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Abstract: The evolution of the Internet of Things (IoT) has empowered modern
industries with the capability to implement large-scale IoT ecosystems, such as the
Industrial Internet of Things (IIoT). The IIoT is vulnerable to a diverse range of
cyberattacks that can be exploited by intruders and cause substantial reputational
and financial harm to organizations. To preserve the confidentiality, integrity, and
availability of IIoT networks, an anomaly-based intrusion detection system (IDS)
can be used to provide secure, reliable, and efficient IIoT ecosystems. In this
paper, we propose an anomaly-based IDS for IIoT networks as an effective secur-
ity solution to efficiently and effectively overcome several IIoT cyberattacks. The
proposed anomaly-based IDS is divided into three phases: pre-processing, feature
selection, and classification. In the pre-processing phase, data cleaning and nor-
malization are performed. In the feature selection phase, the candidates’ feature
vectors are computed using two feature reduction techniques, minimum redun-
dancy maximum relevance and neighborhood components analysis. For the final
step, the modeling phase, the following classifiers are used to perform the classi-
fication: support vector machine, decision tree, k-nearest neighbors, and linear
discriminant analysis. The proposed work uses a new data-driven IIoT data set
called X-IIoTID. The experimental evaluation demonstrates our proposed model
achieved a high accuracy rate of 99.58%, a sensitivity rate of 99.59%, a specificity
rate of 99.58%, and a low false positive rate of 0.4%.

Keywords: Anomaly detection; anomaly-based IDS; Industrial Internet of Things
(IIoT); IoT; industrial control systems (ICSs); X-IIoTID

1 Introduction

The Internet of Things (IoT) has been deployed and integrated into several critical sectors, including
transportation, health care, energy, and agriculture. The IoT is a promising technology that connects
multiple devices over wireless communication technologies to send and receive data without human
intervention. The IoT paradigm shifts traditional systems into smart, cost-effective, and scalable systems.
As such, technology has been involved extensively in the industrial and manufacturing sectors, which has
led to the Industrial Internet of Things (IIoT). The IIoT applications in the industrial domain are highly
sensitive and critical, such as industrial control systems (ICSs), which integrate both hardware and
software to monitor and control the operation of systems and their related components in industrial
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environments [1]. Examples of technologies that use ICSs in the IIoT are supervisory control and data
acquisition (SCADA), programmable logic controllers, and human–machine interfaces [2,3].

Although the IIoT has improved operational efficiency, productivity, and cost optimization,
cybersecurity risks remain a significant challenge that threaten critical smart systems in IIoT environments
[4–6]. Critical infrastructures are vulnerable to a wide range of cyberattacks, which have a significant
economic impact on organizations and service providers. Cyberattacks such as distributed denial of
service cause the service to be unavailable for its intended clients [7]. The dictionary is another common
attack against remote access services; it is used to crack a password in a dictionary or word list, which
allows attackers to hijack the system remotely [8]. The man-in-the-middle attack aims to exploit the
communication between two endpoints by intercepting and eavesdropping on the traffic on legitimate
nodes [9]. Reportedly, multiple power stations in Ukraine were compromised in the most recent attack on
IIoT applications, which resulted in a power outage affecting approximately 225,000 clients [10]. An
attacker obtained access to SCADA systems and shut down the power. Another cyberattack occurred
when several European energy companies suffered from an SFG malware [11].

