
Stacked Gated Recurrent Unit Classifier with CT Images for Liver Cancer
Classification

Mahmoud Ragab1,2,3,* and Jaber Alyami4,5

1Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah,
21589, Saudi Arabia

2Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
3Department of Mathematics, Faculty of Science, Al-Azhar University, Naser City, 11884, Cairo, Egypt

4Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz, Jeddah, 21589, Saudi Arabia
5Imaging Unit, King Fahd Medical Research Centre, King Abdulaziz, Jeddah, 21589, Saudi Arabia

*Corresponding Author: Mahmoud Ragab. Email: mragab@kau.edu.sa
Received: 06 January 2022; Accepted: 10 March 2022

Abstract: Liver cancer is one of the major diseases with increased mortality in
recent years, across the globe. Manual detection of liver cancer is a tedious and
laborious task due to which Computer Aided Diagnosis (CAD) models have been
developed to detect the presence of liver cancer accurately and classify its stages.
Besides, liver cancer segmentation outcome, using medical images, is employed
in the assessment of tumor volume, further treatment plans, and response moni-
toring. Hence, there is a need exists to develop automated tools for liver cancer
detection in a precise manner. With this motivation, the current study introduces
an Intelligent Artificial Intelligence with Equilibrium Optimizer based Liver can-
cer Classification (IAIEO-LCC) model. The proposed IAIEO-LCC technique
initially performs Median Filtering (MF)-based pre-processing and data augmen-
tation process. Besides, Kapur’s entropy-based segmentation technique is used to
identify the affected regions in liver. Moreover, VGG-19 based feature extractor
and Equilibrium Optimizer (EO)-based hyperparameter tuning processes are also
involved to derive the feature vectors. At last, Stacked Gated Recurrent Unit
(SGRU) classifier is exploited to detect and classify the liver cancer effectively.
In order to demonstrate the superiority of the proposed IAIEO-LCC technique in
terms of performance, a wide range of simulations was conducted and the results
were inspected under different measures. The comparison study results infer that
the proposed IAIEO-LCC technique achieved an improved accuracy of 98.52%.

Keywords: Liver cancer; image segmentation; artificial intelligence; deep
learning; CT images; parameter tuning

1 Introduction

Globally, liver cancer is one of the major causes that leads to high mortality [1]. Liver cancer may either
start in liver itself or it may begin somewhere else in the body and reach the liver cell at last in the form of
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secondary liver cancer (otherwise called metastasis). Different types of liver cancers have been identified so
far such as Hepatocellular Carcinoma (HCC), bile duct cancer, angiosarcoma, hepatoblastoma, and
hemangiosarcoma. Among these, Hepatocellular carcinoma (HCC) is the most common and predominant
liver cancer reported among men than their counterparts [2]. Usually, HCC spreads across the body of the
patient diagnosed with chronic liver disease [3]. Numerous imaging methods exist for the diagnoses of
HCC for example, Positron Emission Tomography (PET), contrast-enhanced ultrasound perfusion
magnetic resonance imaging, Computed Tomography (CT), and PET-CT. Among these, CT is the most
preferred imaging method for diagnosis as well as recognition of hepatic metastases and HCC, thanks to
its high specificity and sensitivity [4]. Further, multi-slice CT scanner provides high resolution 3D images
through low dose radiation. CT technique captures 3D volume images of the liver through X-rays
produced by a rotating X-ray source and detector assembly over the patients [5]. CT scan investigation is
a critical phase in the early diagnosis of liver cancer. The investigation is conducted through manual,
semi-automatic, or automatic models through certified professionals such as radiotherapist. Among the
given models, manual method lacks repeatability and is also a time-consuming process. In the past few
years, with rapid advancements made in the field of Machine Learning (ML) and Computer Vision (CV)
algorithms, the automatic classification methods for liver cancer images too have tremendously increased.

Computer Aided Diagnosis (CAD) is used to classify the stage of liver cancer so as to support the
physician in decision making procedures [6]. For efficient classification of different stages of liver cancer,
artificial intelligence and image processing methods must have the capability in study application. Liver
cancer can be diagnosed through different methods such as watershed transform, ML, and region-based
methods. Usually, Deep Learning (DL) is the simplest method to standardize the pixels of images to a
similar level. Therefore, the extracted image could reflect the features of image itself for the preprocessed
image whereas the nature of the extracted features determine the accuracy of the process [7]. Finally, it
can be concluded that the object class in images is the key component in DL method. It is also the focus
of a number of existing works [8]. ML algorithm has attained good radiological efficacy and solved the
gap in radiological classification of distinct diseases [9,10]. Convolution Neural Network (CNN) of DL
methods have been employed earlier for automated identification of liver cancer from CT scan images.

