: Home healthcare; scheduling and routing problem; optimization;
multiple travelling salesman problem; learning curves; genetic algorithm

1 Introduction

During the last decades, many studies have focused on healthcare management [1–4], etc. The main
objective of these works is to provide new models and approaches to increase the productivity and the
efficiency of healthcare system, which is considered as a very expensive sector. In recent years, Home
Health Care (HHC) is gaining more importance within the European healthcare system. It offers an
alternative to traditional hospitalization. HHC can be considered as a way to reduce healthcare system
expenditure, while ensuring better quality of service [5].

Home Health Care (HHC) is defined as a set of workers serving the patients at their homes by providing
the required services (e.g., nursing, cleaning, drug delivery, etc.). The major challenge for HHC companies is
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to improve the quality of services offered to patients, in particular the quality of care, the competence of the
medical staff, the management of intervention and punctuality, etc. The main objectives of HHC Companies
are to minimize costs and maximize patient satisfaction. This alternative is complex due to the integration of
the patient’s home in the supply chain of care and the uncertainties related to the care process (i.e., demand,
durations of care and travel time). HHC decision-makers are making complex decisions that include
optimization of staff travel and assignment of patients to workers by considering several constraints, such
as, workload balancing, arriving on time and patient preferences, etc. The constraints may vary depending
on the type of service to be performed or the pathology to be treated. These optimization problems are
known in the literature as routing and scheduling problems. Transportation cost is the biggest operating
cost for the HHC companies. Thus, it is very important to optimize traveling routes for the medical staff.
The main resource that influences operating costs is workforce. Therefore, a good staff management
strategy should be implemented (Ben Houria et al., 2016). In HHC, a new caregiver is usually going
through a learning phase. The learning process can vary from a couple of weeks to several months. The
beginner caregiver will eventually obtain all the skills necessary for independent performance. This
approach is named in literature, “Learning curves” (LC) or Experience Curves. Human learning is
considered as one of the most important factors that affect workforce capacity. The impacts of employee
learning on the scheduling problem has becoming very recently a research topic. Several researches have
applied the learning curve strategy to the industrial field and more precisely to scheduling problems [6–
10]. Learning curve theory is applied to cost and time prediction of a future task, assuming repetitive
work with the same working conditions [11]. Assuming that a set of caregivers daily visit a set of
patients at their homes and perform the same tasks over a given horizon. When the caregiver repeats the
same task, he becomes more experienced and so more productive [12]. The increase in productivity is
often referred to ‘‘learning”. Therefore, it influences the operating time [13]. Assuming also, that each
caregiver has a known LC which determines the worker’s productivity. The main objective of this paper
is to take advantage of the learning curve that can influence the service time. In this context, a new
mixed-integer programming model (MIP) is proposed to deal with the HHC routing and scheduling
problem (HHCRSP). This class of problem has a lot of similarities with the multiple Travelling Salesman
Problem (mTSP) that is met several industrial fields such as transportation, logistics, delivery and many
others social applications [14]. Solving a mTSP consists of finding the shortest path to travel through a
given number of cities [15]. The proposed MIP model aims to minimize the overall service times for all
caregivers over a given time horizon. The problem is considered as NP-Hard. However, exact approaches
cannot solve the problem in reasonable run-time due to the problem complexity and input data size.
Thus, approximate solutions using heuristic and metaheuristic methods are proposed to find good
solutions to the problem. The genetic algorithm (GA) is one of the most popular and suitable algorithms
for scheduling problems [16–18]. In healthcare, several works prove the efficiency of GA for scheduling
problem such as [16–23]. In this paper, a new learning genetic algorithm for mTSP (LGA-mTSP)
approach is proposed to solve the HHCRSP when a long term planning horizon is considered. The
solution approach is composed of a new genetic algorithm, designed for mTSP (GA-mTSP) combined
with the LC approach.

This work is organized as follows: Section 2 summarizes the recent works related to HHC routing and
scheduling problems and describes briefly the learning curves theory. The elaborated mathematical model
and the proposed solution approach are presented in Section 3 and Section 4 respectively. Experimental
results are presented and discussed in Section 5, conclusion is given in Section 6.