To maintain the confidentiality, integrity, and availability of data transmitted in IIoT environments, an
intrusion detection system (IDS) can be used as an effective security solution to mitigate cyberattacks.
The IDS can monitor, detect, and mitigate any fraudulent or suspicious behavior that has the potential to
disrupt IIoT networks. IDSs can be classified into two main categories [12]: signature-based and
anomaly-based IDSs. The signature-based IDS detects an attack based on the predetermined attack
pattern (a signature), which then is stored as a list of indicators of compromise (IoCs). When an attack
matches a signature in the IoCs, it is classified as a threat, and appropriate action will be taken to
eliminate such an attack. The signature-based technique has several limitations. For example, such a
technique fails to detect unknown attacks (zero attacks), and the signature list must be updated to include
new attack patterns. As a result, the computation resources of such a real-time detection system increase.
Moreover, it requires human experts to analyze, create, and update signature rules when including new
attack signatures to the signature list. To overcome these drawbacks, an anomaly-based IDS addresses
several limitations in the signature-based technique. An anomaly-based IDS is a powerful security tool
because it can detect both known and unknown attacks. Such a technique learns from normal user
behavior to establish a typical user profile, and it observes anomalies when the incoming traffic differs
from normal user patterns. Although an anomaly-based IDS is considered a better alternative than a
signature-based technique, it has a high false–positive rate [13].

With the rapid growth of smart technology use, Artificial Intelligence (AI) plays a vital role in the
development of smart systems. Machine learning techniques have been used a wide range of critical
sectors. Specifically, integrated machine learning techniques are integral to IDS [14–16]. Learning
algorithms train the system on normal and attack behavior to build the learning parameter model used to
predict attacks successfully. Machine learning techniques provide efficient, flexible, automated detection
approaches that can overcome various cybersecurity issues. Traditional IDS methods have been designed
and implemented using different techniques such as statistical and rule-based techniques [17]. Many of
these approaches, however, are prone to increasing the false positive rate by misclassifying normal and
abnormal traffic. Furthermore, because traditional IDS techniques are designed for dedicated or traditional
networking environments, less effort has been put into developing anomaly-based IDS for IIoT applications.

In this paper, we propose an intelligent anomaly-based IDS to overcome a diverse range of IIoT cyber
threats. Because data features play a vital role in predicting and mitigating cyberattacks, we use different
feature selection methods, such as minimum redundancy maximum relevance (MRMR) and
neighborhood components analysis (NCA), to demonstrate the most effective feature selection technique
for reducing data dimensionality, improving computational resources, and increasing detection
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performance. For anomaly classification, we employ multiple machine learning classifiers such as decision
tree (DT), K-nearest neighbor (KNN), support vector machine (SVM), and linear discriminant analysis
(LDA) to identify whether traffic flow is normal or an attack. We evaluate and validate the proposed
work using the most recent available data set for the IIoT: the X-IIoTID, which contains new IIoT
connectivity protocols, recent device activities, and diverse attack scenarios and protocols. We perform a
comparison between the proposed work and other machine learning techniques and recent proposed
studies. The proposed work demonstrates its efficacy in detecting several IIoT cyberattacks with a high
accuracy rate and low false–positive rate.

The reminder of this research is organized as follows. Section 2 presents the related works of this study.
The proposed anomaly detection method is discussed in Section 3. The evaluation performance of the
proposed anomaly detection method is presented in Section 4. Section 5 concludes the research with a
summary of the original contributions and future work.