Mao et al. [11] examined the application of ML-based ultrasound radiomics in effective segmentation of
metastatic and primary liver cancer images. In this study, liver lesion was automatically classified by two
professionals using ITK-SNAP software. The seven classes of radiomics features have been extracted
from Pyradiomics framework. Ding et al. [12] presented the current technological provisions for medical
treatment and diagnoses and he validated the provisions in terms of enhanced rigor, objectivity, and
accuracy of segmentation of Traditional Chinese medicine (TCM) syndrome. According to fuzzy
mathematics concept, the authors measured the signs and symptoms of syndrome-based TCM factor and
also the data from TCM four diagnosis modes. Following this, with Extreme Learning Machine (ELM)
system and Particle Swarm Optimization (PSO), a Neural Network (NN) syndrome prediction and
classification model was created utilizing ‘TCM symptom + sign + tongue diagnoses data + pulse
diagnoses data’ as input and syndrome as output. This method was utilized in the mining of non-linear
relationships among medical information with different syndrome types and electronic medical records.

Rajesh et al. [13] deliberated a predictive method for liver cancer. Being reported as one of the most deadly
types of cancer, a straightforward method was presented in this study to predict liver cancer via widely
accessible data sets. Distinct kinds of data preprocessing were performed on the data set to extract the
optimal data. Further, the study experiments utilized distinct kinds of classifier methods too to arrive at the
predictive outcomes. In the study conducted earlier [14], histopathological H&E image from Genomic Data
Common Databases was utilized to train a NN system (inception V3) for automated classification. When
this method that use Matthew relation coefficients was assessed, the efficiency level was found to be closer
to the capacity of 5-year experiences. The researchers [15] projected a hybrid Feature Selection
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(FS) method by integrating sequential forward selection and data gain-based class-dependent method (IGSFS-
CD) for the segmentation of liver cancer images. Two distinct classifications namely naïve Bayes (NB) and
Decision Tree (DT) have been utilized in this study to evaluate the feature subset.

The current study introduces an Intelligent Artificial Intelligence with Equilibrium Optimizer based Liver
Cancer Classification (IAIEO-LCC) model. The proposed IAIEO-LCC technique initially performs Median
Filtering (MF)-based pre-processing and data augmentation process. Besides, Kapur’s Entropy (KE)-based
segmentation technique is also used to identify the affected regions in liver. Moreover, VGG-19 based
feature extractor and Equilibrium Optimizer (EO)-based hyperparameter tuning processes are also involved
in this study to derive the feature vectors. Finally, Stacked Gated Recurrent Unit (SGRU) classifier is
exploited to detect and classify the stages of liver cancer effectively. In order to demonstrate the superior
performance of the proposed IAIEO-LCC technique, a wide range of experiments was carried out.

2 The Proposed IAIEO-LCC Technique

In this study, an effective IAIEO-LCC technique has been developed to differentiate the classes of liver
images. The proposed IAIEO-LCC technique primarily undergoes MF-based noise elimination, data
augmentation, KE-based segmentation, VGG-19 based feature extraction, EO-based hyperparameter
tuning, and SGRU-based classification. SGRU classifier is exploited to detect and classify the liver cancer
effectively.

2.1 Pre-processing: Data Augmentation and Filtering Technique

In order to train the CNN model, huge quantities of labeled data are required. Since the model, trained
with restricted data, might fail to achieve generalization, increasing the size of the dataset is a promising way
to reduce overfitting or memorization problems. Data augmentation is an effective way to raise the number of
images whereas geometric translations such as shearing, flipping, shifting, and zooming are used to augment
the images.

MF utilizes the median values of the window to replace intermediate pixels treated by the window.When
intermittent pixels are noisy, it gets substituted by intermediate window value. The median value is
considered as the mid-point value after sorting process. Hence, the undistorted pixels can be substituted
using the median value of the window.

Sample window Output
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255 45ð Þ 52
64 64 82

2
4

3
5 !
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255 82ð Þ 52
64 64 82

2
4

3
5 (1)

2.2 Segmentation: Kapur’s Entropy

Both pre-processed and augmented images are then passed on to KE-based segmentation approach for
the identification of affected regions. KE technique seeks to determine the optimal threshold value, t. Usually,
t gets a value between [1,255] (for 8-bit depth image) which subdivides an image into E0, and E1 which still
maximizes the subsequent function.

