Computer Systems Science & Engineering K Tech Science Press

DOI: 10.32604/csse.2023.028227
Article

Investigation of Android Malware with Machine Learning Classifiers using
Enhanced PCA Algorithm

V. Joseph Raymond'*" and R. Jeberson Retna Raj’

"Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119,
Tamilnadu, India
2School of Computing, SRM Institute of Science and Technology, Chennai, 603203, Tamilnadu, India
*Corresponding Author: V. Joseph Raymond. Email: josephrv@srmist.edu.in
Received: 05 February 2022; Accepted: 30 March 2022

Abstract: Android devices are popularly available in the commercial market at
different price levels for various levels of customers. The Android stack is more
vulnerable compared to other platforms because of its open-source nature. There
are many android malware detection techniques available to exploit the source
code and find associated components during execution time. To obtain a better
result we create a hybrid technique merging static and dynamic processes. In this
paper, in the first part, we have proposed a technique to check for correlation
between features and classify using a supervised learning approach to avoid Mul-
ticollinearity problem is one of the drawbacks in the existing system. In the pro-
posed work, a novel PCA (Principal Component Analysis) based feature
reduction technique is implemented with conditional dependency features by
gathering the functionalities of the application which adds novelty for the given
approach. The Android Sensitive Permission is one major key point to be consid-
ered while detecting malware. We select vulnerable columns based on features
like sensitive permissions, application program interface calls, services requested
through the kernel, and the relationship between the variables henceforth build the
model using machine learning classifiers and identify whether the given applica-
tion is malicious or benign. The final goal of this paper is to check benchmarking
datasets collected from various repositories like virus share, Github, and the Cana-
dian Institute of cyber security, compare with models ensuring zero-day exploits
can be monitored and detected with better accuracy rate.

Keywords: Zero-day exploit; hybrid analysis; principal component analysis;
supervised learning; smart cities

1 Introduction

The smartphone generation started later this generation and have achieved the peak in the recent past
years, especially we focus more on Android stack used by the end user’s all over the world at different
levels for different categories, some like to more time on Social Applications, some on Business
Applications and others in Gaming and Media Applications and to certain extend research activities and

This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ @ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

mailto:josephrv@srmist.edu.in
http://dx.doi.org/10.32604/csse.2023.028227
http://dx.doi.org/10.32604/csse.2023.028227

2148 CSSE, 2023, vol.44, no.3

projects done with Android platform. The framework used in Android API (Application Programming
Interface) is more vulnerable because of open-source nature and stack can be modified henceforth
resulting in security breach when distributed across third party and the major source of advertisement.
The attacker is keener on finding useful information from the victim by sending fake Short Messaging
Service (SMS), recording, and access call logs, dropping malicious activities using payload with the help
of Trojan and Backdoor mechanisms [1]. The process of finding and detecting android malicious
applications traditionally is done by static and dynamic analysis. The researchers explore vulnerabilities
using a platform like Kali Linux and emulators like Genymotion or Android Studio henceforth achieving
the target by identifying the threat. The first approach is the static analysis where the payload will be
analyzed using tools like OllyDbg, Integrated Disassembler (IDA) Pro, Java Debugger (JAD) Debugger
and checking the internal functionalities and finding the weakness in code [2]. The second approach is
executing the Android Application Package (APK) application in sandboxing environment and
monitoring events with the help of log cat applications. The combination of static and dynamic analysis
mechanisms called as hybrid approach gives better accuracy and result in detecting the malicious
payload. There is a multicollinearity problem that can come in machine learning classifiers because of
correlational between features which can affect the performance resulting in producing a low score.
According to Yongshuang Liu et al. [3], understanding the semantics of an application will find
information about the API Calls. There are a few permissions that are protected available in the manifest
file. We have to give importance by combining API calls and Permissions resulting in better accuracy.
There is a special kind of approach called Principal Component Analysis (PCA) is a statistical method
that helps us in converting the uncorrelated data to correlated data. This is unsupervised learning where
we understand features and their interrelations. PCA helps us in improving the logistic regressions.
Nowadays most of the developed and developing countries going for smart cities where most people
might use Smartphone’s more specifically android based lead to more vulnerability and threat. This can
cause a major issue for IoT (Internet of Things) concerning security.

In this paper, we have added these sections focusing on related works, understanding existing
methodologies, proposed work, implementation and results, conclusion, and further directions can be
done for research work. In the upcoming sections, we discuss static, dynamic, and hybrid analysis of
android applications applying reverse engineering using disassembly tools. The results obtained from
sandboxing environment are taken along with dataset repositories collected from various sources for
creating the model. One of the major issues inside the dataset is the dependency between variables that
can lead to Multicollinearity problem and henceforth using principal component analysis we handle that
issue in the proposed system we build a classifier based on sensitive android permission for handling and
decision making on zero-day exploits and recent threats which is not updated with most of the antivirus
scanning tool. In the upcoming chapter’s, we discuss about static and dynamic analysis under related
work. The study about data set is done with various machine learning classifiers and its terminologies. In
the proposed work we implement enhanced PCA to overcome multicolinearity issue shows the novelty of
research done and with future conclusions.