2 Related Works

A number of related works have been proposed for anomaly-based IDS in the IoT/IIoT networks. Muna
et al. [17] proposed anomaly-based IDS for ICSs using deep learning techniques. The detection architecture
included a deep auto-encoder and a deep feed-forward network model for detecting anomalies in IIoT
environments. The evaluation results showed that the proposed work is effective; however, the dataset
used is not specific to the IIoT domain. A study by [18] presented a novel ML security model in IoT
networks. Their model has a monitoring agent and a reacted agent which utilizes ML models separated
into the analysis of network patterns, and the IDS. They have evaluated the model using real-smart
building scenario by using SVM method. Their developed approach achieved an overall accuracy in
detection anomalies with 99.71%. A study by [19] proposed an IDS for IIoT implemented for feature
selection using genetic algorithm. Their model includes several classification techniques such as linear
regression, NB, DT, ET, Extreme Gradient Boosting (EGB), and RF. The GA-RF obtained 10 data
features in the context of binary classification, and 7 data features for multiclass classification. They used
UNSW-NB15 for the assessment the effectiveness and the robustness of their model. However, they
achieved 87.61% overall accuracy for the binary modeling process, the experimental results were
acceptable compared to the existing IDS models. Another study by [20] proposed a novel IDS using
Tree-CNN hierarchical method associated with SRS activation function. Their approach reduced the
computation time for the training time model. In addition, the model is developed in a medium-sized
firm, analyzing the level of complexity of the proposed model aimed at performance evaluation. The
outcome of their model showed that the developed hierarchical model reduced the execution and
achieved an overall accuracy rate of 0.98. Ludwig [21] proposed an ensemble technique for anomaly
detection using deep learning techniques. The proposed method achieved a higher accuracy rate but with
increased false alarm. Awotunde et al. [22] proposed intrusion detection for IIoT networks using
feedforward neural network model. The proposed mechanism achieved a good accuracy rate; however,
the dataset used is not specified for the IIoT domain. Moreover, [23] developed a novel anomaly-based
IDS or IoT networks. They used a convolutional NN approach to create a multi-class classification
method. Then they implemented their model using convolutional NN in 1D, 2D, and 3D. Their model
has been evaluated by using different intrusion detection datasets. They used the transfer learning to
perform binary and multi-class classification by a convolutional NN multiclass pre-trained approach.
Their developed classification model achieved high accuracy, F1 score, precision, and recall compared to
the existing models. However, ML methods are used for implementing a high-level of security
capabilities in IDSs [24]. Furthermore, the previous research is based on KDD-CUP99 or NSL-KDD
datasets. The newly cyberattacks cannot be found in these datasets. That’s why, they formulated a real
dataset named ToN-IoT in which it obtained from a large scale of IoT networks. Authors has validated
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different ML techniques in order to perform binary and multiclass classification. They utilized the Chi-square
(Chi2) technique as a feature selection method and the Synthetic Minority Oversampling Technique
(SMOTE) for class balancing. They found that, the XGBoost approach obtained better performance
results compared to other ML algorithms. Alanazi et al. [25] proposed a detection method for identifying
anomalies in IoT environments. For feature selection, the proposed method employed a variety of
machine learning algorithms, as well as an ensemble learning technique for traffic classification. The
performance results demonstrated the efficacy of the proposed method. The literature has identified
several limitations. For instance, using customized datasets rather than real-time IIoT traffic may have an
impact on the detection performance. Another issue is that outdated datasets are limited to specific types
of cyberattacks and cannot identify modern attack scenarios. Furthermore, many traditional anomaly-
based IDS do not use an appropriate intrusion dataset for IIoT environments, such a suitable dataset
which reflects the heterogeneous, homogeneous, and pervasive nature of IIoT networks is highly
suggested to securely design an effective, efficient, and reliable IIoT ecosystems. While some of the
related work achieved promises performance results; however, reduced false alarm rate remains a major
concern.

3 Proposed Method

Fig. 1 depicts the proposed anomaly-based IDS for the IIoT, which is divided into three phases: pre-
processing, feature selection, and classification. In the pre-processing phase, data cleaning, missing values
compensation, and normalization are performed. In the feature selection phase, the candidates’ feature
vectors are computed using two feature reduction techniques, MRMR and NCA. For the final step, the
modeling phase, the following classifiers are used to perform the classification: SVM, DT, KNN, and
LDA. We illustrate the three phases of the proposed anomaly detection system in the following subsection.

Figure 1: The architecture of proposed anomaly-based IDS for IIoT
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3.1 Pre-Processing Phase

Data cleaning, missing values compensation, and normalization are the most critical aspects of the pre-
processing stage. The steps taken during this phase are threefold. The first is replacing the missing data using
the mean value of that feature if the data type was numeric; the missing value must be replaced with the mode
value if the data were nominal. The second is encoding the categorical values into integer values. The third is
converting numeric values into a new integer values range between 0 and 1. The normalization step is done
using the min–max algorithm, which can be defined as follows [26]:

Xnorm ¼ p� qð Þ xn �min xnð Þ
max xnð Þ � min xnð Þ (1)

where x represents a given feature in the feature space x.