F tð Þ ¼ E0 þ E1 (2)

E0 ¼ �
Xt�1

i¼0

Xi

T0
� ln Xi

T0
;Xi ¼ Ni

T
;T0 ¼

Xt�1

i¼0
Xi (3)
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E1 ¼ �
XL�1

i¼t

Xi

T1
� ln Xi

T1
;Xi ¼ Ni

T
; T1 ¼

Xt�1

i¼1
Xi; (4)

where Ni implies the number of pixels with gray value, i, and T signifies the number of pixels from image
[16]. Eq. (1) is adapted simply to determine multi-threshold values that separate the image as to distinct
homogenous area, in which it can be reformed as follows: Consider that the gray image with intensity
values are in the range of 0; L�1½ �. Afterwards, this technique seek to find the n optimum threshold
values t0; t1; t2; . . . :: tn½ � which subdivides the image in to E0; E1; E2; . . . . . . ; En½ � for maximizing the
subsequent function.

F t0; t1; t2; . . . :: tnð Þ ¼ E0 þ E1 þ E2 þ � � � � � � � � � þ En (5)

E0 ¼ �
Xt0�1

i¼0

Xi

T0
� ln Xi

T0
;Xi ¼ Ni

T
;T0 ¼

Xt1�1

i¼0
Xi (6)

E1 ¼ �
Xt1�1

i¼t0

Xi

T1
� ln Xi

T1
;Xi ¼ Ni

T
;T1 ¼

Xt1�1

i¼t0
Xi (7)

E2 ¼ �
Xt2�1

i¼t1

Xi

T2
� ln Xi

T2
;Xi ¼ Ni

T
;T2 ¼

Xt2�1

i¼t1
Xi (8)

En ¼ �
XL�1

i¼tn

Xi

Tn
� ln Xi

Tn
;Xi ¼ Ni

T
; Tn ¼

XL�1

i¼tn
Xi (9)

2.3 Feature Extraction: EO+VGG-19 Model

The segmented images are then passed onto VGG19 method to produce a collection of feature vectors.
VGGNet [17] is a kind of DL model with numerous layers. It mainly depends upon CNN model, exhibits
simplicity and has 3 × 3 convolution layers which are kept at the top for increasing the depth. In order to
reduce the size of volume, max-pooling layer is employed as a handler in VGG-19 model. A pair of
Fully Connected (FC) layers is utilized with 4,096 neurons. During training process, the convolution
layer is applied to derive the features and max-pooling layer related to few convolution layers can be
utilized for minimizing the feature dimensionalities. At initial convolution layer, 64 kernels (3 × 3 filter
size) are utilized to derive the feature vectors from input image, and the FC layer is utilized to prepare the
feature vectors. Fig. 1 offers the structure of VGG-19 model.

For optimal modification of the hyperparameters involved in VGG19, EO is utilized. A metaheuristic
technique, simulated as physics laws such as EO, was presented to resolve the optimized issues. Further,

Figure 1: Structure of VGG-19 model
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the data on the simulation of EO was established in [18]. The mathematical process of EO technique was
showcased in subsequent three steps.

Step 1: Initiation

In this step, EO utilizes a set of particles, in which all the particles signify the concentration vector which
has the solution to optimize the issue. The primary concentration vector is created arbitrarily from search
space, utilizing the equation given below.

~v ¼ cmin þ cmax � cminð Þ�r i ¼ 0; 1; 2; . . . ; n; (10)

where~vi implies the concentration vector of particle i; c min ; c max define the upper and lower bounds to all
dimensions from the problem correspondingly, r stands for arbitrary number in the range of zero and one, and
n denotes the amount of particles from the groups.

Step 2: Equilibrium pool and candidate solutions ~pð Þ
In order to incorporate metaheuristic technique, there exists an objective for everyone, based on their

nature, who tries to achieve it. If receiving the equilibrium state is the objective, EO receives near-
optimum solutions for optimized problems. During optimization procedure, EO does not recognize the
level of concentration that attains the equilibrium state. Therefore, it allocates four optimum particles
established from the population at equilibrium candidate solution and it also comprises of different
average of four optimum particles. These five equilibrium candidate solutions support EO from
exploration and exploitation operators. The 1st four candidate solutions help EO in attaining optimum
diversification abilities, and the average enhancement from exploitation. These five candidate solutions
are saved from the vector such as equilibrium pool [19]:

~peq;pool ¼ ~peq 1ð Þ;~peq 2ð Þ;~peq 3ð Þ;~peq 4ð Þ;~peq 5ð Þ
h i

(11)

Step 3: update the concentration

The subsequent term supports the EO containing a plausible balance between intensification and
diversification. As the turnover rate differs over time in real control volumes, ~k is assumed to be an
arbitrary vector between zero and one.

