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Abstract: Accurate prediction of future events brings great benefits and reduces
losses for society in many domains, such as civil unrest, pandemics, and crimes.
Knowledge graph is a general language for describing and modeling complex sys-
tems. Different types of events continually occur, which are often related to his-
torical and concurrent events. In this paper, we formalize the future event
prediction as a temporal knowledge graph reasoning problem. Most existing stu-
dies either conduct reasoning on static knowledge graphs or assume knowledges
graphs of all timestamps are available during the training process. As a result, they
cannot effectively reason over temporal knowledge graphs and predict events hap-
pening in the future. To address this problem, some recent works learn to infer
future events based on historical event-based temporal knowledge graphs. How-
ever, these methods do not comprehensively consider the latent patterns and influ-
ences behind historical events and concurrent events simultaneously. This paper
proposes a new graph representation learning model, namely Recurrent Event
Graph ATtention Network (RE-GAT), based on a novel historical and concurrent
events attention-aware mechanism by modeling the event knowledge graph
sequence recurrently. More specifically, our RE-GAT uses an attention-based his-
torical events embedding module to encode past events, and employs an attention-
based concurrent events embedding module to model the associations of events at
the same timestamp. A translation-based decoder module and a learning objective
are developed to optimize the embeddings of entities and relations. We evaluate
our proposed method on four benchmark datasets. Extensive experimental results
demonstrate the superiority of our RE-GAT model comparing to various base-
lines, which proves that our method can more accurately predict what events
are going to happen.
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1 Introduction

From the 9/11 terrorist attacks to the COVID-19 pandemic, societal events often deeply affect people’s
daily lives and cause huge economic burden. Predicting these events in advance is highly valuable to the risk
perception and prevention of our society [1]. It is not surprising that computational social science has
exploded in prominence as an active field for the need of analyzing societal events [2]. With the advent
of the big data era, computational social science now focuses on social intelligence more than social
information processing. This movement is achieved by capturing human social dynamics, and modelling
social behavior through existing big data [3].

For the promising future of this field, considerable attention has been paid to get further development in
the past decades. Relevant methods, systems, and event databases have been proposed in succession, e.g., the
Integrated Crisis Early Warning System (ICEWS) [4], which helps US policy predict international crises.
Another example is the Early Model Based Event Recognition using Surrogates (EMBERS) [5,6] for
forecasting events include influenza-like illness, civil unrest, domestic political crises, and elections.
Among existing researches, GDELT [7] has emerged as an interesting project because it is a free open
platform which monitors societal events across nearly all countries of the world in over 100 languages.

Recently, Knowledge Graphs (KGs) [8—12] are widely used in many real-world applications. Since
knowledge graphs can model/reflect real-world facts, event prediction problem can be transformed into a
missing fact reasoning problem in the KGs. Most existing research studies on knowledge reasoning are
based on static knowledge graphs. In particular, an event is normally defined in the form of a triplet
including event subject, event object, and the relation between them, i.e., (subject, relation, object).
However, as the facts are highly correlated with time, temporal knowledge graphs (TKGs) are proposed
to associate events with their corresponding timestamps, i.e., (subject, relation, object, time). Fig. 1 shows
an example for event predicting on a temporal knowledge graph. We can learn that events dynamically
occur with the time, as the relations (suppress or negotiation) between the same entities (Taliban and
Government) would be different at different dates (2021/07/09 and 2021/08/13).
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Figure 1: Temporal knowledge subgraphs about the afghanistan battle situation between taliban and
government over time

Reasoning tasks on temporal knowledge graph are mainly divided into two types: interpolation and
extrapolation [13]. Given a temporal knowledge graph in which timestamps vary from 7, to ¢5 events are
predicted for time t satisfied that (¢, < ¢ < t7) in interpolation reasoning, while extrapolation reasoning
focuses on predicting unseen events for t beyond ¢7 (i.e., > t7).
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Existing researches attempt to solve KG reasoning problem by static knowledge graph embedding
approaches, or simply extend the static KG embedding methods with timestamps. Besides, the latter
mostly focuses on interpolation scenarios [14], or encoding patterns associated with the occurrence of
events by using simple aggregation method [13]. Thus, it is desirable to develop a more efficient and
comprehensive method that can extrapolate future events by representing historical event through
modeling local graph within a time window.

