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Abstract: The Cloud system shows its growing functionalities in various indus-
trial applications. The safety towards data transfer seems to be a threat where Net-
work Intrusion Detection System (NIDS) is measured as an essential element to
fulfill security. Recently, Machine Learning (ML) approaches have been used
for the construction of intellectual IDS. Most IDS are based on ML techniques
either as unsupervised or supervised. In supervised learning, NIDS is based on
labeled data where it reduces the efficiency of the reduced model to identify attack
patterns. Similarly, the unsupervised model fails to provide a satisfactory out-
come. Hence, to boost the functionality of unsupervised learning, an effectual
auto-encoder is applied for feature selection to select good features. Finally, the
Naïve Bayes classifier is used for classification purposes. This approach exposes
the finest generalization ability to train the data. The unlabelled data is also used
for adoption towards data analysis. Here, redundant and noisy samples over the
dataset are eliminated. To validate the robustness and efficiency of NIDS, the
anticipated model is tested over the NSL-KDD dataset. The experimental out-
comes demonstrate that the anticipated approach attains superior accuracy with
93%, which is higher compared to J48, AB tree, Random Forest (RF), Regression
Tree (RT), Multi-Layer Perceptrons (MLP), Support Vector Machine (SVM), and
Fuzzy. Similarly, False Alarm Rate (FAR) and True Positive Rate (TPR) of Naive
Bayes (NB) is 0.3 and 0.99, respectively. When compared to prevailing techni-
ques, the anticipated approach also delivers promising outcomes.
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1 Introduction

Cloud Computing (CC) is a rising Internet model that offers complete services and provides them with
complex software, hardware and protocol stack functionality [1]. Users make use of these services for
productive computing. Even though service usage is an essence for CC, it will not provide ineffective
information. Moreover, it abuses and attacks the network architecture [2]. For instance, a spiteful user
resides over Virtual Machine (VM), intrudes on other VMs over the cloud, and utilizes other machines to
spread malicious software or Denial of Services (DoS) attacks. However, the user's character will produce
huge network traffic specifically to traffic users’ accessing services from other networks and shows traffic
among VM in the virtual network [3]. Cisco industries’ research reports that global network traffic
accounts for 95% of the total traffic network traffic by 2022. Specifically, traffic among VMs in a cloud
environment may account for 85%. This traffic may be consistent and increased drastically and inevitably
encounters malicious attacks [4]. A network attack results in huge damage to the cloud; however, it
causes users to lose confidence in CC, affecting CC's sustainable and healthy development [5]. Intrusion
detection is a technology for protecting the CC from various malicious attacks. Hence, cloud-based
intrusion detection identifies and examines network traffic, specifically identifying malicious attack
characteristics and eliminating damage [6]. Therefore, guaranteeing reliability and safety towards CC.

Also, cloud infrastructure is modeled with virtualization technology that renders virtual flow among
VMs uncontrollable and invisible by conventional IDS (See Fig. 1). It behaves as a global view,
centralized control and programmability. Therefore, it is extensively utilized in CC. In diverse
investigations like [7], the author anticipated using SDN technologies to redirect traffic to grunt IDS to
identify attacks. Here, snort is used for the signature detection model, cannot identify unidentified attacks,
and adopts traffic. Anomaly detection is used for distinguishing anomalous traffic from normal traffic [8].
It is extremely suited for unknown attack detection; however, it shows a false alarm rate. Various kinds of
Machine Learning approaches are used extensively in IDS Neural Network, Decision Tree, Random
Forest and Support Vector Machine. Moreover, these techniques may offer detection accuracy and
unsatisfactory classification. Intrusion detection-based outcomes depend not only on classifier
performance [9]; however on the performance of input data quality. Usually, network traffic includes
feature reduction and high dimensionality that causes feature dimensionality disaster [10]. Hence, feature
detection is specifically essential for effectual enhancement in supervised classifier performance. It
comprises two kinds of approaches: feature extraction and feature selection. Feature subset selection
functions effectually by eliminating redundant or relevant features; feature subset selection may offer the
finest performance based on a certain objective function. Various investigations have reported that feature
selection approaches eliminate the ‘dimensionality curse and attain superior detection performance over
NIDS. Feature extraction-based mapping provides original higher dimensionality features to lower
dimensionality features and produces new non-linear and linear combinations of original features.
Recently, diverse investigators have demonstrated deep learning technology with resourceful IDS for
feature extraction. It uses ML approaches to automatically extract effectual features from raw data and
input them into the classifier for attack identification. The significant contributions of the research work are:

1. Initially, the dataset should be acquired from the online accessible resource. This work includes the
NSL-KDD dataset for threat prediction.

2. Next, the most influencing features need to be analyzed from the dataset as this threat may show a
huge impact on the application. Here, an auto-encoder is used for feature selection.

3. Finally, the prediction accuracy needs to be computed with the classifier model. Thus, the Naïve
Bayes classifier is used for predicting the classifier's accuracy. The simulation is conducted in a
MATLAB environment where metrics like accuracy, FAR, TPR are evaluated.
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The remainder of the work is organized as. Section 2 depicts background studies of feature selection and
classification approaches. Section 3 demonstrates anticipated auto-encoder-based feature selection and a
Naïve Bayes classifier for modeling IDS. Section 4 illustrates numerical analysis and results of the
anticipated model, and Section 5 gives results and directions for future research.

2 Related Works

This section discusses intrusion detection approaches that various other authors perform. An extensive
study is done with IDS is discussed below. The author in [11] anticipated an anomaly detection approach that
functions over the VM layer. These entries are stored in key-value format. Here, it specifies system cal, and values
specify the list of system call. It executes program-based detection, cloud administrator and matches with database
for identifying mismatch. It fails in longer traces, and attackers can evade those systems when VM's supervision
process is done. The author in [12] depicts a frequency-based approach for safeguarding VM over cloud
environment. Frequency counts of all system calls are maintained. Therefore, the system call order is lost.
Approaches like the Markov model are utilized to generate more appropriate characteristics of malware-
dependent probabilistic computation. The training time is extremely higher and shows substantial growth for
huge databases. It includes experimental tasks and consumes time. It is diverse from other models as it
converts frequency values to weights for performing testing/training with (k-Nearest Neighbor) k-NN classifiers.

The Virtual Machine (VM) model uses text mining techniques to generate feature vectors to enhance n-
grams discriminative powers. It is utilized for feature selection by demonstrating the rarity and frequency of
n-gram. Some models do not utilize virtualization features as introspection and hence lack predicting attacks
that thwart IDS at VM. The author in [12] depicts VM based security framework for deployment over VM in
virtualization. Policy engines are a core detection element that describes security for malicious activities by
examining VM events. Signature-based approaches are utilized for detecting unknown and variant attacks.
The author in [13] anticipated an IDS framework for modeling Operating System hooks. This hook is
deployed over kernel modules to intercept OS events. Security analyzer examines the malicious activities
of events. Also, attackers with kernel models may transmit false information. The author in [14]

Figure 1: Generic IDS model
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anticipates a VM-malicious process for detection. It uses a process for identification approach regarding the
tracking process to handle address space. It is based on address space. Active IDS specifies some new
processes. It resourceful executes the implementation of Lycosid based on ID implementation. Similarly,
the classifier model is used for predicting anomaly ineffectual manner. Self-training is to train both
unlabelled and labeled data. Initially, it produces classifier fitting for sample labeling. Then, the classifier
allocates labels with unlabelled samples. It is retrained with both unlabelled and labeled data for
prediction. This process is iterated recursively till it satisfies termination criteria. Hence, various efforts
are used to develop unsupervised learning [15–17]. But it suffers from certain disadvantages where
confident instances are self-labeled from decision boundaries. Training is trapped due to outliers. There
are some spaces for self-training approaches. It fails to enhance the performance of random splitting and
reduce data redundancy [18–20].