3.2 Feature Selection Phase

The feature selection phase is critical for the modeling and classification phase. The selected features
play an important role in reducing the dimensionality of large data sets, improving detection performance,
and reducing prediction time. Our proposed anomaly detection employs different feature selection models
to nominate the best distinctive features and remove the useless ones to detect cyberattacks effectively
with a high detection rate and a reduced false–positive rate. We use two feature selection techniques:
MRMR and NCA. Each feature selection technique independently selects the best features based on their
criteria; the optimal feature set from each feature selection method is entered into the different classifiers
in the classification phase to predict whether the given traffic flow is normal or an attack. We provide a
detailed explanation of the feature selection methods in the following subsections.

3.2.1 Neighborhood Components Analysis
NCA is a learning technique that maximizes a stochastic variant of the leave-one-out KNN score on such

a training data set. It also can learn a linear transformation to enhance the classification performance of a
stochastic nearest neighbors rule in the transformed domain [27]. The classification model’s output is
nonparametric, with no assumptions about the structure of the class distributions or their boundaries.
Considering multiclass classification problems with a training data set that contains n observations:

S ¼ fðxi; yig; i ¼ 1; 2; . . . ; n (2)

In which xi ∈ℝp indicates the feature instances, and yi ∈ {1, 2,…,c} indicates the labels of a class, and c
is represented as the number of classes. The main objective is to learn a method of classification f:ℝp→ {1, 2,
…,c} which receives a feature instance and performs a decision f(x) for the true label y of x.

Considering a randomized method that Ref(x) is chosen at random from S as the reference point for x,
labeling x with the label of the reference point’s Ref (x).

Such a method is similar to nearest neighbor approach in which the reference point is selected to be the
nearest neighbor of a new point x. In the case of NCA, the reference point is selected randomly, in addition,
all points in S have some probability of they are choosen as a reference point [28]. The likelihood P(Ref
(x) = xj|S) that point xj is chosen from S as the reference point for x is greater if xj is nearer to x as
evaluated by the distance equation dw [29].

dw xi; xj
� � ¼ Xp

r¼1

w2
r xir � xjr
�� �� (3)
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and wr are the weight of data feature. Suppose that

P Ref xð Þ ¼ xjjS
� �

a k dw x; xj
� �� �

(4)

and k is some kernel function that presumes big values when dw(x,xj) is small. Assume it is

k zð Þ ¼ exp � z

r

� �
(5)

Because a reference point of x is picked from S, the sum of P(Ref(x) = xj|S) for all j must be 1.

pij ¼ P Ref xið Þ ¼ xjjS�1
� � ¼ k dw xi; xj

� �� �
Pn

j¼1;j6¼i k dw xi; xj
� �� � (6)

The randomized classifier’s average leave-one-out probability of classification model is presented
in Eq. (7).

F wð Þ ¼ 1

n

Xn
i¼1

pi (7)

The purpose of NCA is to achieve maximum F(w) in relation to w [30].

F wð Þ ¼ 1

n

Xn
i¼1

pi� k
Xp

r¼1
w2
r (8)

¼ 1

n

Xn
i¼1

:
Xn

j¼1;j6¼i

pijyij� k
Xp

r¼1
w2
r

" #

¼ 1

n

Xn
i¼1

Fi wð Þ

In which λ indicates the regularization variables. Many of the weights in w are set to zero by the
regularization term.s

After selecting the kernel variable σ in pij as 1, discovering the weight vector w can be formulated
in Eq. (9).