2 Literature Review

During this decade, the healthcare sector is becoming one of the largest economic sectors in Europe and
North America. Due to the problem of increasing global aging, the HHC industry is developing very rapidly
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[24]. HHC companies aim to reduce travel and service costs and satisfy their patients by improving the
quality of services. The HHC’s problematic arouse the curiosity of several researchers in the field of
industrial engineering and operation research [25]. These problematics involve assigning workers (e.g.,
nurses, doctors, etc.) to the patients’ homes and finding the shortest route for those workers. In the
literature, these problems are called, Home Health Care Routing and Scheduling Problems (HHCRSPs).
[24] described the HHCRSP as a set of patients who need care services which should be provided by care
workers. [25,26] defined the HHCRSP as two sub-problems which are the personnel scheduling and the
routing problem, and they consider it as an extension of well-known problem: Vehicle Routing Problem
(VRP). The VRP can be defined as a problem of finding the optimal routes for deliveries, who travel with
their vehicles from one or several depots to a number of cities or customers, while satisfying some
constraints and giving minimal total cost [27]. VRP was proposed by Dantzig and Ramser in 1959, it is
described as a generalized problem of TSP. [28–30] have defined the TSP as a set of cities to be visited
by a salesman, it aims to find the optimal path of visiting all the cities and returning to the starting point
and minimize the travel cost (or travel distance). The TSP is classified as symmetric Travelling Salesman
Problem (sTSP), when the Euclidean distance between two nodes a; b is the same in the two ways
(dab ¼ dba); otherwise, it is called asymmetric Travelling Salesman Problem (aTSP). It is also called multi
Travelling Salesman Problem (mTSP), when it consists of finding the shortest routes for m salesmen
(m>1); and mTSP with Time Windows (mTSPTW), when some nodes have to be visited in a particular
time periods. The mTSP can be considered as a relaxation of the VRP, without vehicle capacity
restrictions [29]. Many types of personnel scheduling problems have been tackled in the literature.
Examples of these types include nurse visiting patients at home and technician carrying out repairs at
customers’ locations, etc. [31]. Various optimization criteria are considered in the HHCRSP literature.
The most of them focused on minimization problems, especially on minimizing travel and service time
(TST). Other optimization criteria were considered such as workload balancing (e.g., number of assigned
patients, total travelled distance, etc.), and waiting time referring to late arrival at patients’ homes (e.g.,
delay due to road traffic, weather conditions, etc.). Among the maximization problems, there are many
works which focused on patients satisfactions, such as [32,33]. They maximize the quality of service
(e.g., arrive on time, visit time preference, etc.). Several constraints are considered such as maximal
workload (Cmax) that defines the workload to not be exceeded (e.g., maximal number of assigned
patients, maximal number of working days, maximal working time, etc.). Time Window is one of the
most considered constraints, which defines an interval of time to be respected (e.g., arrive at the patient’s
home within a specific time, etc.) and other specific constraints such as the break lunch. [12–31] and [34–
36] refer to the staff scheduling and routing problems as Workforce Scheduling and Routing Problems
(WSRP). The majority of works related to HHCRSP focused on nurse scheduling. [37] propose a linear
model for nurse scheduling that aims to minimize the travel cost and maximize the satisfaction of
patients. The treated problem is an extension of mTSP, solved by Cplex1. [33] design the nursing routing
problem by a mixed integer linear model (MILP) aiming to maximize the number of visits. [38] propose
a MILP model to optimize the travel time for a HHC staff, solved by Cplex solver. [34] propose a VRP
model with time window (VRPTW) for the HHCRSP where travel and service times uncertainties are
considered. [39] propose also an uncertainty approach to optimize service time for HHCRSP. They solve
their model by the General Algebraic Modeling System (GAMS)2. [31] suggest a new extension of
integer programming model for the WSRP. They solved it by Gurobi Solver3. Scheduling problem
becomes NP-hard since the number of tasks is more than the normal number that can be processed by
exact algorithms. In this case, efficient optimization algorithms are needed. Metaheuristic methods aim to
solve difficult optimization problems by providing approximate solutions in a reasonable run-time. In
recent years, many metaheuristic algorithms are used to solve scheduling problems in various real-world

1Cplex Solver: https://www.ibm.com/fr-fr/analytics/cplex-optimizer
2GAMS Solver: https://www.gams.com/optimization-solvers/
3GUROBI Solver: https://www.gurobi.com/
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applications [40,41], especially, in manufacturing, healthcare, aeronautic, transport, etc. Metaheuristics have
been proposed by several studies to solve the healthcare scheduling problems including operation room
scheduling problem, patients’ admission scheduling problem, personnel scheduling problem and surgery
scheduling problem, etc. This paper focuses on personnel scheduling problem that is well studied in the
literature and solved by a lot of metaheuristic algorithms such GA [17] [20–22], Ant Colony Optimization
(ACO) [42–45], Particle Swarm Optimization (PSO) [46–48], etc. and hybrid metaheuristic algorithms that
combine two or more algorithms to take advantage of each of them and make some improvements in term
of performance criteria such as accuracy or run-time. [49] proposed a hybridization algorithm for cloud
computing resource scheduling based on ACO and PSO. [50–53] proposed hybrid GA to solve scheduling
problems. The main objective of these works is to minimize the makespan for scheduling problems. This
work proposes a new formulation for the HHCRSP aiming to minimize the travel and service time (TST).
The considered problem is an extension of mTSP. Therefore, a hybridization method is also proposed to
solve it, combining a GA designed for mTSP with a learning approach.