3 Methodology

This work uses CC to construct NIDS for decoupling conventional cloud infrastructure. This anomaly
detection approach is utilized to acquire three essential functionalities. 1) Pre-processing where network-
based traffic is standardized; 2) feature selection is performed with auto-encoders; and 3) classifier model.
Finally, attack recognition is utilized to identify intrusion over network traffic and testing datasets. This
section explains two modules and is discussed as given below.

3.1 Data Collection

It is considered to be a preliminary step for predicting intrusion. Here, a network collector is utilized for
traffic monitoring from a pre-defined platform. The physical machine comprises domain name and non-
privileged domain. It is connected with a conventional switch and VM for connection with a virtual
switch. VM communicates with successive VM or over different PM through virtual switches. It is
utilized for forwarding network flow, while the collector is accountable for network flow and routing
control. It is attained to handle anomaly detection with intrusion detection. This pre-processing model
comprises of transformation. Former is utilized to change nominal to numerical values. For instance, in
the NSL-KDD dataset, three features are considered: Transmission Control Protocol (TCP) status flag,
service type, and protocol type. It is determined to be more nominal. It transfers attack type to numerical
values, i.e., 0–4 is normal, DoS, probe, Root to Local (R2L) and User to Root (U2R) specifically [20–
22]. The description of the NSL-KDD dataset is given in Section 4. To eliminate feature bias with
superior values and the huge amount of sparse features, 0 should be standardized for scaling every feature
value to a proportioned range [23–25]. Here, Z-score is utilized for standardization.

3.2 Basic Auto-Encoder (AE)

Auto-encoders are considered a popular method in Neural networks towards the unsupervised fashion.
This method is anticipated and examined. The ultimate target of this process is to learn the dense
representation of inputs during the maintenance of some essential information. The basic autoencoder is
generally a Back Propagation (BP) method based on original data at the input, which are reconstructed at
the output while passing through the encoding layer by diminishing the number of hidden layers. AE
learns compact and deep features with reduced hidden nodes. Therefore, this specification is considered
to be entirely reconstructed with some original data. Fig. 2 depicts the flow diagram of the anticipated model.

Consider, the training samples x(x = [x1, …, xm], xk∈ Rm, k = (1, …, M) are the learning objective of an
AE is to reduce the reconstruction error as specified in Eq. (1):

minimize:
XM
k

jjxk � bxk jj2 (1)
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Here, xk and bxk are input and reconstructed outputs respectively. Mathematically, the hidden layer relies
for encoding and decoding process as expressed in Eq. (2):

Hf ¼ Gðaf ; bf ; xÞ
x̂ ¼ Gðan; bn; Hf Þ

�
(2)

Here, af and a specify the weight for encoding and decoding layers, bf and bn are biased, and G(ai, bi, x)
specify hidden neurons. The learning process is considered a preliminary auto-encoder that includes the
iterative update of weights/coefficient s′ a′ and ′b,’ where the error among the inputs and reconstructed
network outputs are gradually reduced until given below the threshold value. Generally, the learning
processes of the auto-encoders are based on BP fine-tuning and layer-wise initialization. The anticipated
AE structure is constructed in a multi-layer fashion. Initially, data transformation is performed to transfer
input towards random feature space, followed by encoding layers to update the replacement learning
process. At last, the parameters in encoding layers are updated, and input data is mapped into very low-
dimensional features [26–28]. Mathematically, the two-layer network ′f′ based output data is expressed as
in Eq. (3):

f ¼ Gðan; bn; Gðaf ; bf ; xÞÞ (3)

Moreover, with multilayer network model, the output data for all hidden layers are expressed as
in Eq. (4):

Hi
f ¼ Gðaif ; bipf ; Hi�1

f Þ (4)

Here, Hi is ith layers output data, andHi�1 is (the i − 1) th layer. There are diverse discriminations among
the multi-layer auto-encoders. The multi-layer AE is completely different from prevailing BP-based AE,