ŵ ¼ wargmin f wð Þ ¼ wargmin 1

n

Xn
i¼1

fi wð Þ (9)

where

f wð Þ ¼ �F wð Þand fi wð Þ ¼ �Fi wð Þ (10)

consider that:

1

n

Xn
i¼1

Xn
j¼1;j 6¼i

pij ¼ 1 (11)

When adds a constant to an objective function, such a minimum argument will not change. As a result,
the objective function can be expressed in Eq. (12) after including the constant 1 [30].
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ŵ ¼ argmin 1þ f wð Þf g (12)

¼ argmin
1

n

Xn
i¼1

Xn
j¼1;j6¼i

pij � 1

n

Xn
i¼1

Xn
j¼1;j6¼i

pijyij þ k
Xp
r¼1

w2
r

( )

¼ argmin
1

n

Xn
i¼1

Xn
j¼1;j6¼i

pij 1� yij
� �þ k

Xp
r¼1

w2
r

( )

¼ argmin
1

n

Xn
i¼1

Xn
j¼1;j6¼i

pijl yi ; yj
� �þ k

Xp
r¼1

w2
r

( )

and the loss function can be expressed as:

l yi; yj
� � ¼ 1 if yi 6¼ yj

0 otherwise

�
(13)

The minimum argument is a weight vector which reduces such a prediction error.

3.2.2 Minimum Redundancy Maximum Relevance
MRMR [31] is used to find the “minimal–optimal” set of features. MRMR requires the user to choose

only one option by indicating how many features they want to keep [32]. MRMR is an iterative process that
determines the optimal features based on rules. The selected features are added to the optimal feature list.
When a feature is added to the list, it never comes out. The score is determined for every feature to be
assessed at each iterative process fð Þ. The score can be computed by using Eq. (14).

scorei fð Þ ¼ relevanceðf jtargetÞ
redundancyðf jfeatures selected until i� 1Þ (14)

3.3 Classification Phase

The classification phase is the third phase of our proposed anomaly system, which aims to perform the
classification process for different normal and attack scenarios by using several classifying techniques. The
modeling phase receives the best selected features from each feature selection method and feeds them into
several classifier models, such as DT, KNN, SVM, and LDA. We discuss each classifier in the following
subsections.

3.3.1 Anomaly Detection Model Based on Decision Tree
DT is a type of supervised learning method that is used widely for classification and prediction. In simple

terms, DT follows a top-down approach and consists of three main elements: root node, which represents the
decision; branches that develop from the root, which represent different options; and leaf nodes, which
indicate possible outcomes. When these elements are combined, they resemble a tree [33] (see Fig. 2).

The Gini index is an indicator of sample disparity. It has a value of 0 when a sample is totally
homogeneous, and all components are similar and a value of 1 when there is the most inequality among
the items.

Gini index ¼ 1�
Xn
i¼1

Pi2 (15)
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3.3.2 Anomaly Detection Model Based on K-Nearest Neighbor
The KNN algorithm is classified as supervised learning and is used to solve classification problems.

KNN estimates the likelihood that input points from a given training set will belong to one of two groups
based on which data points are closest to it. The KNN uses a voting mechanism to predict the class of
new cases. The majority votes of its KNNs will identify the data point’s class [34,35]. Fig. 3 presents the
anomaly detection framework based on k-nearest neighbor. The first step in implementing KNN is to
transform data points into numerical values (vectors). The classifier works by computing the distance
between these points’ values. The Euclidean distance is simply the shortest distance between two points,
regardless of their dimensions. The Euclidean distance is the most commonly used method for calculating
the distance between two points. The distance between two point values with coordinates (x, y) and (a, b)
is expressed by the following equation.

dist x; yð Þ; a; bð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� að Þ2 þ y� bð Þ2

q
(16)

KNN predicts a given data point by searching the nearest annotated points and assigns the class to given
data points based on the class with the most data points among the K neighbors. Following the computation
of the distance, the class with the highest probability is assigned to the given input data point x.

P y ¼ jjX ¼ xð Þ ¼ 1

K

X
i2A I y ið Þ ¼ j

� �
(17)

Figure 2: Anomaly detection framework based on descision tree
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3.3.3 Anomaly Detection Model Based on Support Vector Machine
SVM is a supervised ML model that can be used to solve a two-class classification problem, such as

whether a given traffic flow is normal or an attack. The SVM algorithm implements learning by
providing a collection of samples for each category. Each data item in SVM can be seen as a point in an
n-dimensional space, where n is the number of attributes that can be obtained. To perform the
classification step, the algorithm should define a hyperplane that discriminates between the two classes
[36] (see Fig. 4). The two-dimensional line that divides the hyperplane can be called the classifier’s
decision line, which separates the two classes; each class is placed on a different location. The
classification data can be represented as a single point in space, with each point defined by a feature
vector x.