~F ¼ e�
~k t�t0ð Þ; (12)

where t reduces with increment from the iteration (it) utilizing the equation given below.

t ¼ ð1� it

t max
Þ

a2�
it

t max

� �� �
; (13)

where it and tmax stand for present and maximal iterations correspondingly. And a2 refers to constant values
that are utilized for controlling the intensification (exploitation) abilities. Other factors, a1 is utilized for
improving the diversification and intensification of EO and is created as follows.

~t0 ¼ 1
~k
lnð�a1sign ~r � 0:5ð Þ 1� e�

~kt
h �

þ t; (14)

where a1 refers to a constant value utilized for managing the exploration abilities. Once a1 is superior, the
diversification ability becomes optimum whereas intensification ability becomes lesser. Conversely a1; a2
signify the constant's value utilized for controlling the exploitation ability. If a2 is superior, the
intensification ability is superior while diversification capability is minimum [19]. The generation rate (R)
is another term utilized in the improvement of intensification function and is expressed as follows
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*

R ¼ *

R0 � e�~k� t�t0ð Þ; (15)

where ~k signifies the arbitrary vector in the range of zero and one and
*

R0 represents the primary value and is
demonstrated as follows.

*

R0 ¼ RCP
��!� ceq

�!� ~k � *

C
� �

(16)

RCP
��! ¼ 0:5r1 r2 > RP

0 otherwise0

�
(17)

where r1 and r2 signify the arbitrary numbers between zero and one. In this formula, RCP
��!

vector is the
generation rate which is implemented to upgrade the model depending upon probability, RP: Eventually,
the upgraded formula of EO is as follows.

*

C ¼ ceq
�!þ ~C � ceq

�!� 	 � *

F þ
~R

~k � V
� 1�~F
� 	

; (18)

where V is equivalent to 1.

2.4 Classifier: Stacked GRU Model

Finally, SGRU classifier is utilized for the differentiation of liver cancer images effectively.
Conventional ML techniques manage time series issues; all the moments of instance are considered to be
independent arbitrary variables which can be provided as to regression technique or NN to train. But, this
technique considers that the data at distinct moments are independent of each other, and its order in time
remains non-assumed. Recurrent Neural Network (RNN) is presented to capture this temporal correlation
with the help of ML. GRU has been altered with RNN depending upon Long Short Term Memory
(LSTM). If the error signal propagates backward with time in conventional RNN, then the signal is
provided to vanish or blow up. This case eventually leads to failure of the learning network [20]. GRU
not only maintains the capability to prevent the earlier revealed problems whereas it also decreases the
difficulty of framework without losing an efficient learning capability.

Both reset and update gates are FC layers with sigmoid activation and are utilized for controlling the
memory [20]. GRU cell is demonstrated as follows.

zn ¼ r Wzxn þ Uzhn�1 þ bzð Þ;
rn ¼ r Wrxn þ Urhn�1 þ brð Þ; (19)

ehn ¼ tanh Wxn þ U rn � hn�1ð Þ þ bð Þ;
hn ¼ 1� znð Þ � ehn þ zn � hn�1;

whereW and U signify the weight matrices of FC layer and b stands for bias vector. r and tanh represent the
sigmoid and tanh activation function correspondingly. � denotes element-wise product between two
matrices of similar size. To make the GRU function, its present hidden state is linked with next hidden
state input. In order to improve the learning capability, several GRU cells are stacked together in input-
output way, and the resultant GRU cell, from all the steps, are utilized as input of next GRU cell at
corresponding step. Related to single layer GRU, stacked GRU has several hidden states that enhance the
capability for learning time series, as shown in Fig. 2.
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3 Results and Discussion

The performance of the proposed IAIEO-LCC technique was validated using a collection of CT scan
images collected from various sources. The dataset includes images under three classes such as
Hemangioma (HEMA), Hepatocellular Carcinoma (HCC), and Metastatic Carcinoma (MEC). Each class
holds a set of 75 images which became 150 after data augmentation process. Fig. 3 demonstrates the
sample test images. The confusion matrix generated by the proposed IAIEO-LCC technique with training/
testing set of 80:20 is portrayed in Fig. 4. The results report that IAIEO-LCC technique has classified
29 instances under HEMA class, 30 images under HCA class, and 29 instances under MSC class.