Figure 2: Flow diagram of the proposed model
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where the layers are merged to form a system. The system parameter needs to be iteratively retrained. The
training speed of the anticipated model is multiple times faster than the conventional approaches. Similarly,
the hidden nodes of the encoding layers are generated randomly. However, it is unreasonable to generate all
the layers randomly. It is because the random layers can destroy the essential features. Therefore, the
anticipated model with hidden nodes is evaluated and relatively nearer to the input data. However, the
network layer needs a weighted output layer to absorb system errors as the hidden nodes are randomly
generated. This model is naturally asymmetric as output layers’ weight is not required during the
encoding process but prevails during the decoding process. The unnecessary mapping can eliminate the
necessity of low-dimensionality features [29–32]. The anticipated model can remove the learning system
naturally. The features are optimized based on the preliminary findings of optimal parameters to reduce
the output error with top-priority AE.

3.3 Learning Rate

This section explains the training process of the network architecture. Consider, ′M′ training points
fðxk ; ykg M

k¼1; xk e Rm from the continuous system. The AE pretends to reconstruct the original input by
x = y, y→ (0, 1). The initial parameters of encoding layers are attained with the random process as
expressed in Eq. (5):

Hf ¼ Gðaf ; bf ; xÞ
ðaf ÞT :af ¼ I

ðbf ÞT :bf ¼ 1 (5)

Here, af ε R
D*m is random weights and bias of encoding layers. Initially, bf ε R

D, then bf belongs to
′R.’ Hf

is feature data. The hidden neuron ′G′ is based on linear function, RBF function, sigmoid function, wavelet
function, threshold function, and applied in decoding layer. Then, the invertible function (sine or sigmoid)
can attain parameters from the encoding layer and be expressed as (6):

G�1ð:Þ ¼
arcsiin ð:Þ if Gð:Þ ¼ sinð:Þ

� log
1

ð:Þ � 1

� �
if Gð:Þ ¼ 1=ð1þ e�ð:ÞÞ

8<: (6)

Here, Moore inverse matrix H is used. With Moore's matrix and invertible function, the solution
possesses the least norm between the least-square solutions. The projection techniques are efficiently
utilized for evaluating the inverse matrix; Hy ¼ ðHTHÞ�1HT ; if HTH is non-singular; then
Hy ¼ HTðHTHÞ�1 if HHT is singular. Based on regression theory, it is recommended to have a positive
value and added to the diagonal of HHT. It enhanced the stability and is expressed as in Eqs. (7) and (8):

Hy ¼ HT C

I
þ HHT

� ��1

(7)

Hy ¼ C

I
þ HHT

� ��1

HT (8)

Then, update af, bf and expressed as in Eqs. (9) and (10):

af ¼ ðanÞT ; (9)

bf ¼ bn; bf e R (10)
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The feature data is updated with Hf =G(af, bf, x). the above-given process is repeated concurrently. The
parameters an, bn, af, and bf are attained along with the feature data Hf. Unlike BP, the conventional AE uses
network weight and establishes it by pulling hidden nodes’ input and output data. Moreover, when the
parameters of encoding layers are randomly generated, the random encoding process can eliminate the
essential information. There the input weights of the methods are evaluated and extremely correlated with
input/output data. The anticipated model shows some benefits as the weight of the encoding layers does
not compute and replace the weights of the decoding layer. Therefore, the computational workloads are
eliminated. Based on this analysis, training error is reduced, and the testing process is increased
gradually. Thus, the testing accuracy improves with the promising solution and diminishes enormous
computational workloads. It is given in Algorithm 1:

Algorithm 1: Auto-encoder for feature selection

Step 1: Given a training set fðxk ; ykg M
k¼1; xk e Rm, which is an invertible activation function, G(.) is

maximum loop number, and j = 1.