In this work, we proposed a Recurrent Event Graph ATtention Network (RE-GAT) to predict events in
the extrapolation setting. Unlike traditional temporal knowledge graph embedding methods that neglect the
structure during the process of learning representations, RE-GAT employs an attention-based historical
events embedding module to encode past events, and uses an attention-based concurrent events
embedding module to model the associations of events at the same timestamp. A translation-based
decoder module and a learning objective is used to optimize the embeddings of event entities and
relations. The contributions of our work can be summarized as follows:

e We formalize the future event prediction problem into a temporal knowledge graph extrapolation
reasoning problem.

e RE-GAT uses RNNs and GNNs to jointly encode temporal and structural event information from
historical and concurrent events for predicting future events. In addition, we employ a novel
attention mechanism to ensure better representations of sophisticated patterns associated with the
events.

e We conduct extensive experiments on four real-world datasets. The experimental results demonstrate
that our proposed method outperforms various state-of-the-art baselines.

2 Related Works
2.1 Static Knowledge Graph Embeddings

Static knowledge graph embeddings without considering the temporal information have been
extensively studied, which mostly target at embedding entities and relations into the latent vector spaces.
A class of them focus on translation tasks [15—18], which models the relation of two entities into a
translation vector. RotatE [19] defines relation as a rotation between entities in vector space to embed
knowledge graph. Other models represent semantic information by using triangular norm to measure
plausibility of facts [20,21]. There are also some works based on deep neural network [22—24]. However,
these methods are not effective in predicting future events due to their incapability of capturing
temporally dynamic facts.

2.2 Temporal Knowledge Graph Embedding

More recently, researchers attempt to model the varying facts over time in temporal knowledge graphs.
TTransE [25] extends the traditional TransE [16] into temporal scenarios through embedding temporal
information into score function. Similarly, HyTE [26] extends TransH [15]. DE-SimplE [27] combines
entity and timestamp to generate time-specific representations. Despite well performance in their tasks,
these methods do not take into consideration the long-term temporal relationship of real-world events.
These methods assume that all timestamps and corresponding knowledge graphs are available during the
training process, hence they are not able to predict events in the future.

Another line of works tries to model graph sequences to capture long-term dependency of facts. DyREP
[28] proposes a two-time scale deep process to jointly model global and local topological evolution.
Historical Information Passing (HIP) [29] network models the evolution of event-based knowledge graph
by passing information from three perspectives (temporal, structural, and repetitive). RE-GCN [30] based
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on GCN models knowledge graph sequence recurrently to learn representation at each timestamp. CyGNet
[14] proposes a time-aware copy-generation representation learning method to model temporal knowledge
graph. RE-NET [13] uses an autoregressive architecture based on RNN to inference over temporal
knowledge graph of event sequences.

2.3 Event Prediction

Traditional event prediction tasks are mainly viewed as a classic machine learning classification
problem, e.g., customer churn event prediction [31], civil unrest [32], adverse drug reaction [33], and etc.
However, not all event prediction tasks can be modeled as classification problems. With the development
of technology on graph, events can be represented as nodes or links in graph, and hence event prediction
tasks are modeled as node/link prediction tasks. Abstract Causality Network [34] embeds real-world
events into continuous vector space, and predicts causality event through minimizing a defined energy
function. Dynamic Graph Convolution Network [35] is proposed to give context information of the result
while predicting event, which is improved to be suitable in multi-event prediction tasks [36]. Overall,
event prediction with reasoning over temporal knowledge graphs is relatively unexplored.

3 Problem Formulation

We start with describe notations for the temporal knowledge graph (TKG), and then we define the TKG
reasoning problem.