X 2 RD (18)

Now that we have visually represented the points, the next step is to differentiate them with a line called
a decision boundary. The decision boundary is the major task of such a technique used to classify points. The
hyperplane formula divides the points for classification and can be written as [37]:

wT xð Þ þ b ¼ 0 (19)

Where b denotes the hyperplane equation’s intercept and bias term. The hyperplane would always be D-
1 operator in D-dimensional space. When fitting the separating boundary, we need a line that can split the
data points as well as possible with the fewest misclassification errors. The margin of any hyperplane, ax
+ by + c = 0 from the input of data points (x0, y0) is provided by d. Accordingly, the margin of the
hyperplane formula, wTΦ(x) + b = 0, from a given vector Φ(x0) is represented as:

dH [ x0ð Þð Þ ¼ wt [ x0ð Þð Þ þ bj j
Wj jj j2

(20)

Figure 3: Anomaly detection framework based on k-nearest neighbor
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where ||w||2 indicates the Euclidean norm, and the length of w is shown in Eq. (21).

Wj jj j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

1 þ W 2
2 þW 2

3 þ . . . W 2
n

q
(21)

3.3.4 Anomaly Detection Model Based on Linear Discriminant Analysis
The LDA is a supervised technique used to solve classification problems. Such a supervised method is

used when the class frequencies are unequal, and its performance assessed using randomly generated testing
data set. In any given data set, this LDA technique maximizes the ratio of class variance into within-class
variance, ensuring maximum separation and reducing data variation within a class [38] (see Fig. 5). The
LDA technique computes the prior probabilities of a class P Ckð Þ in the training set. The second step is
that to test variances homogeneity; the outcome result determines whether to employ linear or quadratic
discriminant analysis. When it is linear discriminant analysis for variance or covariance: Σ1 = Σ2 =..= Σ.
In the use of quadratic discriminant analysis for variance or covariance matrix: Σi ≠ Σj for some i ≠ j. The
next step is to estimate the parameters (e.g., μiμi, and ΣΣ) of the probability density function P(X∣C_k)
from training set. The next process is to calculate the discriminant function. The final step is using cross
validation to assess mis-classification probabilities, then performing prediction decisions for a new
observation. In population, we suppose πiπi the density function of x probability is multivariate normal
with mean vector μi and variance-covariance matrix Σ (same for all populations). This normal probability
density function’s formula is:

P X jpið Þ ¼ 1

ð2pÞ
p

2
P

:j j1=2
exp � 1

2
X � uið Þ0

X
:�1 X � uið Þ

	 

(22)

Figure 4: Anomaly detection framework based on support vector machine
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Figure 5: Anomaly detection framework based on linear discriminant analysis

4 Performance Analysis

The evaluation results were obtained using Matlab2018b software to create the proposed model and
machine learning libraries to assist the model in loading, extracting features, classifying the data, and
obtaining results. The experiments were carried out on an Intel core i7-1165G7 processor with 16 GB of
RAM and the Microsoft Windows 10 OS. Several terms are commonly used to describe accuracy,
specificity, sensitivity, and f1-score. They are true positive (TP), true negative (TN), false negative (FN),
and false-positive (FP). If the attack exists in a system and the model correctly predicts the attack, it is
considered a true positive. Similarly, if a system has been shown to be free of an attack, the test indicates
that the attack is also absent, which is known as TN. When the system predicts the positive class
incorrectly, this is referred to as FP. Likewise, if the test result indicates that the system is free of attacks,
but the system actually has the attack, it is known as FN. We used the confusion matrix to evaluate,
analyze, and validate the proposed anomaly detection method. In particular, we used accuracy, sensitivity,
specificity, F1-score, false–positive rate (FPR), positive predictive value (PPV), and negative predictive
value (NPV) to quantitatively validate the efficacy of different classifier models with the feature selection
methods used. We evaluated and analyzed the proposed work by measuring various important metrics, as
follows [39]:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(23)