Step 2: Learning process;

Step 3: Random generation with the initial node af and bf based on Eq. ()

Step 4: while j < L do

Step 5: attain hidden nodes, an and bn in decoding layer

Step 6: obtain hidden nodes from the encoding layer

Step 7: end while

Step 8: Attain feature data Hf.

3.4 Auto-Encoder for Feature Selection

Auto-encoder is an unsupervised dimensionality reduction approach that comprises of encoder and
decoder [25]. It includes input, hidden and output layers. The encoder is cast-off for reducing
dimensionality, and the decoder is utilized for reconstruction. The functionality is a vice-versa process.
The training dataset has various’ n0; D ¼ fxi; yi jxi e Rd; yðiÞe Rgni¼1; with feature reduction vector
and class labels. Encoder functionality is mapped as input to hidden nodes, and decoder functionality is
specified as the hidden specification for reconstruction [26]. When hidden layer neurons are smaller than
several input/output neurons, the compression vector is attained and realizes dimensionality reduction.
This process is depicted as in Eqs. (11) and (12):

h ¼ f ðwxþ bÞ (11)

z ¼ gðw0hþ b0Þ (12)

Here, ′f′ and ′g′ are non-linear activation functions. ′ω′ and ′ω′ are weighted matrices, and ′b′ and’ b′ are
biased values. Here, θ = {w, b} and θ′ = {w′, be} where θ′ and θ specifies encoder and decoder parameters.
The ultimate objective is to reduce reconstruction error among input and output by handling these factors.
The objective functions are depicted as in Eqs. (13) and (14):

Jauto�encoder ¼
X
x e Dn

Lðx; zÞ (13)

¼
Xn
i¼1

L ðxi; gh; ðfhðxðiÞÞÞ (14)
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Here, ′L′ is reconstruction error is MSE and cross-entropy loss. It is formulated as in Eqs. (15) and (16):

Lðx; zÞ ¼ 1

n

Xn
i¼1

ðxðiÞ � zðiÞÞ2̂ (15)

Lðx; zÞ ¼ � 1

n

Xn
i¼1

½xðiÞ log ZðiÞ � ð1� xðiÞÞ logð1� zðiÞÞ (16)

The smallest reconstruction error is depicted with output to input that implies effectual lower
dimensionality feature specification. Here, reconstruction leads to an identical output problem to input.
Thus, an auto-encoder is efficient in selecting features. To resolve this crisis, this work uses constraint
specification or input corruption with the addition of noise. Unlike traditional AE, auto-encoder-based de-
noising attempts to recognize effectual and appropriate feature specifications from noisy input data (See
Fig. 3). It corrupts input and transmits that corrupted data to the anticipated mode for de-noising. Finally,
it reconstructs the ′x′ format. It gives objective function as in Eq. (17):

J ¼
Xn
i¼1

E ð~xðiÞ � q ð~xðiÞjxðiÞÞLðxðiÞ; ghðfhðx̂ðIÞÞÞÞ (17)

The noisy inputs are attained from the corruption process. Some approaches include Gaussian noise and
masking noise for setting random input features to zero.

3.5 Naïve Bayes Classifier

This model is a traditional approach with the Bayesian probabilistic model. It works on a stronger
independence assumption towards probability measures. The probability measure does not influence the
probability of other models. With a series of attributes 2n! gives independent assumptions. The outcomes
of the NB classifier are generally more appropriate. The functionality of the NB classifier works
effectually. It is depicted based on error factors like training noisy data, bias and variance. Training data
noise is reduced by selecting appropriate training data. It is partitioned into various groups. Bias is known
as an error owing to the training data group, which is extremely larger. Variance is depicted as an error
owing to a grouping of smaller values. NB is a better classifier model when compared to existing
approaches. It is because the essential characteristics of NB are extremely stronger assumptions towards

Figure 3: Auto-encoder for selecting appropriate threat features
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independence from every event or condition. Next, it is easier for execution. It is executed for larger datasets.
The basics of the NB theorem are expressed as in Eq. (18):