An event-based TKG can be regarded as a sequence of static knowledge graphs (SKG) sorted by event
timestamp, i.e., G={Gi, G», ..., G, ...}. Each SKG in G can be represented as G; = (£, R, 7 ), where
&, R, and 7 denote the sets of event entities, event type, and timestamps, respectively. G, consists of a
set of events with the same timestamp ¢. An event in G, can be represented as a time-stamped quadruple,
i.e., (subject, relation, object, time) and is denoted by a quadruple (s, 7, o, f) € G,. This means that an
event is happened at timestamp ¢ € 7 between subject s € £ and object o € £. The event type is denoted
as relation » € R.

The future event prediction problem is formalized as predict the event object or the event subject given
all the set of historical events before timestamp ¢, namely (s, 7, ?, ?) or (?, 7, 0, f). We assume that the events at
a time step ¢, i.e., G, depends on the events at the previous & time steps (i.e., {G—, G—x+1, ..., Gi—1}), denotes
as G....—1. We use ‘H; and R, to describe embedding matrices of event entities, event types at t, respectively.
To predict an event at time ¢, we use the information of the historical KGs is embedded in the matrices of
event subjects and objects H,_; € RI¥*% and the event types R,_; € R®I*9 at timestamp ¢— 1, where
de and dr is the dimension of the event entity vector representations and event type vector
representations, respectively.

Given all past events, i.e., the historical event sequences G, ;.. 1, we can formulate the future event
object prediction problem as a ranking problem. Given a future event prediction task (s, r, ?, f), our
proposed RE-GAT model utilizes the event subject s, the event type », and past events G, ;.. to
calculate the conditional probability for all event objects:

p(O‘thk:tfl) S, 7') :p(0|H1717 Rtflv S, I"). (1)
Similarly, we can define the problem of predicting future event subject entity (?, r, o, t) and event type (s, ?, o,
?) as follows:

P(8|Gi—ki-1, 0, ) = p(s|Hi—1, Ri-1, 0, F), )

p(r|Gt—k:t—la S, 0) :p(r|Ht—17 Rt—h S, O)- (3)
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4 The RE-GAT Model

We introduce our proposed RE-GAT model in this section. RE-GAT uses an attention-based recurrent
neural network to encode the informative sequential patterns across historical events. RE-GAT learns the
local structural relations between concurrent events in a knowledge graph at each timestamp utilizing an
attention-based graph neural network representation mechanism. Based on these learned temporal event
subject embeddings, event object embeddings, and event type embeddings, future event at subsequent
timestamp can be predicted with classical translation-based decoder. As shown in Fig. 2, RE-GAT
consists of an entity and relation embedding encoder and a decoder. The former contains an attention-
based concurrent events embedding module (Translational-based GAT) and an attention-based historical
events embedding module (Time Gate, GRU, Attention, etc.) to encode the historical event KGs. The
latter employs a translation-based score function for corresponding entity prediction task.
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Figure 2: The overall architecture of RE-GAT

4.1 Attention-Based Concurrent Events Embedding Module

To capture the concurrent events information at the same timestamp, we use the attention-based
historical events embedding module to encode the structural dependencies and associations among the
entities and relations in these events. Since graph neural network (GNN) has strong expressive power for
the unstructured graph data [23,37—40] and neighbors play different influences in reality [41-43], we
utilize a ® layer graph attention network (GAT) to model the neighborhood concurrent events
information. To represent the inverse event type (relation) of the event entities in our model, we add the
inverse event quadruple (o, s, ?) at the same timestamp to the event-based KG for each event (s, , o,
f). Without loss of generality, we take the object prediction problem (s, r, ?, f) for example. Specifically,
for each knowledge graph at timestamp ¢, an event object o obtains its embeddings at layer / € [0, o — 1]
from the corresponding event subjects and event types in the quadruples under a graph attention network
framework at layer / and learns its vector representations at the /+ 1 layer, i.e.,