The definition of learning in operation and production management is the improvement in performance
when an individual is involved in a repetitive task [9]. More the workers learn, more they become productive
and gain experience. In the literature, “learning” means the impact of experience on service times. The
improvement in service times is represented by mathematical representations. These representations are
often called Learning Curves “LC” [12]. The LC is a correlation between the learner’s performance on a
task and the time required to complete the task. The LC has proven to be an efficient tool to estimate
costs and to assign workers to tasks based on their performance [54]. The first application of LC was
reported by [13]. The use of this concept began to gain importance during the world war II, when an
accurate prediction of the time and the cost of producing military ships and combat aircraft was needed.
Since that, an extensive number of research studies have reported the use of LC in many applications.
[55] have applied the LC theory in production planning. [35] have used LC approach in the field of
manpower assignment and [12] have applied the theory of LC in Healthcare. In this work, the LC theory
is applied for the first time in a HHC domain. There are three known models of LC in the literature,
which are: the log-linear, exponential and hyperbolic models. [54] provide a literature review of learning
curve models and their applications. According to [55–58], the log-linear model is the most used
compared to other LC models for predicting production rate in repetitive tasks while his mathematical
formulation is not complex. The original formulation of the learning curve, referred to the Wright’s Log
model [13]. Many works recommended the Wright’s model and considered it as the best suitable model
to handle repetitive work [59,60]. This model is applied in several domains, such as project scheduling
[61,62]. Inspired by these works, the wright’s log linear model is considered in this paper as the most
adequate one to the considered problem.

3 Problem Description and Mathematical Formulation

This section addresses a HHCRSP and presents the proposed mathematical formulation. The considered
problem is an extension of mTSP that can be defined as follows. Given a directed graph G = (P, A) with a set
of nodes P = {0, 1,…, n} and a set of arcs A = {(i, j) |i, j ∈ P, i 6¼ j}. Node 0 represents the depot and nodes
P = {1, 2, …, n} represent the patients. Each arc (i, j) ∈ A is associated with a travel time dij, measured in
minutes. For each HHC company, there are a set of caregivers C = {1, …, m} available each day to perform
specific tasks in patients’ homes. Let H = {1, …, T) be a set of working days and T the planning horizon.
Each caregiver visits a set of patients and each patient can be assigned to exactly one caregiver during a
given horizon. The caregivers have the same daily workload (e.g., 5 working hours, from 8:00 am to
1:00 pm) and the same volume of work Vct that represents the maximum number of patients to be
visited per day. Each patient i ∈ P/{0} is associated with a service duration Sci and each caregiver has a
daily lunch break, denotes kc.
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3.1 Decision Variable

Xijct ¼ 1 if caregiver c visits successively nodes i and j in day t
0 otherwise

�

3.2 Mathematical Formulation

Min Z ¼
Xn
i¼0

Xn
j¼0

Xm
c¼1

XT
t¼1

ðdij þ Sci þ kcÞ:Xijct (1)

Subject to

Xn
j¼1

Xm
c¼1

X0jct ¼ m; 8 t ¼ 1::T (2)

Xn
i¼1

Xm
c¼1

Xi0ct ¼ m; 8 t ¼ 1::T (3)

Xn
j¼1

Xm
c¼1

XT
t¼1

X ijct ¼ 1; 8 i ¼ 1; :::; n (4)

Xn
i¼1

Xn
j¼1

Xijct � Vct � 1; 8 i 6¼ j; 8 c ¼ 1::m; 8 t ¼ 1::T (5)

X
i;jen; i6¼j

ðdij þ Sci þ kcÞ:Xijct � Q ; 8 c ¼ 1::m; 8 t ¼ 1::T (6)

f ijct � ðjPj � 1Þ � X ijct 8i; j 2 P; i 6¼ j;8c 2 C;8t 2 T (7a)

f ijct � f kict þ 1� ðjPj � 1Þ � ð1� X ijctÞ 8k; i; j 2 P; k 6¼ i; i 6¼ j; 8c 2 C;8t 2 T (7b)

Xijct 2 f0; 1g; i 6¼ j (8)

Sci. 0 (9)

dij. 0 (10)

The objective function (1) aims to minimize the overall service times, including travel times, operating
times and lunch break for all caregivers during a given horizon. Constraints (2) and (3) guarantee that all
caregivers daily start and finish their services at the HHC company. Constraint (4) ensures that each
patient is assigned to only one caregiver during the horizon and each caregiver crosses a path exactly
once over the horizon. Constraint (5) forces each caregiver to visit a fixed number of sub-paths.
Constraint (6) guarantees that each caregiver does not exceed its maximum daily workload. Constraint (7)
removes the sub-tours. Constraint (8) indicates that the decision variable Xijct is binary. Constraint (9) and
Constraint (10) indicate that the service and travel times must be positive.