PðCjX Þ ¼ PðCÞjPðX jCÞ
PðX Þ (18)

where X is attributes; ′C′ is class; P(C|X) is even probability with X which has been occurred; P(X|C) is even
probability C which has been occurred; P(C) is probability of ′C′ event; P(X) is probability of ′X′ event.
Similarly, X is expressed as in Eq. (19):

X ¼ ðx1; x2; . . . ; xnÞ (19)

The connectivity among X and C are expressed as in Fig. 4. Then, substitute ‘X’, bayes formula is
expressed as in Eq. (20):

PðCjx1; x2; . . . ; xnÞ ¼ PðCÞPðx1; x2; . . . ; xnjCÞ
Pðx1; x2; . . . ; xnÞ (20)

Moreover, P(C|x1, x2, …, xn) as in Eq. (21):

PðCjx1; . . . xnÞ ¼ PðCÞPðx1; x2; . . . ; xnjCÞ
¼ PðCÞPðx1jCÞðx2; . . . ; xnjC; x1Þ
¼ PðCÞPðx1jCÞPðx2jC; x1Þðx3 . . . xnjC; x1; x2Þ
¼ PðCÞPðx1jCÞPðx2jC; x1ÞPðx3jC; x1; x2Þ . . .
PðxnjC; x1; x2; . . . ; xn�1Þ

(21)

From the above Eq. (21), it is known that there are some complex probability factors. It is extremely
complex for analysis. Based on Eq. (21), there should be some assumptions that are free from one
another. Therefore, the equation is expressed as in Eq. (22):

PðCjx1; x2; . . . ; xnÞ ¼ PðCÞ
Yn
i¼1

PðxijCÞ (22)

With NB classifier, the maximal probability of every class is expressed using hypothesis of maximum
posteriori as in Eqs. (23) and (24):

Hmap ¼ argmaxPðCjx1; x2; . . . ; xnÞ (23)

Hmap ¼ argmaxPðCÞ
Yn
i¼1

PðxijCÞ (24)

Figure 4: Naïve Bayes classifier
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In the NB classifier, the prediction class needs to be determined. However, if ‘X’ attributes are
quantitative, the probability value is extremely lesser than P(X|C), which cannot predict the Hmap values.
Thus, other approaches like Gaussian distribution have to be used as in Eqs. (25) and (26):

P ¼ ðXi ¼ xijC ¼ cjÞ (25)

P ¼ 1ffiffiffiffiffiffiffiffiffiffi
2prij

p exp �ðxi � lijÞ2
2r2ij

 !
(26)

Here, ′P′ is the opportunity; Xi is the i
th attribute; xi is the attribute value;

′C′ is the value; Ci is the sub-
class; μ is the attribute mean value; σ is the standard deviation.

Algorithm 2: NB classifier

Input: Unlabelled sample

1. Use encoder for dataset based dimensionality reduction

2. Allocate labels and datasets are re-written due to labeling

3. Use standardization and normalization to compute pre-processing

4. Perform feature selection

5. Initialize classifier model

6. Generate sampling model to normalize

7. Train NB classifier

8. End

Output: accurate anomaly detection over network model.

4 Numerical Results

This work considers a MATLAB environment with 6 GB RAM and a 2.2 GHz Intel Core i7 processor.
Here, the NSL-KDD dataset is used for dataset validation (See Tabs. 4 and 5). The metrics like accuracy are
used for predicting attacks (See Tabs. 6 and 8). Here, attributes like duration, protocol_type, service, flag,
source bytes, destination bytes, land, wrong fragments, and urgent are considered samples. UDP and TCP
are the two protocol types considered. The classifier test is given for class predictions that are loaded
from the input file. The robustness of this model is measured for training and testing. The outcomes are
validated with improved feature selection and classifier while comparison with another model. Accuracy
detection is attained with diverse experimentation and constant valuation. Generally, a confusion matrix is
utilized to determine the performance of the classification algorithm, as shown in Tab. 2. The terminology
is extremely confusing; however, it is simple and gives a better understanding (see Tab. 1).