2 Related Work
2.1 System Architecture

The application classified as the label and unknown application performed a dynamic analysis based on
behaviour extraction and from there generate feature extraction using vector template and feed into the base
classifier. The probability prediction is based on learning and stacking and decides whether the given
application is Benign or Malicious as shown in the Fig. 1.

CSSE, 2023, vol.44, no.3 2149

A\ 4

t’"‘j_ =
] Dynamic Behavior | Feature Vector
S— -Abstraction - Generation

«_ ’
Labeled Applications

Attribute Database

v
Dynamic Behavior \ Feature Vector

> - straction < -:-::tion

e B

Unknown
Applications

, X ,

Learning Nivs Stacking

Bagging Decision
Tree
Support Vector
Machine

k-NN
Approach(k>15) l

Prediction

Malicious/Benign

Classification Model e
Application

Figure 1: Proposed framework

2.2 Static Analysis

Static analysis is the process of analyzing a binary without executing it. It is easiest to perform and
allows you to extract the metadata associated with the suspect binary. Static analysis might not reveal all
the required information, but it can sometimes provide interesting information that helps in determining
where to focus your subsequent analysis efforts to extract useful information from malware binary.
According to V. Joseph Raymond et al. [2], static analysis works based on code segments and finding out
vulnerable threats. We have used tools like OllyDbg and IDA pro for exploring the implementation work
and finding out modules that can lead to a breach of security. When we discuss in terms of Android

2150 CSSE, 2023, vol.44, no.3

application in static analysis mainly focus on permissions available in the manifest file. In, Arp et al. [3]
suggested the usage of Drebin gather static features like intent filters, permissions and app components.
The output of static features is given as input for logistic regression and using the classification approach
decides whether the APK application is malicious or benign [1]. In, Shahriar et al. [4] implemented a
machine learning detection approach using trained probabilistic features taking frequently used
permissions. In Yerima et al. [5] detection of android malware based on decompiling source code using
ensemble techniques. In MaMadroid [6], the detection of malicious applications is done based on
abstracted API calls using the Markov chain technique.

2.3 Dynamic Analysis

Dynamic Analysis is the process of executing the suspect binary in an isolated environment and
monitoring its behavior. This analysis technique is easy to perform and gives valuable insights into the
activity of the binary during its execution. This analysis technique is useful but does not reveal all the
functionalities of the hostile program. According to V. Joseph Raymond et al. [2], dynamic analysis is
done by executing the android application in Santoku Operating System (OS) and android emulator. In
that work, code reverse engineering is done and injected malicious payload in the benign application and
monitored activities using log cat tools. The process is done sandboxing environment and ensured a safe
home environment. In, Crowdoid [7] detection is based on a cloud architecture by collecting system call
events using a K-mean clustering algorithm. In, Yu et al. [8] detection is done based on system call traces
applying Support Vector Machine (SVM) and naive Bayes classifiers in [9,10], Dmjsevac et al. by
understanding the nature of system call decisions are made for detection also considering the occurrence
of repeated requested to the kernel. In [11], Dash et al. suggested reconstructing high-level behavior from
an application. The demerit point with dynamic analysis is lack of concentration on code can impact the
quality of work [12]. The merit points on both static and dynamic analysis are based on the target and the
exploitation. Fig. 2 shows how feature selection helps in reducing columns in choosing whether the
payload is malicious or not [13,14]. The goal of static and dynamic analysis is to ensure that malware
payload detection done with at most care of host system not getting affected.

sl e | B 2

Dataseort Feature Extraction L______: Statlc Layer
P rn(mwn‘{) a Analysis
Benign
> If Malware
| Feature Selection

I oo
.o:j

Dynamic Layer
Analysis

- =

Malware Malware Family

Category

Figure 2: A hybrid approach for malware detection

2.4 Hybrid Analysis

Cuckoo Sandboxing [15] is an automated malware analysis system that helps in finding suspicious
activities in an isolated environment. Malware in the modern world is used as a cyber weapon by
attackers used on various platforms. The goal is to analyze different malicious files, trace API calls, dump
and analyze network traffic and perform advanced memory analysis using YARA. In [2,16] AspectDroid,
monitoring is done by injecting payload. In [17], Onwuzurike et al. suggested a hybrid mechanism using

CSSE, 2023, vol.44, no.3 2151

Markov chain sequences. In Samadroid [18] they have done hybrid analysis in two steps static features
gathered from APK file shown in Fig. 3.