20 — 0 hé{’,, 4)

o N

elll = LeakyReLU (auy (20120 )) , (5)
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where h((,{),, h§’2 , and 7, represent the /" layer vector embeddings of event object o, event subject s and event
type  at timestamp t, respectively; o) is the learnable attention weight, Wl( and Wz(l) are the learnable
weight matrix parameters in the /* layer. We calculate a pairwise unnormalized attention score between
event subject and event object in Eq. (5), where || denotes concatenation. We first concatenate the vector
representations of event object and event subject, then take a dot product with a learnable weight vector
a®. Finally, we apply a LeakyReLU to the dot product result. In Eq. (6), a softmax function is applied to
normalize the attention scores on all quadruples containing the event object entity. Similar to the
aggregator of classic graph convolutional network (GCN), the embeddings from concurrent events are
multiplied by the attention scores, summed together, and added by the self-loop embeddings in Eq. (7).
Note that each KG G, is composed of a set of events occur at the same timestamp. We use A, + 7, in Eq.
(7) to capture the relationship between the event subject, event type, and event object. It also means that
dg = dr. We use d in the following for short.

The attention-based concurrent events embedding module gets the event entity vector representations,
namely embeddings, based on the concurrent events occurring with the target event and its own
embeddings. These operations can be interpreted as the evolution and change of the events.

4.2 Attention-Based Historical Events Embedding Module

This module seeks to model the historical events patterns between entity pairs, encode the temporal
information across time, and generate the temporal embeddings for entities and relations. For the event
subject s and event object o in an event (s, 7, o, #) or the inverse type event (o, 7 ', s, f), the latent
temporal event features and patterns contained in the historical events imply the historical trends and
regularities. To cover as many temporal patterns of historical events as possible, the model needs to take
time sequence of events into account. Since the output of the attention-based concurrent events
embedding module (Translational-based GAT) in the final layer, i.e., £, |, already encodes the vector
representation of event objects at timestamp #— 1, we might think of using this entire output event entity
embedding matrix H, | directly as the input of the translational-based GAT module at time ¢, namely
H? = H,_,. However, this is equivalent to stacking all the ®-layer translational-based GAT together,
resulting in the over-smoothing problems [44]. The embeddings of event objects, event subjects, and
event types will converge to the same vector values. The large number of stacked translational-based
GAT modules may also introduce the vanishing gradient problem, preventing the weight from changing
during the training iteration. Thus, we utilize a time gate component in our attention-based historical
events embedding module to address these problems following [30]. The event entity matrix H; is
computed by the output at timestamp ¢ of the attention-based concurrent events embedding module in the
final layer w, i.e., H;” and H,_; from the same module at timestamp ¢— 1. More specifically,

H,:L{,@H;“—F(l _ul)®Ht—17 (8)

where @ represents the element-wise product operation. The time gate matrix U, € RI€Ixd applies non-linear
sigmoid transformation as:



CSSE, 2023, vol.44, no.3 2417

Z/l[ = O'(W3H[_1 + b), (9)

where o(e) denotes the sigmoid function and Wj is the parameter for weight matrix.

To better capture the event representation, we employ an historical event attention mechanism that
allows the module to dynamically select and linearly combine different historical events of the relations
[45]:

e; = Vv tanh(W,r, + U,r.), (10)
S :IC) (1)
> —1 €Xp(er)
t
r= Zdr”n (12)
=1

where v,, W, and U, are parameters. The factors o, determine which part of the historical event should be
emphasized or ignored when making predictions. Relation embeddings 7, form the embedding matrices of
relations at t, i.e., R,.

4.3 Translation-Based Decoder Module

Traditional knowledge graph entity prediction task [19,22,24,37] usually use a scoring function to
measure the plausibility of quadruples given the embeddings. They utilize training data consists of
positive and sampled negative quadruples to update the representation. Previous studies [22,24,37] have
demonstrated that GNN with the convolutional score functions perform well on knowledge graph entity
prediction task. For the purpose of cosidering the translational property of the vector representations in
Eq. (7), ConvTransE [24] is chosen as the decoder model to compute the conditional probability in Egs.
(1), (2) and (3). Following [30], the probability of event object is:

plo|Hi—1, Ri—1, s, r) = 6(H,—1ConvTransE(s,_1, r,—1)). (13)
In the same way, the probability score of the event type is:

p(rlHi-1, Ri-1, s, 0) = 6(R,—1ConvTransE(s,—1, 0,-1)), (14)

where o(-) denotes the widely used Sigmoid function and s,_;, 7.1, 0,-1 represent the vector representations

of event subject s, event type r, and event object o in H,_; and R,_; at timestamp ¢— 1, respectively.