Here, true and false specify whether the class is predicted correctly or not. Similarly, positive and
negative specify class prediction to show whether the class is correct or not. With the confusion matrix,
accuracy, precision, F1-measure and recall are predicted. Here, accuracy, false alarm rate and true positive
rate are predicted. The formulas for these metrics are expressed below in Eqs. (27) to (29):

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(27)
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TPR ¼ TP

TP þ FN
(28)

FPR ¼ FP

FP þ TN
(29)

Tab. 3 depicts accuracy prediction with the NSL-KDD dataset. Figs. 5 and 6 depict graph representation
of accurate prediction. Tab. 7 depicts the TPR and FPR comparison.

Table 1: Challenges encountered in cloud IDS

S.
no

Characteristics Descriptions

1 Attribute
identification

To deal with the complexity in predicting the appropriate quantitative data
instance locality over high-dimensional space.

2 Distance
measurement

Deals with data sparsity. The data points are equidistance in high dimensional
space based on distance measurements

3 Sub-space
prediction

Handles potential subspace features with increased input data dimensionality that
outcomes in search space exponentially

4 Hubness To deal with high dimensional behavior, which comprises data instances that
concurrently appear in the nearest neighborhood, termed as hubs.

5 Uncertainty The uncertain data is due to external events from vulnerable sources like attribute
measures, vagueness, imprecision, ambiguity, and inconsistency. The data that
does not deal with complete certainty is termed as uncertain.

6 Performance The performance is measured in terms of memory and time essential during
anomalies detection over high-dimensional data.

7 Scalability The system ability is based on data size and increasing dimensions.

Table 2: Confusion matrix

Actual

Predicted True Positive (TP) False Positive (FP)

False Negative (FN) True Negative (TN)

Table 3: Accuracy prediction

Accuracy

Naïve Bayes 92

J48 91

AD tree 89

SVM 88

Random forest 74

Bayes model 78

Decision stump 80
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Table 4: NSL-KDD attributes and their descriptions

Att_no. Att_name Explanation Sample
data

1 Duration Time duration length of the connection 0

2 Protocol_type Protocol utilized in establishing a connection TCP

3 Service Utilization of destination network service FTP_data

4 Flag Connection status–normal SF

5 Src_bytes Sum of data bytes from S to D 491

6 Dst_bytes Sum of data bytes from D to S 0

7 Land If both IP addresses/port numbers are similar, the variable
considers 1/0

0

8 Wrong_fragment The total amount of incorrect fragments 0

9 Urgent Sum of urgent packets. It is packets with urgent bit activated 0

Table 5: Attack identification attributes

Protocol type src_bytes dst_bytes Logged in Num root srv_count serror_rate srv_error rate

‘udp' 146 0 0 0 1 0 0

‘tcp' 287 2251 1 0 7 0 0

‘tcp' 232 8153 1 0 5 0.2 0.2

‘tcp' 343 1178 1 0 10 0 0

‘tcp' 300 13788 1 0 9 0 0.11

‘tcp' 253 11905 1 0 10 0 0

‘udp' 147 105 0 0 1 0 0

‘tcp' 437 14421 1 0 1 0 0

‘tcp' 227 6588 1 0 22 0 0

‘tcp' 215 10499 1 0 14 0 0

‘tcp' 303 555 1 0 9 0 0

‘udp' 45 45 0 0 181 0 0

‘udp' 105 147 0 0 2 0 0
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Table 6: Accuracy prediction with NSL-KDD dataset

Accuracy NSL-KDD

J48 81

AB tree 76

RF 82

RT 80

MLP 81

SVM 77

Fuzzy 69

NB 93

Table 8: Training accuracy

Training % Accuracy

10 91.02

20 90.50

30 90.50

40 91.30

50 90.56

60 92.86

70 93

80 91.25

90 90.48

Table 7: FAR and TPR comparison

Classifiers FAR TPR

SVM 0.9 0.94

k-NN 0.27 0.98

J48 0.10 0.97

AB tree 0.65 0.93

RF 0.73 0.95

RT 0.54 0.89

MLP 0.48 0.85

Fuzzy 0.26 0.93

NB 0.3 0.99
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This work compares the detection accuracy of anticipated NB with other models like J48, AD tree,
SVM, random forest, Bayes model and decision stump, respectively. The anticipated model acquires 93%
accuracy for classifier performance. The other model attains 91%, 89%, 88%, 74%, 78% and 80%
respectively.