Figure 3: Static features extracted from APK Application

In the second phase, the hybrid approach is done with data processing, cleaned, and given input to
machine learning classifiers such as logistic regression and target is considered when both approaches are
termed as malicious. It will be less inaccurate in the dynamic analysis [19]. In StormDroid [20] features
collected from sensitive permissions like Short Messaging Service (SMS), intent filters tec. are collected
as given as input as machine learning classifier. The malware detection process is happening by taking
conditional dependency of logistic regression classifiers based on the features shown in above figure [21].
There is a possibility of data overfitting that can come classification algorithm we propose a reduced
feature selection find the correlation between them apply principal component analysis and make the
model which will discuss in the upcoming sections [22].

2.5 Dataset Information

The experimental setup is done by taking the dataset from payloads collected from virus share,
Github, and Canadian Institute for Cyber security [23]. We collected 1403 samples and used 1100 for
training and 303 samples for validation implemented machine algorithm applications using Google Colab
as shown in Tab. 1.

Table 1: Dataset information

Details Malware Family =~ Number of
samples
CCCS-CIC-AndMal2020 Adware 102
CICMalDroid 2020 Backdoor 105
Darknet 2020 Dropper/Trojan 204
Investigation of the Android Malware (CIC-InvesAndMal2019) File Infector 167
Android Malware Dataset (CIC-AndMal2017) Ransomware 107
Android Adware and General Malware Dataset (CIC-AAGM2017) Scare ware 106
ISCX Android Botnet dataset 2015 SMS Attack 102
ISCX Android Validation dataset 2014 Spyware 106
Virus Share 2021 Zero-Day 100

CCCS-CIC-AndMal2020 Benign 304

2152 CSSE, 2023, vol.44, no.3

3 Existing Methodologies

In the existing approach, our paper we are discussing supervised and unsupervised learning without
feature reduction.

3.1 Logistic Regression

In the traditional approach, under classification, the primary classifier is linear or logistic regression
based on the need of the user for training the model. The dataset is made by collecting datasets from
repositories along with the own result obtained from the hybrid analysis. In the first part, logistic
regression is supervised classification where our target variable is a discrete value stating whether the
application is malicious or not called binary classification. This model uses the sigmoid function given
below in figure.

B 1
Cl4elr—z

g(2) (D

The logistic regression is categorized based on either low/high or high/low precision-recall where in the
first case we reduce the false negative for sensitive data and in the latter reduce the false positives. The
presence of android malware comes under binomial logistic regression where the presence is treated as
‘1’ and not present as ‘0’.

y = {0, if fail and 1, if pass})

The data has ‘m’ feature variables and ‘n’ observations and the matrix is represented as shown in figure
below.

Ix11 - xlm
X = : L 3)
1 xnl -+ xnp
We can define conditional probabilities for two labels (0 and 1) for the i
P(yi=1|xi; B) =h(xi) P(yi=0]xi;) =1—h(xi) @

Here, y and h(x) present the vector and predicted response. Xj representing the observation values of the
-th
J feature.

P =pi—o 5)

The learning is defined from « and the value is set explicitly. The merits of using this approach are we
need not take a learning rate, are always quick in execution, and get an appropriate numerical response. The
demerits are a bit complex and look more like black-box testing [24]. The important points to be noticed are
independent variables and non -linear transformation. The dependent variables need not be normally
distributed based on the binomial distribution. The homogeneity and errors need not be focused on in this
type of approach based on large sample approximations. Tabs. 2—4 shows the selection of system call,
API, and permission for detection of android malware. In this paper, we have created a dataset ensuring
system calls, API calls, and permissions with recent exploits and zero-day vulnerabilities. The next step is
the creation of a model using supervised learning [25].

CSSE, 2023, vol.44, no.3

Table 2: Selection of system calls for malware detection

2153

ID System Call ID System Call ID System Call
1 writev 11 pread 21 close
2 Unlink 12 unmask 22 Iseek
3 Socket 13 bind 23 connect
4 recvirom 14 write 24 ioctl
5 readv 15 chdir 25 execve
6 read 16 sendto 26 dup
7 Open 17 Rename 27 fchown
8 Mkdir 18 access 28 Chmod
9 Fentl 19 Recvmsg 29 sendmsg
10 epoll 20 dup2 30 fchown
Table 3: Selection of permission for malware detection
ID API CALLS ID API CALLS
1 _WRITE_SMS 18 _PROCESS OUTGOING_CALLS
2 _WRITE_SETTINGS 19 _MODIFY PHONE STATE
3 _WRITE_HISTORY_ BM 20 _INTERNET
4 _WRITE_EXTERNAL STORAGE 21 _INSTALL PACKAGE
5 _WRITE_CONTACTS 22 _HARDWARE TEST
6 _WRITE_APN_SETTINGS 23 _HARDWARE TEST
7 _VIBRATE 24 _GET_ACCOUNTS
8 _USE_CREDENTIALS 25 _FACTORY_TEST
9 _SEND_SMS 26 _EXPAND_STATUS BAR
10 _RESTART PACKAGE 27 _DIABLE_KEYGUARD
11 _RECEIVE_SMS 28 _DEVICE_POWER
12 _RECEIVE_BOOT_CMD 29 _CHANGE_WIFI_STATE
13 _READ_SMS 30 _CHANGE _NETWORK STATE
14 _READ _PHONE STATE 31 _CALL PHONE
15 _READ_LOGS 32 _ACCESS NETWORK STATE
16 _READ_EXTERNAL STORAGE 33 _ACCESS_LOCATION
17 _READ_CONTACTS 34 _ACCESS_GPS