Note that the ConvTransE model can be replaced by any other translation-based score functions or
decoders. We omit the details of ConvTransE for brevity.

4.4 Learning Objective

In this section, we discuss the training process of RE-GAT model. An event object entity prediction
problem (s, r, ?, ¢) can be thought of as a multi-class classification problem in which each class
corresponds to each event object entity. Similarly, we can also consider the subject entity prediction
problem (?, 7, o, f) as a multi-class classification task. Without loss of generality, we describe future event
prediction problem as predicting the event object in a time-stamped quadruple (s, 7, ?, £). We can easily
extend the model to predict the event subject entity, i.e., (?, r, o, ?).

Following [30], we use y¢ € R¥! and v, € R® to represent the vector representations of labels for event
entity prediction task and relation prediction task at the timestamp ¢. Then,
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L= Z Z Zyiilogpi(omt—h Ri-1, s, 1), ()

T
=1 (s,r0,t)eG, i=0

[R|-1

L' = Z Z Z Vi logpi(rHi—1, Ri-a, s, 0), (1o

t=1 (s,r0,0)eG, =0

where T denotes the total number of event-based KG timestamps in the training dataset, )¢, and )%, represent
the i”" vector element in »§ and y/, respectively. Note that the elements of vector y§ and y} are 1 for events that
do occur and 0 otherwise.

We use a multi-task learning framework [30,46] for the event entity prediction and event type prediction
tasks. Therefore, the final loss score can be calculated as:

LA, a7

where 1, is the importance parameter. We can choose the parameter value according to the task and control
the importance of each component.

5 Experiments

We evaluate the performance of RE-GAT model with four public event datasets in this section. First, we
explain experimental settings in detail, including the datasets and baselines. After that, we discuss the
experimental results.

5.1 Experimental Setup

In this section, we compare the performance of our proposed model against various static knowledge
graph embedding methods and some recent temporal knowledge graph models.

Datasets. We use four event-based temporal knowledge graphs datasets which record events with
timestamps, namely ICEWS05-15 [47], ICEWS14 [47], ICEWSI18 [13], and GDELT [13]. Integrated
Crisis Early Warning System (ICEWS) dataset [48] and Global Database of Events, Language, and Tone
(GDELT) dataset [7] are commonly used event-based datasets in previous studies.

Evaluation Settings and Metrics. We preprocess these datasets for extrapolation reasoning task
following prior works [13,14,30]: we divide them into training, validation, and test sets by timestamps,
i.e., train(80%)/valid(10%)/test(10%). Thus, (timestamps of training set) < (timestamps of valid set) <
(timestamps of test set). More details about the four datasets can be found in Tab. 1.

Table 1: Statistics of four datasets

Datasets || |R| | Train| |Valid| |Test| Time gap
ICEWS05-15 10488 251 368868 46302 46159 24 h
ICEWS14 7128 230 74845 8514 7371 24 h
ICEWSI18 23033 256 373018 45995 49545 24 h
GDELT 7691 240 1734399 238765 305241 15 mins

Evaluation Metrics. The methods are evaluated on the link prediction and relation prediction task
which evaluates whether the ground-truth event quadruple (fact) is ranked ahead of other event
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quadruple. We report the results of mean reciprocal rank (MRR), hits at 1/3/10 (H@1/3/10) in our
experiments. Hits at & (H@k) measures the proportion of the correct quadruple appears in the top &
ranked quadruples. Many previous works remove corrupted event quadruples during evaluation which is
called filtered setting. As mentioned in [30,49,50], all event quadruples that occur in the training,
validation, or test sets are removed from the ranking result, which is not suitable for temporal knowledge
graph entity prediction tasks. To this end, we only report the experimental results under the raw settings.

Baselines. We mainly focus on comparing RE-GAT to the methods of static KGs and temporal KGs as
previous works. Static KG reasoning models include TransE [16], DistMult [20], ComplEx [21], and RotatE
[19]. And temporal KG learning methods include HyTE [26], TA-DistMult [47], RE-NET [13] and CyGNet
[14] are selected.