From the Table mentioned above, accuracy is computed based on evaluation with the NSL-KDD dataset.
The prediction accuracy of NB is higher compared to other approaches. The detection accuracy of the
anticipated NB approach is given in the above Table. The maximal prediction accuracy is 93%, superior
to fuzzy models, RF, RT, SVM, MLP, etc. It is known that the anticipated model is more appropriate for
classifying intrusion detection. The NB model shows the finest and productive performance compared to
other models using testing and training data. Intrusion detection is done more effectually and suited as a
basis for classification for anomaly detection. False Alarm Rate (FAR) and True Positive Rate (TPR) are
the metrics used for evaluation (See Figs. 7 and 8). The comparison is made among existing approaches
like SVM, k-NN, J48, AB tree, RF, RT, MLP, and Fuzzy approaches. The FAR of the proposed NB is
0.3, which is lesser when compared to other approaches. Similarly, the TPR of NB is 0.99 which is 0.5%,
0.1%, 0.2%, 0.6%, 0.4%, 0.10%, 0.14%, 0.6% higher than SVM, k-NN, j48, AB tree, RF, RT, MLP, and

Figure 6: Accuracy prediction with NSL-KDD

Figure 5: Accuracy prediction
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Fuzzy respectively. The training of dataset samples are done with various percentages, i.e., 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, and 90% respectively with an accuracy rate of 91.02%, 90.50%, 90.50%,
91.30%, 90.56%, 92.86%, 93%, 91.25%, and 90.48% respectively. This work uses a 70:30 ratio for
training and testing data partitioning. The auto-encoding-based feature selection can be identified for the
NSL-KDD dataset. The anticipated model shows the finest algorithm within IDS with maximal intrusion
detection accuracy. From Tab. 7, the FAR computation is measured to be 0.3 with 99% TRP. It is shown
in Fig. 9, where the theoretical and experimental outcomes are determined. With this, it is known that the
anticipated model works well in predicting the anomaly over the network.

Figure 8: Anomaly detection probability

Figure 7: FAR and TPR computation
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5 Conclusion

The summary is based on the proposed model while performing various experimentations using the NB
algorithm for anomaly detection. In recent days, eliminating security breaches encountered with current
technologies has been extremely unrealistic. Therefore, intrusion detection is essential for measuring
features in network security. Moreover, detection techniques are not capable of identifying unknown
attacks. Thus, anomaly detection has to be utilized for predicting attacks. In contrast, the Anomaly
detection approach is used for enhancing intrusion detection accuracy. This work develops an improved
NB model for anomaly and intrusion detection. This method is extremely effective for identifying various
attacks and showed superior detection accuracy compared to other models. This model could classify data
as abnormal or normal. It is utilized to predict accuracy and improve performance; IDS-based accuracy
and performances of the anticipated model have been enhanced, and it is executed over real-time network
environments. The experimental outcomes demonstrate that the anticipated approach attains superior
accuracy with 93%, higher than J48, AB tree, RF, RT, MLP, SVM, and Fuzzy. Similarly, FAR and TPR
of NB is 0.3 and 0.99, respectively. The limitations of this work are the systematic analysis of the
constant dataset, but the research lacks real-time investigation of the threat. Similarly, zero-day attacks
should also be analyzed as it shows a huge impact on real-time applications. In the future, a deep
learning classifier or ensemble classifier will be used for enhancing prediction accuracy.
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