2154 CSSE, 2023, vol.44, no.3

Table 4: Selection of API calls for malware detection

ID API CALLS ID API CALLS

1 setSerialNumber 18 getMethod

2 sendTextmessage 19 getMessage

3 RequestFocus 20 getLongitude

4 loadClass 21 getLoaction

5 killProcess 22 getLineNumber

6 isProviderEnabled 23 Getlatitude

7 getWifiState 24 getlnputStream

8 getSubscriberID 25 getDisplayAddress
9 getSIMSerialNumber 26 getDevicelD

10 getSimOperatorName 27 getCredential

11 getSession 28 getCookies

12 getPackageName 29 getClassLoader

13 getPackagelnfo 30 getCertStatus

14 getOutputStream 31 getAppPackageName
15 getNetworkType 32 exec

16 getNetworkOperator 33 CreateFromPdu
17 getMsgBody 34 abortBroadCast

3.2 Naive Bayes Classifiers

This approach collection of algorithms where every pair classification is done independently, we divide
into first feature matrix second response vector. The first part contains dependent features and later contains
prediction in simple terms output. The equations given below explains the working principle of the classifier.

P(Y|X)P(X)

PXIY) = =5

(6)
where X and Y are events and checking whether P(Y)? 0 considering the probability of occurrence of X
assuming Y is true termed as evidence. The prior and posterior probability have to be monitored. In our
paper, we have used a Gaussian classifier. The demerit with this approach model will assume ‘0’ as
output in case the dataset having errors or missing values.

3.3 Bagging Decision Tree Classifiers

This approach ensembles with meta-estimator based on voting make a prediction, works similar to
black-box testing where the system is based on input and output comparing random dataset with actual
entities. The merit of this approach will reduce overfitting taking into account variance by removing
multiple entries of the same record. The implementation is done by resampling taking instance and
present multiple times will not be considered.

CSSE, 2023, vol.44, no.3 2155

3.4 Support Vector Machine Classifiers

This approach is non-linear where we map high dimensional features with input data set. The outcome is
non-probabilistic binary classification. The optimization of linear discriminant represents perpendicular
distance. This classifier works on black-box testing where the input training data is compared with the
output label and achieves the result.

3.5 K-Nearest Neighbours Classifiers

In the second part of the experiment, we have implemented using K-Nearest Neighbours supervised
machine algorithm one of the most essential classification algorithm mainly used for intrusion detection
part of cyber security. This algorithm can be used for real-time data and henceforth is mostly suitable for
hybrid analysis. Here we classify the data sets identified with the help of attributes.

3.6 Evaluation Measures and Experimental Setup

The table shown above gives us about selected permissions, selected API (Application Programming
Interface) calls and selected system calls for android malware detections considered for our dataset
created by exploring through hybrid analysis. We can be considered different categories of APK files like
social engineering app, banking, and financial app, games, and sports app. Media app, educational app,
etc. and ensure to take around 800 samples with a combination of malware and benign app from various
repositories like Canadian university of cyber security, virus share, virus total, Drebin, MalDrozer, and
Android Tracker and gathered recent 2020 Applications [26]. The dataset is created by taking features
from the above table and label deciding whether the application is malicious or not. We have used the
google colab platform for implementing the logistic regression using the sklearn kit. We used also used
Numpy and Pandas packages for implementing the mathematical approach. We have used Seaborn
packages for visualizing the accuracy of the model. The selection of input and target label is done by
choosing all features as ‘X’ for the training set and y as the label showing whether the application is
malware or benign. The usage of label encoder for y ensuring the dataset can be understood by the
interpreter before fitting the model. The next step is to split the training set into test and train data
considering 80—20 ratio and assigning random states as zero. The data is transformed into a scalar feature
before choosing the classifier [27].

From the above formula [, True Positives (TP) results in actual prediction same as the expected outcome.
False Positives [FP] actual prediction not as the expected outcome. True Negative [TN} were predicted not in
YES but not in it. Finally, False Negative [FN} predicted not in Yes but actually in it. We can be considered
the same dataset as used for the earlier approach and how this essential approach can give us better accuracy
than the previous model. It is purely based on the number of points from the data set that creates the training
model. We have implemented using the google colab platform importing all the necessary packages. The first
step is to fix the ‘X’ and y variables for the training set and output label. Here also we can use a label encoder
for predicting the label to be malicious or not. The scalar features are transformed for the input training data
set. We split the training data set into train and test based on 80—20 approach before we fit it into the model.
We apply KNeighbors Classifiers and predict the accuracy score which results in both classification and
regression problems. We have to focus more on the scale of variables and the distance between the
observations. First, we find the K value so that compare it with the error rate assuming n_neigbors as “I”’
ranging from 1 to 40. This shows Error Rate vs. K Value as shown in Fig. 5.