5.2 Experimental Results

Tab. 2 presents the entity prediction performance of future event of RE-GAT and baseline models on four
event-based datasets. The best scores are boldfaced and the second-best scores are underlined.

Table 2: Results for the future event prediction task on four datasets with raw metrics (in percentage)

Model ICEWS05-15 ICEWS14 ICEWS18 GDELT

MRR H@! H@3 H@10 MRR H@! H@3 H@10 MRR H@! H@3 H@10 MRR H@! H@3 H@I0

TransE 17.85 3.13 24.08 48.79 2230 7.24 2941 53.08 11.17 0.72 1291 34.62 485 0.00 3.08 14.15
DistMult 2343 12.84 2795 4570 26.65 16.62 30.67 4737 1435 625 15.67 31.83 624 153 5.18 14.99
ComplEx 25.06 14.30 29.87 47.85 27.76 17.97 31.89 4824 1557 7.17 1735 33.56 632 152 525 1529
RotatE 25.60 14.44 3045 49.22 30.01 1942 3424 5187 16.00 7.11 17.63 3539 591 131 4.69 1425
HyTE 16.05 6.53 20.20 34.72 16.78 2.13 24.84 4394 741 3.10 733 1601 6.69 0.01 757 19.06
TA-DistMult 27.51 17.57 31.46 47.32 2622 16.83 29.72 4523 1642 8.60 18.13 3251 1034 444 1044 21.63
RE-NET 36.86 26.24 4185 57.60 35.77 2599 40.10 54.87 26.17 1643 29.89 4437 19.60 12.03 20.56 33.89
CyGNet 36.35 25.83 41.51 56.19 3490 2543 39.07 53.45 2480 1535 2836 43.53 18.12 11.11 19.22 31.72
RE-GAT 46.65 35.24 53.04 68.33 40.69 29.78 45.88 62.09 29.79 19.31 33.85 50.45 19.11 11.80 20.44 33.34

As we can see that Static KGE methods are much worse than RE-GAT since they cannot capture
temporal events information. We can also observe that RE-GAT performs much better than HyTE and
TA-DistMult with MRR and H@1/3/10 metrics. We believe this is because HyTE and TA-DistMult only
learn events representations independently for each timestamp and lack the ability of capturing the long-
term dependency.

It can also be observed from Tab. 2 that RE-GAT outperforms all the baselines on ICEWS05-15,
ICEWS14 and ICEWSI18 datasets. For instance, RE-GAT achieves the improvements of 11.19% over
second-best results with H@3 metric on ICEWS05-15 dataset.

To further study the performance of our RE-GAT model and the visual advantage of knowledge graph,
we present a case study of three subgraphs from the event-based temporal knowledge graph of ICEWS18 test
dataset. As shown in Fig. 3, we are given historical events (quadruples) at timestamps 2018/09/26 and 2018/
09/27, and attempt to predict which entity will Militant (Taliban) use unconventional violence to at the
timestamp 2018/09/28. As we can see from the subgraph on 2018/09/28 in Fig. 3, RE-GAT successfully
obtains the correct answer Military (Afghanistan), which shows that the temporal and structural event
information can be learned by our RE-GAT model.
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Figure 3: A case study of future event prediction using RE-GAT model

6 Conclusion

It is highly desirable to predict the occurrence of events (such as political events, pandemics, and crimes
etc.) in advance to reduce the potential damage and social upheaval. In this paper, we formulate the event
prediction problem as an extrapolation reasoning problem in temporal knowledge graphs. We propose a
RE-GAT model to tackle the problem. RE-GAT learns event information from the historical and
concurrent structural perspectives to make future predictions. The proposed RE-GAT model also
considers the complex influence of historical events in the past and concurrent events at the same
timestamp, which makes it can effectively capture the historical patterns and neighborhood event
interactions. As shown by the experimental results on four real-world datasets, our proposed RE-GAT
model significantly achieves improvements over baselines.
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