The results obtained by IAIEO-LCC technique, on the classification of liver cancer images under
training/testing set of 80:20, are shown in Tab. 1 and Fig. 5. The results demonstrate the enhanced
effectiveness of the proposed IAIEO-LCC technique in terms of different measures. The proposed
IAIEO-LCC technique classified HEMA class with SENSY , SPECY , ACCUY , PRECN , and FSCORE of
96.67%, 98.33%, 97.78%, 96.67%, and 96.67% respectively.

Figure 2: Overall structure of SGRU model

Figure 3: Sample test images
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Moreover, IAIEO-LCC technique categorized the HCA class with SENSY , SPECY , ACCUY , PRECN ,
and FSCORE of 100%, 100%, 100%, 100%, and 100% respectively. Furthermore, IAIEO-LCC technique
identified the MSC class with SENSY , SPECY , ACCUY , PRECN , and FSCORE of 96.67%, 98.33%,
97.78%, 96.67%, and 96.67% respectively.

Figure 4: Confusion matrix of IAIEO-LCC approach with a training/testing set of 80:20

Table 1: Liver cancer classification results of IAIEO-LCC technique under a training/testing set of 80:20

Training/Testing (80:20)

Methods Sensitivity Specificity Accuracy Precision F-Score

HEMA 96.67 98.33 97.78 96.67 96.67

HCA 100.00 100.00 100.00 100.00 100.00

MSC 96.67 98.33 97.78 96.67 96.67

Average 97.78 98.89 98.52 97.78 97.78

Figure 5: Classifier results of IAIEO-LCC technique under a training/testing set of 80:20
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The confusion matrix generated by IAIEO-LCC technique with training/testing set of 70:30 is portrayed
in Fig. 6. The experimental values highlight that the proposed IAIEO-LCC technique recognized
44 instances as HEMA class, 41 images as HCA class, and 42 instances as MSC class.

The experimental values offered by the proposed IAIEO-LCC technique on the classification of liver
cancer with training/testing set of 70:30, are presented in Tab. 2 and Fig. 7. The results reveal the
improved effectiveness of IAIEO-LCC technique in terms of dissimilar measures. The proposed IAIEO-
LCC technique categorized HEMA class with SENSY , SPECY , ACCUY , PRECN , and FSCORE values
being 97.78%, 97.78%, 97.78%, 95.65%, and 96.70% respectively. Furthermore, IAIEO-LCC technique
categorized HCA class with SENSY , SPECY , ACCUY , PRECN , and FSCORE values being 91.11%,
96.67%, 94.81%, 93.18%, and 92.13% respectively. Besides, IAIEO-LCC technique identified MSC class
with SENSY , SPECY , ACCUY , PRECN , and FSCORE values such as 93.33%, 96.67%, 95.56%, 93.33%,
and 93.33% respectively.

The confusion matrix generated by IAIEO-LCC technique with a training/testing set of 60:40 is
portrayed in Fig. 8. The results state that the proposed IAIEO-LCC technique recognized 58 instances as
HEMA class, 57 images as HCA class, and 57 instances as MSC class.

Figure 6: Confusion matrix of IAIEO-LCC approach with a training/testing set of 70:30

Table 2: Liver cancer classification results of IAIEO-LCC technique under a training/testing set of 70:30

Training/Testing (70:30)

Methods Sensitivity Specificity Accuracy Precision F-Score

HEMA 97.78 97.78 97.78 95.65 96.70

HCA 91.11 96.67 94.81 93.18 92.13

MSC 93.33 96.67 95.56 93.33 93.33

Average 94.07 97.04 96.05 94.06 94.06
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The results achieved by the proposed IAIEO-LCC technique, on the classification of liver cancer with
training/testing set of 60:40, are presented in Tab. 3 and Fig. 9. The results validate the boosted effectiveness
of IAIEO-LCC technique in terms of different measures. The IAIEO-LCC technique categorized HEMA
class with SENSY , SPECY , ACCUY , PRECN , and FSCORE values such as 96.67%, 98.33%, 97.78%, 96.67%,
and 96.67% respectively. Also, the proposed IAIEO-LCC technique categorized HCA class with SENSY ,
SPECY , ACCUY , PRECN , and FSCORE values such as 95%, 95.83%, 95.56%, 91.94%, and 93.44%
respectively. Likewise, the presented IAIEO-LCC technique segregated MSC class with SENSY , SPECY ,
ACCUY , PRECN , and FSCORE values such as 95%, 99.17%, 97.78%, 98.28%, and 96.61% respectively.