3.3 Learning Curve Model and Mathematical Reformulation

In this sub-section, a LC model is integrated to the proposed MIP model in order to calculate the
appropriate service time for each caregiver and prove the influence of experience on caregiver’s
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productivity. It is inspired by the Wright’s Log Linear [13] and presented by the following mathematical
function:

Scn ¼ Ec:n
lc (11)

where Scn is the time required, for the caregiver c; to complete the nth task during a given horizon T, Ec

represents the time spent by the caregiver c to complete the first task, n corresponds to the number of repeated
task and lc is the learning rate of the caregiver c. The learning rate is calculated as following:

lc ¼ lnðrcÞ=lnð2Þ ; � 1 � lc � 0 (12)

The learning percentage is represented by rc and calculated as following:

rc ¼ elc ln 2 (13)

Resuming the above MIP model, we add the following equations in order to calculate service times

Sci ¼ Ec:i
lc ; 8 c ¼ 1::m; 8 t ¼ 1::T (14)

Ec � Sci � ScVct ; 8 c ¼ 1::m; 8 i ¼ 1::Vct; 8 t ¼ 1::T (15)

� 1, lw, 0 (16)

Constraints (14) and (15) calculate the service time for each caregiver. Constraint (16) indicates that the
learning rate should be between −1 and 0.

4 A New Learning Genetic Algorithm Approach (LGA-mTSP)

This section presents the solution approach for the HHCRSP, called Learning Genetic Algorithm for
mTSP (LGA-mTSP). The proposed solution approach is carried out in two stages. It is composed of a
learning approach combined with a genetic algorithm for mTSP.

4.1 Learning Process

The learning process, proposed in this study, allows to generate learning curves for a given set of
caregivers. Let’s take the example a set of beginner caregivers (c: 1,…, m) who start a new task T and
have to repeat it n times. The service time records, performed by these caregivers, are saved in the
database. Each caregiver has a fixed number of tasks to perform, generated by the solver. The learning
process consists of extracting the learning rates lc from the database and predicting the future service
times. Fig. 1 illustrates the learning process.

– The extraction model is based on the following equation:

lc ¼ ½lnðTnÞ=lnðnÞ� � ½lnðT1Þ= lnðnÞ� (17)

where lc is the learning rate of caregiver c, Tn is the service time at the nth task, T1 represents the
service time at the first task and n represents the number of repeated tasks.

– Predictive model:

The predictive model is based on Eq. (11). It provides service times for each caregiver, according to the
number of tasks to perform.

– The optimization solver:

The solver consists of equitably assigning patients to caregivers, founding the shortest path for all
caregivers and providing the optimal solution that is the minimized overall service times.
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4.2 Genetic Algorithm for mTSP

The execution-time increases with the problem instance size, and often only small or medium-sized
instances can be solved with exact solver. Therefore, a metaheuristic method is proposed to solve the
problem in order to find the best solution in accepted simulation time. Genetic algorithms is a good
example of stochastic algorithms. The considered problem is an extension of mTSP that receive a big
attention in the last years. mTSP is a NP-Hard that various approaches have been proposed to solve it,
especially the Genetic Algorithms (GAs). They are successfully implemented to solve TSP and mTSP
such as in [63–66]. GA was first proposed by John H. Holland in the 1960 s. It is an iterative procedure
that starts with a constant population size and generates new individuals called chromosomes by the
genetic operators. The algorithm finishes when the stop criteria is satisfied [63]. The proposed genetic
algorithm, called GA-mTSP, starts with different types of input data, such as GA’ parameters (population
size, number of generations, mutation and crossover rates, etc.), chromosome representation that is
generated from the problem description (number of workers, number of patients, etc.) and the learning
rates which are generated from the learning process (the learning rate of each worker).

4.2.1 Chromosome Representation
The chromosome is a numeric vector. Each number inside the chromosome is called a gene. In the case

of mTSP, each gene represents a city. There are many ways to represent the chromosome for the mTSP. In this
work, chromosomes are represented by the multi-chromosome technique [63]. Fig. 2 illustrates an example
of the chromosome representation for mTSP. Each salesman must start and finish its route at the depot. In this
chromosome representation, the depot is not presented but it is taken into account when calculating the travel
time. According to Fig. 2, the chromosome is composed of 45 genes, which represents the number of cities to
be visited by salesmen during the horizon (3 days). Due to the constraint of workload balancing, imposed by
the proposed MIP model, the total number of cities must be fairly divided between salesmen. First, the
chromosome is divided into H fairly parts, where H is the number of days. After that, the number of
cities assigned to each day is equally divided between salesmen. The sequencing of cities is called route.
Each salesman travels daily a single route (number of salesmen = number of routes = 3). Due to the
problem constraints, each gene must appear in the chromosome only once to ensure that each city is
visited only once during the horizon.

4.2.2 Fitness Evaluation
After the random generation of the initial population, each individual is evaluated according to the

fitness function. In this work, the fitness value is the overall service times performed by all workers. The
considered problem is a minimization problem; thus, the smallest value is the best. The fitness function is
calculated as following:

Learning process

Learning rate

Input Data

Predictive Predictive c
service time

Number of tasks

Optimization 
Solver

Extraction model Predictive model

Figure 1: Proposed learning process
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f ¼
Xn

i;j¼0; i 6¼j

Xm
c¼1

XT
t¼1

ðdij þ Sci þ kcÞ:Xijct (18)

where dij is the travel time between two nodes i and j. Sci is the operating time performed by caregiver c at
node i in day t: kc represents the daily lunch break of caregiver c and Xijct is a binary variable that has 1 as
value, when the nodes i and j are assigned to the same caregiver c on day t. Otherwise, Xijct = 0.