From the above graph, we can see that the error rate tends to get slower after k > 15, so we fix n_neigbors
as ‘15’ and get the accuracy rate as 0.76 as shown in Figs. 4 and 5. The existing approach is compared with
Naive Bayes, Bagging Decision Tree, Support Vector Machine, logistic regression, and k-NN classifiers
along with linear regression as shown in Tab. 5. The demerit point with the existing approach is the
Multicollinearity problem where independent variables are highly correlated with each other than the

2156 CSSE, 2023, vol.44, no.3

dependent variables. To overcome this issue researches have been done by tuning the performance of
machine learning classifier like using augmented Naive Bayes approach. But in our proposed approach in
the next section, we will be implementing principle component analysis to perform feature reduction find

the correlation between dependent and independent variables on our data set, and compare performance
with the existing approach [28].

Error Rate vs. K Value

e
036{ |
\
\
i
034 i
i
\
i
032 i
i
H
-3 i
Fowy 1%
5 !
g i
& 028 AR
1% an
[P
026 é | P \.R
o0 \
® \
024 oQ
g 2 . &
022 .. /.'" [e
200000

0 5 10 15 20 3 30 35 40

Figure 4: Error rate in k-NN approach

Benign 18e+02 0 140

Tue label

Malware

Benign Malware
Predicted label

Figure 5: Visualization of accuracy score

Table 5: Binary malware classification using machine learning classifiers without PCA

Dataset Accuracy (%) F-Score Recall Precision
Naive Bayes 76% 0.70 0.76 0.74
Bagging Decision Tree 68% 0.69 0.68 0.66
Support vector machines 76% 0.69 0.76 0.74
Logistic Regression 69% 0.65 0.69 0.64

k-NN Approach (K = 15) 76% 0.70 0.76 0.69

CSSE, 2023, vol.44, no.3 2157

4 Proposed Work and Methodologies

The proposed approach implemented with Principal Component Analysis (PCA) is one of the best
feature extraction techniques well suited for a hybrid approach for detecting whether the android
application is malicious or not. This approach helps in lowering the dimensions giving focus to very
important and critical attributes from the training data set also helps in finding linear combinations which
can countermeasure Multicollinearity problems. The flowchart below given shows how the enhanced
PCA can reduce search time in Fig. 6.

I Input X = AV ‘

sqr(X - (X. X))

w N END

Y
Eigen values calculation

i

Calculate PC1,PC2..PCn (using
max variance calculation)

3
’/Calculate Dissimilar matrix

v
Calculate Local based
similarity

Calculate Global based
similarity

———-[Output: Extracted Features

Figure 6: Flowchart for enhanced PCA

The input variable ‘X’ defines the number of features in the dataset. The original dataset is transformed
as N x d matrix X into an N x m matrix Y. The calculate covariance or correlation matrix using the equation
given below

1

.. 1 v
Cij = lmZXq.z.XqJ ®)

We calculate the Eigenvector and values from the covariance matrix as ~X = AV and then calculate
dissimilar matrix and local-based similarity calculation. We find local feature minimum distance and
global feature minimum distance. The output of the hidden layer is computed by summing input
multiplied with weights shown in the below equation.

ye =1 wixi) ©)
=1

The error is then used to adjust the weights of the input vector according to the delta learning rule. The
outcome will be based on weight-based features. The value of ‘m’ feature variables and ‘n’ observations
based on coefficient’s obtained from maximum variance calculations.

2158 CSSE, 2023, vol.44, no.3

4.1 Feature Selection and Extraction

The feature selection approach also called the variable selection approach or attribute selection approach
can be used to choose features that are most relevant to the predictive modelling problems. Some irrelevant
features and redundant features may appear in feature sets. Irrelevant features should be reduced because they
will have a low correlation with the class. Redundant features should be screened out as they will be highly
correlated with one or more of the remaining features. Since the feature selection approach can remove
irrelevant and redundant features, it usually gives a good or better accuracy whilst requiring fewer data.
We have taken one example of Logistic regression which is a linear classifier whose parameters are
weights, usually in terms of the weight vector, and the regularization parameter to explain the importance
of feature selection for creating models. After training logistic regression is estimated, and the value of
each weight represents how important that weight is for classification. The logistic Regression model uses
Akaike Information Criterion for feature selection. The feature selection algorithm reduced the number of
features to the eight most relevant ones. The experiments finally achieve better accuracy as shown in
Fig. 7 below. The static features extracted from permission, APP Component, Filtered Intent, API are the
major source of extraction and minor features considered are network address, operation code, data flow,
and system components. These features are extracted using a disassembly tool namely the IDA pro demo
version. After executing payload in sandboxing environment extracts features like system call, phone and
SMS event, File Operations, Hook and text analysis using tools like AF Logical and log cat tools
forensics tools. The diagram given below shows the working model of feature selection and extraction
with sensitive permission taken from Android App and Meta data gives data about extracted information.