Figure 7: Classification results of IAIEO-LCC approach with a training/testing set of 70:30

Figure 8: Confusion matrix of IAIEO-LCC approach with a training/testing set of 60:40

Table 3: Liver cancer classification results of IAIEO-LCC technique under a training/testing set of 60:40

Training/Testing (60:40)

Methods Sensitivity Specificity Accuracy Precision F-Score

HEMA 96.67 98.33 97.78 96.67 96.67

HCA 95.00 95.83 95.56 91.94 93.44

MSC 95.00 99.17 97.78 98.28 96.61

Average 95.56 97.78 97.04 95.63 95.57
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In order to ensure the betterment of the proposed IAIEO-LCC technique, a comparison study was
conducted against MLP, SVM, Random Forest (RF), J48, and NB models [21,22] and the results are
shown in Tab. 4. Fig. 10 illustrates the comparison of IAIEO-LCC technique against other methods in
terms of SENSY . The experimental results showcase that NB model achieved the least outcome with
SENSY of 89.90%. Then, RF, J48, and SVM techniques produced slightly enhanced SENSY values such
as 94.40%, 94.40%, and 94.22% respectively. Though the MLP model accomplished a near optimal
SENSY of 95.90%, the proposed IAIEO-LCC technique reported the highest SENSY of 97.78%.

Fig. 11 exemplifies the comparison study results of IAIEO-LCC technique against existing approaches
with respect to SPECY . The obtained values display that NB model reported a minimal performance with a
SPECY of 93.65%. Meanwhile, RF, J48, and SVM techniques resulted in slightly enhanced SPECY values
such as 98.42%, 98.30%, and 94.44% respectively. Although MLP model has accomplished a competitive
SPECYof 98.52%, the proposed IAIEO-LCC technique accomplished the highest SPECY of 98.89%.

Finally, Fig. 12 illustrates the comparison study results of IAIEO-LCC technique against other methods
in terms of ACCUY . The table values showcase that NBmodel failed in achieving the effective results with an
ACCUY of 91.94%. Then, RF, J48, and SVM techniques produced slightly enhanced ACCUY values such as
94.44%, 94.44%, and 95.17% respectively. ThoughMLPmodel produced a near optimal ACCUY of 95.59%,
the proposed IAIEO-LCC technique reported an improved ACCUY of 98.52%. Based on these detailed
results and discussions, it is obvious that the proposed IAIEO-LCC technique has accomplished a
superior performance with maximum liver cancer classification outcome.

Figure 9: Classifier results of IAIEO-LCC technique under a training/testing set of 60:40

Table 4: Comparative classification results of IAIEO-LCC technique against existing models

Methods Sensitivity Specificity Accuracy

IAIEO-LCC 97.78 98.89 98.52

MLP Model 95.90 98.52 95.59

RF Technique 94.40 98.42 94.44

J48 Technique 94.40 98.30 94.44

SVM Technique 94.22 95.76 95.17

NB Model 89.90 93.65 91.94
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Figure 10: Comparative SENSY results of IAIEO-LCC technique

Figure 11: Comparative SPECY results of IAIEO-LCC technique
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4 Conclusion

In this study, an effective IAIEO-LCC technique has been developed to differentiate various classes of
liver cancer images. The presented IAIEO-LCC technique primarily undergoes MF-based noise elimination,
data augmentation, KE-based segmentation, VGG-19 based feature extraction, EO-based hyperparameter
tuning, and SGRU-based classification. SGRU classifier is exploited to detect and classify the liver cancer
images effectively. In order to demonstrate the superiority of the proposed IAIEO-LCC technique in
terms of performance, a wide range of simulations was conducted and the results were inspected under
distinct measures. The experimental results established the superiority of the proposed IAIEO-LCC
technique over recent approaches. Thus, IAIEO-LCC technique can be utilized for the classification of
liver cancer images. In future, deep instance segmentation approaches can be followed to improve the
detection performance of IAIEO-LCC technique.
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