4.2.3 Genetic Operators
The genetic operators consist of evolving the chromosomes. They influence the search ability and

convergence speed. There are two basic types of operators, which are the crossover and the mutation
operators [63]:

– Crossover operator: generates new solutions (offspring) by exchanging genes of two previous
solutions (parents). The crossover rate is the probability that crossover reproduction will be
performed. Various crossover methods are available, including single point and multi-point
crossover, etc. In this work, a three-point crossover method is adopted. This method refers to using
3 randomly points in order to determine the order and the distance between the genes. Fig. 3
illustrates an example of 3-point crossover. The three points are randomly chosen with the
following constraints: P2 � P1 . 0; P3 � P2. 0 and P1; P2; P3,Chromosome size:

–Mutation operator: changes one or more gene values in a chromosome from its original state. There are
several mutation methods available in the literature. A two-stage mutation operator is used in this
paper. This method combines two mutation operators, which are the random swap and the reverse
swap operators. First, two genes are exchanged basing on two randomly selected points (P1 and
P2). After that, two other points P3 and P4 are randomly chosen (P4.P3 and
P3; P4 , chromosome sizeÞ to define a segment in the obtained chromosome. The genes inside
the segment are reversed. An illustrative example is shown in Fig. 4.

Figure 2: Chromosome representation

Figure 3: Three-point crossover operator
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4.2.4 Iterative Process
The iterative process is composed of four phases (evaluation, selection, reproduction and replacement).

The best individuals are selected according to their fitness values and memorized in “the mating pool”. These
individuals are called parents. The mating pool is a concept used in evolutionary computation that consists of
expecting to get a better-quality offspring (children) than its parents. The mating pool and the population
have the same size. The original solution is replaced by a new solution if its rank is worse than the rank
of the new solution. The stop criteria is satisfied when the maximum number of generations and the
maximum execution time are reached or no improvement is made compared to previous generations.

5 Experimentations

The proposed LGA-mTSP is implemented in Java language with the Integrated Development
Environment Eclipse IDE4, version 2020–03. The algorithm is executed on a 2.50-GHz Intel(R) Core
(TM) i5–7200 CPU computer under Windows 10 with 8 GB of RAM. The proposed MIP model is
testing on illustrative example of a HHC company with 3 caregivers who have to perform medical
services at patients’ homes. To our knowledge there is no standard benchmark in the literature for the
considered problem. Therefore, based on the benchmark data of the Single-Depot Multiple Traveling
Salesman Problem (multiple-TSP)5, several instances are generated and reported in Tab. 1.

The benchmark is generated from TSPLIB6 library. It contains 4 TSP instances: eil517, berlin528, eil769

and rat9910. The model is tested with instances of one and multiple working days, (see Tab. 1: times are given
in minute), in order to evaluate the influence of caregiver’s experience over time. This experience is traduced
by some learning parameters which are given in Tab. 2.

The proposed GA-mTSP is implemented with fixed parameters, presented in Tab. 3, to validate the MIP
model and define reliable results.

5.1 Computational Results

This section describes computational experiments carried out to investigate the performance of the
proposed solution approach LGA-mTSP.

Figure 4: Mutation operator

4Eclipse IDE : https://www.eclipse.org/
5https://profs.info.uaic.ro/∼mtsplib/
6http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
7https://profs.info.uaic.ro/∼mtsplib/TSPLIB/eil51.tsp
8https://profs.info.uaic.ro/∼mtsplib/TSPLIB/berlin52.tsp
9https://profs.info.uaic.ro/∼mtsplib/TSPLIB/eil76.tsp
10https://profs.info.uaic.ro/∼mtsplib/TSPLIB/rat99.tsp
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Table 1: Input data

Instance name Horizon Total #
patients

#
assigned
patients

Initial
operating
time

Learning
%

Learning
Rate

Max
workload

Break
lunch

Eil51-m3 One working
day

50 16/17 20 90% −0.152 480 60

97% −0.043

85% −0.234

Berlin52-m3 51 17 25 80% −0.321 540 30

93% −0.104

95% −0.074

Eil76-m3 75 25 25 80% −0.321 660 10

93% −0.104

95% −0.074

Rat99-m3 98 32/33 20 94% −0.089 720 10

83% −0.268

87% −0.200

Modified-Eil51-
m3

1 week:
5 days

250 83/84 20 90% −0.152 480 60

97% −0.043

85% −0.234

Modified-
Berlin52-m3

3 months:
60 days

3060 1020 25 80% −0.321 540 30

93% −0.104

95% −0.074

Modified-Eil76-
m3

2 weeks:
10 days

750 250 25 80% −0.321 660 10

93% −0.104

95% −0.074

Modified-Rat99-
m3

2 months:
40 days

3920 1280/
1320

20 94% −0.089 720 10

83% −0.268

87% −0.200

Table 2: Learning parameters

Instance name Learning interval Learning state # patients assigned
to each caregiver