I Permission IQ— —Di System Call

I APP Component lﬂ— -h{ Network Feature

I Filtered Intent It— -0{ System Component

| API oo
I Network Address]t—
I Operation Code Iﬂ—

|Hardw:uc Component It—_ Static Features FR-:‘:;;;}{[‘;":\:’:::“ » Dynamic Features |fud
alapp Detec

I Control Flow Graph]Q—

}
I Static Taint analysis I'— Broadcast Receiver
I — |‘_ Meta-data Features
I File Property]1— I
I System Command IQ—
| NativeCode fe—
I Other Strings]O—

Battery Feature

Phone Event

SMS Event

User Interaction

>

I NN T T T

Loading Coad

System Command

|<—
| amea | pAIej-[RRos |~—

API

Hook

—
e—
¥ ¥ v ¥

|
|
|
|
|
|
|
File Operation |
|
|
|
|
|
|

-;l Dynamic Taint analysis

meaq
paeju-aadojaas(g
Sofae) Jdv
uoneuLojul
TIEP-EIOU PUGAH
ameag adoy

| amneay e Ic—
| ameaq ddy msuwug |‘—
| AWEN TN BABf |‘_.

I

Figure 7: Feature selection and extraction

CSSE, 2023, vol.44, no.3 2159

4.2 Evaluation Measures and Experimental Setup

The experiment is carried out with objective feature reduction with PCA and implements using logistic
regression and K-NN machine learning classifiers and seeks for better accuracy time. The first step is data
transformation using encoding techniques, find the correlation between variables. This computes the
pairwise correlation of columns shown in Fig. 8. The correlation shows how the two variables are related
to each other. The positive values show as one variable increases other variable increases as well. The
negative values show as one variable increases other variable decreases. The Fig. 9 below shows the
correlation between different features.

Cumulative explained variance

0 2 4 6 8 10 12 14 16
Number of components

Figure 9: Covariance graph

The bigger the values, the more strongly two variables are correlated and vice-versa. The standardization
refers to shifting the distribution of each attribute to have a mean of zero and a standard deviation of one (unit
variance). It is useful to standardize attributes for a model. The standardization of datasets is a common
requirement for many machine learning estimators implemented in scikit-learn; they might behave badly
if the individual features do not more or less look like standard normally distributed data. Before

2160 CSSE, 2023, vol.44, no.3

computing Eigenvectors and values we need to calculate the covariance matrix. To decide which eigenvector
(s) can be dropped without losing too much information for the construction of lower-dimensional subspace,
we need to inspect the corresponding eigenvalues: The eigenvectors with the lowest eigenvalues bear the
least information about the distribution of the data; those are the ones can be dropped as shown in
Fig. 10. Thus Principal Component Analysis is used to remove the redundant features from the datasets
without losing much information. The first component has the highest variance followed by the second,
third, and so on. PCA works best on data set having 3 or higher dimensions. In our paper, we have taken
16 features reduced from correlated values. The second part of the proposed work shows the
implementation of PCA in the k-NN approach. From the below graph, we can see that the error rate tends
to get slower after k > 15, so we fix n_neigbors as ‘15’ in Fig. 10. The output is shown in Figs. 11 and
12. The proposed approach is compared with Naive Bayes, Bagging Decision Tree, Logistic Regression,
Support Vector Machine classifiers and henceforth k-NN approach better accuracy rate of 0.80, and
having improved result compared to existing approaches shown in Tab. 6.

Eigenvalues in descending order:
0.2901276239796337
0.01970593104972168
3.4694469519853614e-18
3.026804245108984262-18
8.036715440582723e-33
7.455870519486959e-35
.490373289241958e-35
8233032659763e-52
506444365481195e-66
.453180562756911e-69
453180562756911e-69
4666617693127476e-102
965534120805702e-118
e
e
e

5
8.
2s
2
25
5
3.
B
9.
0.
Figure 10: Eigen value in descending order

Error Rate vs. K Value

0.7 14

06 1

Error Rate
o
"

(&)

]

1

|

]

1

'

]

1

)

)

1

|}

]

1

)

)

)

]

]

1

|

)

1

|

]

‘

04 :
1
'
]
1
]
)

031

0000000, e e%v0000000000® 0000000000000

0 5 10 15 20 25)
K

£ a0

Figure 11: Error rate in k-NN approach

CSSE, 2023, vol.44, no.3 2161

160

140
Benign 17e+02

120
100

Tue label

Malware

Benign Malware
Predicted label

Figure 12: Visualization of the confusion matrix

Table 6: Binary malware classification performance using machine learning with PCA