Job Volume

Eil51-m3 [10, 20] [10, 13]: Fast
[14, 16]: Medium
[17, 20]: Slow

16/17 Short

Berlin52-m3 [12, 25] [12, 15]: Fast
[16, 20]: Medium
[21, 25]: Slow

17 Short

Eil76-m3 [12, 25] [12, 15]: Fast
[16, 20]: Medium
[21, 25]: Slow

25 Short

(Continued)
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5.1.1 Results of One Working Day
The results of one working day instances are shown in Tab. 4. In fact, the table presents for each

caregiver in each instance, the assigned route, the travelled time, the number of repeated tasks
(corresponding to the number of patients visited by the caregiver), the total operating times, the service
time (including the total operating time, the total travelled time and the break lunch), the operating time
at the last task (corresponds to the required time to perform the last task), and the learning GAP which
refers to the percentage of reduced time between the operating time at the first and the last task. The
reduced time between the first and the last task is calculated as following:

d ¼ Tn � T1 (19)

where Tn is the operating time at the last task and T1 is to the operating time at the first task. The learning state
of each caregiver is defined according to the learning GAP. Times are given in minute.

Table 2 (continued)

Instance name Learning interval Learning state # patients assigned
to each caregiver

Job Volume

Ratt99-m3 [10, 20] [10, 13]: Fast
[14, 16]: Medium
[17, 20]: Slow

32/33 Short

Modified-Eil51-m3 [10, 20] [10, 13]: Fast
[14, 16]: Medium
[17, 20]: Slow

83/84 Medium

Modified-Berlin52-m3 [12, 25] [12, 15]: Fast
[16, 20]: Medium
[21, 25]: Slow

1020 Long

Modified-Eil76-m3 [12, 25] [12, 15]: Fast
[16, 20]: Medium
[21, 25]: Slow

250 Long

Modified-Ratt99-m3 [10, 20] [10, 13]: Fast
[14, 16]: Medium
[17, 20]: Slow

1280/1320 Long

Table 3: Genetic algorithm parameters

Parameter Value

Population size 100

Number of generations 100

Crossover rate 80%

Mutation rate 30%

Selection tournament selection

Elitism rate 30%

Stop criteria Max number of iterations/generations

CSSE, 2023, vol.45, no.1 11



T
ab

le
4:

R
es
ul
ts
of

on
e
w
or
ki
ng

da
y

In
st
an
ce

na
m
e

C
ar
eg
iv
er

R
ou
te

T
ra
ve
l

tim
e

# re
pe
at
ed

ta
sk
s

O
pe
ra
tin

g
tim

es
S
er
vi
ce

tim
e

O
ve
ra
ll

tr
av
el

tim
es

O
ve
ra
ll

op
er
at
in
g

tim
es

O
ve
ra
ll

se
rv
ic
e

tim
e

L
as
t

ta
sk

L
ea
rn
in
g

G
A
P

L
ea
rn
in
g

st
at
e

E
il5

1-
m
3

1
1–
32
–
11
–
38
–
5–

49
–
10
–
39
–
33
–
45
–

15
–
44
–
37
–
17
–
47

–
12
–
46
–
51
–
1

13
7

17
23
0

42
7

17
15

S
lo
w

2
1–
22
–
2–
16
–
50
–
9–
30
–
34
–
21
–
29
–

20
–
35
–
36
–
3–
28

–
31
–
26
–
8–
1

14
9

17
18
3

39
2

13
35

F
as
t

3
1–
48
–
23
–
7–
43
–
24
–
14
–
25
–
13
–
41
–

40
–
19
–
42
–
4–
18

–
6–
27
–
1

17
8

16
16
2

40
0

10
50

F
as
t

B
er
lin

52
-

m
3

1
1–
22
–
18
–
3–
17
–
21
–
42
–
7–
2–
30
–
29
–

16
–
46
–
44
–
50
–
20

–
23
–
31
–
1

29
1.
92

17
22
6

54
7.
92

90
1.
89

84
2

18
33
.8

12
50

F
as
t

2
1–
49
–
32
–
45
–
19

–
41
–
8–
9–
10
–
33
–

43
–
4–
6–
5–
15
–
40

–
39
–
36
–
1

23
0.
49

17
29
6

55
6.
49

19
24

M
ed
iu
m

3
1–
34
–
37
–
48
–
25

–
28
–
27
–
26
–
47
–
14
–

13
–
52
–
11
–
12
–
51
–
24
–
38
–
35
–
1

37
9.
48

17
32
0

72
9.
48

20
20

M
ed
iu
m

E
il7

6-
m
3

1
1–
63
–
16
–
3–
44
–
32
–
49
–
50
–
25
–
9–

39
–
72
–
58
–
38
–
65

–
10
–
31
–
55
–
18
–

24
–
56
–
23
–
41
–
64

–
42
–
43
–
1

19
4.
52

25
21
4

41
8.
52

68
2.
14

80
3

15
15
.1

12
50

F
as
t

2
1–
33
–
51
–
40
–
12

–
26
–
67
–
7–
35
–
53
–

11
–
66
–
59
–
14
–
54
–
19
–
8–
46
–
34
–
4–

76
–
75
–
17
–
68
–
6–

73
–
1

21
9.
28

25
28
4

51
3.
28

18
28

M
ed
iu
m

3
1–
62
–
2–
30
–
45
–
52
–
27
–
13
–
57
–
15
–

5–
29
–
48
–
47
–
36

–
37
–
20
–
70
–
60
–
71
–

69
–
21
–
74
–
28
–
61

–
22
–
1

26
8.
33

25
30
5

58
3.
33

20
20

M
ed
iu
m

R
at
t9
9-

m
3

1
1–
10
–
20
–
29
–
47

–
74
–
65
–
56
–
38
–
30
–

39
–
48
–
57
–
66
–
75

–
84
–
76
–
85
–
86
–

95
–
94
–
93
–
83
–
92

–
91
–
82
–
73
–
64
–

55
–
46
–
37
–
28
–
19

–
1

79
1.
38

32
26
9

10
70
.3

22
45
.2

69
8

29
93
.2

15
25

M
ed
iu
m

2
1–
2–
12
–
13
–
22
–
31
–
49

–
59
–
50
–
41
–

32
–
23
–
24
–
33
–
42

–
51
–
60
–
69
–
78
–

87
–
88
–
89
–
90
–
99

–
98
–
97
–
96
–
77
–

68
–
67
–
58
–
40
–
21

–
11
–
1

68
1.
69

33
21
0

90
1.
69

10
50

F
as
t

3
1–
3–
14
–
15
–
43
–
61
–
70
–
80
–
79
–
62
–

52
–
34
–
25
–
16
–
26

–
53
–
81
–
72
–
63
–

54
–
45
–
44
–
35
–
17

–
36
–
27
–
18
–
9–
8–

7–
6–
5–
4–
1

79
2.
18

33
21
9

10
21
.1

10
50

F
as
t

12 CSSE, 2023, vol.45, no.1



Route assignment is based on both: the shortest path routing strategy and the workload balancing
between caregivers which is defined by the number of patients assigned to caregivers.

5.1.2 Results of Multiple Working Days
The instances of multiple working days are inspired from those of one working day. The travelled path of

each instance is repeated during a given horizon. For example, the horizon of “Modified Eil51-m3”
corresponds to five days. So, the travelled path of “Eil51-m3” is repeated five times. Tab. 5 presents the
obtained results for each caregiver: travelled time, number of repeated tasks, operating and service times,
learning GAP and learning state.

According to Tabs. 5 and 6 it is worth noting that more the task is repeated, more the caregiver get
experience and more the service time decreases until a minimum threshold is reached. A statistical test
has been done. Through this the impact of learning on the operating time can be shown. Let l0 is the
average operating time at the first task and l1 is the average operating time at the last task. there are two
hypotheses H0 and H1 . the first one represents the case where there is no learning, in this case l0 = l1
. while H1 represents the case where learning is considered. the impact of learning is demonstrated by
the fact that l0 6¼ l1. For all instances, it is observed that the average operating time without learning
(in the case of H0) is the same from the first task to the last task and from the first working day to the
60 working days. In this case l0 ¼ l1. E.g. for Berlin 52-m3: l0 ¼ l1 ¼ 25 min. Also, it is shown that
the average operating time with learning (in the case of H1) is different. E.g. for Berlin 52-m3: l0 6¼ l1.
Therefore, we are allowed to say that learning has a notable impact on operating time.

5.2 Discussion

In this sub-section, a comparative study is provided in order to evaluate the effectiveness of GA-mTSP as
well as the robustness of the elaboratedMIPmodel. First, a comparative table is given by Tab. 6 in term of routing
results. This paper proposes a new mathematical formulation for HHCRSP extended of mTSP. Thus, the authors
cannot compare directly the proposed solution with another work in the literature. In order to evaluate the
performance of GA-mTSP, the authors remove the constraints related to the considered problem in
expectation of returning to the basic formulation of mTSP. After that, they solve it by GA-mTSP with
instances taken from the benchmark data of multiple-TSP. Finally, they compare the obtained results with

Table 5: Results of multiple working days

Instance
Name

Caregiver Travel
time

# repeated
tasks

Operating
times

Service
times

Overall travel
times

Overall service
times

Last
task

Learning
GAP

Learning
state

Modified
Eil51-m3

1 745 84 1001 2046 2320 6530 10 50 Fast

2 685 84 1430 2415 16 20 Medium

3 890 83 879 2069 10 50 Fast

Modified
Berlin52-
m3

1 17515.2 1020 12280 31595.2 54113.4 102526.4 12 50 Fast

2 13829.4 1020 14030 29659.4 12 50 Fast

3 22768.8 1020 16703 41271.8 15 40 Fast

Modified
Eil76-m3

1 1945.2 250 3041 5086.2 6821.3 18540.3 12 50 Fast

2 2192.8 250 3872 6164.8 14 44 Fast

3 2683.3 250 4506 7289.3 17 32 Medium

Modified
Ratt99-
m3

1 31655.2 1280 12284 44339.2 90610.5 124651.5 11 45 Fast

2 27267.6 1320 10244 37911.6 10 50 Fast

3 31687.7 1320 10313 42400.7 10 50 Fast
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two similar works from the literature. Tab. 6 shows the obtained results of GA-mTSP. Ant Colony System
(ACS) taken from [67] and PCI-algorithm taken from [68] in terms of lower and upper bounds (the
minimum and the maximum number of cities that a salesman must visit on his tour) and the optimal costs.

Both works [67,68] aim to balance workloads between salesmen. It is observed that the optimal costs
obtained by [67] are better than those of GA-mTSP and PCI [68]. Meanwhile. the best workload balancing
is given by GA-mTSP that shares fairly the workloads between salesmen compared to the other works.

In order to evaluate the influence of caregiver’s experience (human learning) on caregiver’s productivity
(service time). a performance study is given below. Fig. 5 shows the influence of learning on the caregiver’s
productivity during a period of time.

Table 6: Routing results

Instance
name

GA-mTSP ACS [67] PCI [68]

Lower
bound

Upper
bound

Optimal
cost

Lower
bound

Upper
bound

Optimal
cost

Lower
bound

Upper
bound

Optimal
cost

Eil 51-m3 16 17 464 15 20 464.11 15 20 492

Berlin 52-m3 17 17 9019.09 10 27 8106.85 10 27 8407

Eil76-m3 25 25 682.14 21 30 579.30 21 30 612

Ratt99-m3 32 33 2245.26 27 36 1519.49 27 36 1647

Figure 5: Learning curves
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When the learning rate tends to 50%. the caregiver gets more experience and become faster. Therefore.
operating time decreases considerably during a given period. This phenomena is called “learning phase”.
When the operating time becomes stable. this phase is called “steady state phase” i.e., “no learning” and
so. the caregiver become expert. Regarding to Figs. 5a and 5b. caregiver 1 is faster than others. He is the
first one who reaches the steady state phase. In Figs. 5b and 5c. caregiver 2 has not reached the steady
state phase. thus. he needs more time to reach it. In Fig. 5d. all caregivers reach the steady phase but not
at the same time. Caregiver 2 learns faster than others. The average difference (Average GAP) between
the pre-fixed operating time and the effective operating time for one-working-day instances is about 41%
while the average GAP for the multiple-working-days instances is 44%. According to Tab. 7 and Fig. 5.
it is clearly shown that there is a significant decrease in operating time for all instances. Service time is
thus impacted by the same phenomenon.

Regarding to Fig. 6 it is important to note that the run-time (CPU) increases with the instance size and
then with the problem complexity. For all the considered instances, the solving time is reasonable. It did not
exceed 13 min and the average run-time for all instances is around 5 min (5274 ms exactly). Computational
results show the effectiveness of the LGA-mTSP approach in term of execution time and good quality
solutions. Thus, LGA-mTSP is able to minimize service costs. maximize productivity and balance
workload depending on workers’ experiences. simultaneously.

Table 7: Table of performance

Instance
name

One working day Multiple working days

Overall
operating times (min)

GAP
(%)

CPU
(ms)

Overall
operating times (min)

GAP
(%)

CPU
(ms)

With
learning

Without
learning

With
learning

Without
learning

Eil-51-m3 575 1000 42.5 2749 3310 5000 33.8 5316

Berlin52-m3 842 1275 33
.96

3086 43013 76500 43.77 12248

Eil76-m3 803 1875 57.17 3012 11419 18750 39.09 7841

Ratt99-m3 698 1960 64.38 2902 32841 78400 58.11 5040

Figure 6: Run-time of all instances
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6 Conclusion

This paper presents a new mixed-integer programming (MIP) model for a HHCRSP problem. The
proposed MIP model aims to minimize the overall service time for a set of caregivers, visiting a set of
patients in their homes, in order to perform medical tasks, during a given time horizon. This model was
used to solve small size instances. Nevertheless, due to the NP hardness of this class of problems and in
order to solve large size instances, a Learning Genetic Algorithm approach (LGA-mTSP) is proposed.
This approach combines a genetic algorithm, designed for mTSP, with a learning approach, called
learning curves approach. The obtained results prove the effectiveness of the LGA-mTSP in term of run-
time and reliability of learning curves approach to minimize service times. Moreover, the proposed
solution approach proves its ability to reduce service costs and balance the workload between caregivers
using their experiences. In future works, it would be interesting to consider uncertainty in task time
duration as in [69].
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