Dataset Accuracy (%) F-Score Recall Precision
Naive Bayes 77% 0.71 0.77 0.76
Bagging Decision Tree 76% 0.72 0.76 0.73
Support vector machines 78% 0.72 0.78 0.76
Logistic Regression 75% 0.68 0.75 0.82
k-NN Approach 80% 0.72 0.80 0.65

5 Result Discussion

The comparative analysis of Naive Bayes, Bagging Decision Tree, Logistic Regression, Support Vector
Machine classifiers, and k-NN approaches are made without using principal component analysis and with
principal component analysis and from the table given below we can see that model has achieved 80%
accuracy with PCA for a k-NN approach using k = 15 better than the accuracy of 76% without PCA
comparing with other classifier’s. We have 100 epochs for validating and testing model. The outputs of
static features are given as input for the machine learning classifier and using the classification approach
decides whether the APK application is malicious or benign as discussed in the proposed framework.
When we compare the performance with the existing approach, the proposed has better accuracy, F-
Score, Recall and Precision as shown in Tabs. 5 and 6.

6 Conclusion and Future Work

The detection of android malware using a hybrid approach applying supervised learning for a dataset
consisting of zero-day exploits and archives collected from recent payloads achieved an accuracy rate and
visualize the model. We have explored and used effective forensics tools like Android Forensics (AF)
logical tool for extracting features removes redundant data for creating the model. We filter out redundant
features and optimize feature selection for better accuracy which can be considered as an optimization
approach. We have also saved time and space by keeping minimum hardware and software requirements
for building a model which can be used for a small-scale approach. The Multicollinearity problem is
handled using principal component analysis by extracting and reducing features based on correlation. By
using PCA (Principal Component Analysis) we ensure that dependency between variables is reduced

2162 CSSE, 2023, vol.44, no.3

resulting in better accuracy. The comparison is done with existing classifiers without using PCA and found
that the error rate little bit higher. The potential limitation with proposed work might be some error rates
achieved while implementing k-NN approach. In future work, we can move forward to implement
unsupervised learning like Multilayer Perception apply clustering accuracy and further go for CNN
(Convolution Neural Network) by applying XG- Boost Model increases the accuracy and then rank
android malware payload and choose based on the level of impact. Henceforth by this approach, we can
better the accuracy rate by using this model. As the functions of each application are increasingly
powerful it has become mandatory for us to protect the user from vulnerable threats as we know that
most of the Applications on the Android platform are not encrypted. As the next generation moving
towards smart cities where most users will be using the android application for various purposes like
banking, finance, fitness and health, social applications the possibility of threats might increase in the
case of unencrypted applications as well as weaker applications. This might be one of the major
challenges while establishing IoT platforms where most devices are connected with the internet resulting
in breaking of integrity and confidentiality. Our proposed work leading to the threat model can suggest or
helps in decision-making for users while installing an application from not trusted resources.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] R. Surendran, T. Thomas and S. Emmanuel, “A TAN based hybrid model for android malware detection,” Journal
of Information Security and Applications, vol. 54, no. 5, pp. 102483-102495, 2020.
[2] V. J. Raymond and R. J. R. Raj, “Reversing and auditing of android malicious applications using sandboxing
environment,” International Journal of Electronic Security and Digital Forensics, vol. 12, no. 4, pp. 386-396, 2020.

[3] Y. Zheng and B. Liu, “Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm,”
Applied Mathematics and Computation, vol. 176, no. 2, pp. 673—683, 2006.

[4] H. Shahriar, M. Islam and V. Clincy, “Android malware detection using permission analysis,” IEEE Access, vol.
12, no. 6, pp. 1-6, 2017.

[51 S. Y. Yerima, S. Sezer and 1. Muttik, “High accuracy android malware detection using ensemble learning,” IET
Information Security, vol. 9, no. 6, pp. 313-320, 2017.

[6] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro and G. Ross, “Mamadroid: Detecting Android malware
by building Markov chains of behavioral models,” arXiv preprint arXiv, vol. 16, no. 12, pp. 4433-4445, 2016.

[7] 1. Burguera, U. Zurutuza and S. Nadjm-Tehrani, “Crowdroid: Behavior-based malware detection system for
android,” in Proc. Ist ACM workshop on Security and Privacy in Smartphones and Mobile Devices, German,
vol. 23, no. 6, pp. 15-26, 2011.
[8] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song ef al., “A novel 3-level hybrid malware detection model
for android operating system,” IEEE Access, vol. 6, no. 16, pp. 4321-4339, 2018.
[9] V. Bulakh and M. Gupta, “Countering phishing from brands’ vantage point,” in Proc. ACM Int. Workshop on
Security and Privacy Analytics, Italy, vol. 12, no. 2, pp. 17-24, 2016.
[10] G. Canfora, E. Medvet, F. Mercaldo and C. Vissagio, “Vissagio detection of malicious web pages using system
calls sequences,” in Proc. Int. Conf. on Availability, Reliability, and Security, United States of America, vol. 4, no.
7, pp. 226238, 2014.
[11] S. K. Dash, G. S. Tangil, S. J. Khan, K. Tam, M. Ahmadi et al., “Classifying android malware based on runtime
behavior,” in Proc. IEEE Security and Privacy Workshops, Chinal7, 5, pp. 252-261, 2016.
[12] J. NewSom, “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits

on Commodity Software, Network and Distributed System Security,” in Proc. Symp. Conf-, China, vol. 7, pp.
231-245, 2005.

CSSE, 2023, vol.44, no.3 2163

[13] K. Tam, S. J. Khan and A. Fattori, “Copperdroid: Automatic reconstruction of android malware behaviors,” in
Proc. NDSS Symp. 2015, California, USA, vol. 5, no. 9, pp. 371-389, 2015.

[14] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Proc. IEEE Symp. on Security and Privacy,
vol. 4, no. 9, pp. 156-168, 2001.

[15] S. Jamalpur, S. Navya, Y. S. Raja, P. Tagore and G. R. K. Rao, “Dynamic malware analysis using cuckoo
sandbox,” Proc. Second Int. Conf. on Inventive Communication and Computational Technologies, USA, vol.
12, no. 4, pp. 1056-1060, 2018.

[16] A. Ali-Gombe, I. Ahmed and 1. Richard, “Aspectdroid: Android app analysis system,” Proc. Sixth ACM Conf. on
Data and Application Security and Privacy, German, vol. 7, no. 11, pp. 145-147, 2016.

[17] E.Mariconti, L. Onwuzurike, P. Andriotis and E. De Cristofaro, “Detecting android malware by building Markov
chains of behavioral models,” arXiv preprint arXiv, vol. 16, no. 8, pp. 1612—-1625, 2016.

[18] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song et al., “A novel 3-level hybrid malware detection model
for android operating system,” IEEE Access, vol. 6, no. 9, pp. 4321-4339, 2018.

[19] M. Ajdani and H. Ghaffary, “Design network intrusion detection system using support vector machine,”
International Journal of Communication Systems, vol. 34, no. 3, pp. 4689-4694, 2021.

[20] S. Chen, M. Xue, Z. Tang, L. Xu and H. Zhu, “A streaminglized machine learning-based system for detecting
android malware,” Proc. 11th ACM on Asia Conf. on Computer and Communications Security, China, vol. 37,
no. 8, pp. 377-388, 2016.

[21] X. Liao, Y. Xue and L. Carin, “Logistic regression with an auxiliary data source,” Proc. 22nd Int. Conf. on
Machine Learning, vol. 5, no. 18, pp. 505-512, 2005.

[22] S. Wold, S. Esbensen and P. Geladi, “Principal component analysis,” Chemometrics and Intelligent Laboratory
Systems, vol. 2, no. 3, pp. 37-52, 1987.

[23] B. Abu-Shaqra and R. Luppicini, “Technoethical inquiry into ethical hacking at a Canadian University,”
International Journal of Technoethics (IJT), vol. 7, no. 1, pp. 6276, 2016.

[24] A. M. Abdelrahman, J. J. Rodrigues, M. Mahmoud, K. Saleem, K. A. ef al, “Software-defined networking
security for private data center networks and clouds: Vulnerabilities, attacks, countermeasures, and solutions,”
International Journal of Communication Systems, vol. 34, no. 4, pp. 7746—7758, 2021.

[25] R. Wazirali and R. Ahmed, “Hybrid feature extractions and CNN for enhanced periocular identification during
Covid-19,” Computer Systems Science and Engineering, vol. 41, no. 1, pp. 305-306, 2022.

[26] M. Baz, S. Khatri, A. Baz, H. Alhakami, A. Agrawal et al., “Blockchain and artificial intelligence applications to
defeat COVID-19 pandemic,” Computer Systems Science and Engineering, vol. 40, no. 2, pp. 691-702, 2022.

[27] W. Sun, G. Z. Dai, X. R. Zhang, X. Z. He and X. Chen, “TBE-Net: A three-branch embedding network with part-
aware ability and feature complementary learning for vehicle re-identification,” IEEE Transactions on Intelligent
Transportation Systems, vol. First Online, pp. 1-13, 2021.

[28] W. Sun, L. Dai, X. R. Zhang, P. S. Chang and X. Z. He, “RSOD: Real-time small object detection algorithm in
UAV-based traffic monitoring,” Applied Intelligence, vol. 92, no. 6, pp. 1-16, 2021.

	Investigation of Android Malware with Machine Learning Classifiers using Enhanced PCA Algorithm
	Introduction
	Related Work
	Existing Methodologies
	Proposed Work and Methodologies
	Result Discussion
	Conclusion and Future Work
	References