Specificity ¼ TP

TP þ FP
(24)

Sensitivity ¼ TP

TP þ FN
(25)

F1� score ¼ 2 � TP
2 � TP þ FP þ FN

(26)

CSSE, 2023, vol.44, no.3 2371



PPV ¼ TP

TP þ FP
(27)

NPV ¼ TN

TN þ FN
(28)

FPR ¼ FP

FP þ TN
(29)

4.1 Data Set

Choosing an appropriate data set, including real-time IIoT traffic, is a critical step in validating our
anomaly-based IDS method. In addition, a diverse range of IIoT cyberattacks—both rudimentary and
sophisticated—should be taken into account when evaluating the robustness and effectiveness of such a
detection approach. We analyzed and evaluated the proposed anomaly detection method on the X-IIoTID
data set [40], which is the most recent and comprehensive data set for IIoT environments. The X-IIoTID
data set contains new IIoT connectivity protocols, recent device activities, diverse attack scenarios, and
attack protocols. Such a data set reflects normal behaviors and includes modern cyberattack activities
such as reverse shell, MitM, TCP relay, C&C, and brute force.

4.2 Results and Discussion

Tab. 1 illustrates the performance results of different classifier models when MRMR is used as a feature
selection method. As Tab. 1 shows, the DT model obtained a high accuracy rate of 99.586%, the best
accuracy result of all the classifiers used. The LDA and SVM models achieved similar accuracy rates of
85.577% and 85.807%, respectively. The KNN classifier performed well in terms of accuracy rate
(98.652%), with the second-best accuracy rate after the DT model. The DT also outperformed other
classifiers in terms of sensitivity and specificity, with 99.593% and 99.58%, respectively. LDA and SVM
achieved similar results for sensitivity, with 73.7.61% and 73.804%, respectively; for specificity measure,
LDA and SVM obtained 97.573% and 97.993%, respectively. In the case of the F1-score, the DT model
obtained 99.59%, whereas KNN obtained a similar performance result of 98.666%. The LDA and SVM
classifiers obtained a similar F1-score, with 83.748% and 83.973%, respectively. the DT model
outperformed other classifiers in terms of NPV and PPV, with 99.587% and 99.586%, respectively. The
KNN model achieved performance results similar to those of the DT model, with 98.904% and 98.406%,
respectively. By contrast, the LDA and SVM classifiers achieved a lower performance result for NPV,
with 78.653% and 78.553%, respectively. For the PPV measure, LDA and SVM obtained 97.392% and
96.861%, respectively.

Table 1: Performance results of different classifier models when MRMR is used as a feature selection

Model Accuracy Sensitivity Specificity F1-score FPR PPV NPV

LDA 85.577 73.761 97.573 83.748 2.42 96.861 78.553

SVM 85.807 73.804 97.993 83.973 2.007 97.392 78.653

KNN 98.652 98.926 98.373 98.666 1.627 98.406 98.904

DT 99.586 99.593 99.58 99.59 0.42 99.586 99.587
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Fig. 7 illustrates the FPR for the different classifiers used when employing MRMR as a feature selection
method. As Fig. 7 shows, the DT model achieved the lowest FPR of all classifiers used with 0.42%, whereas
the LDA and SVM models obtained similar FPR with 2.42% and 2.007%, respectively. The KNN model
obtained FPR with 1.627%, better than LDA and SVM.

Tab. 2 illustrates the performance results of different classifier models when NCA is used as feature
selection technique. As Tab. 2 shows, the DT model obtained a high accuracy rate of 99.355%, the best
accuracy result of all the classifiers used. The LDA and SVM models achieved similar accuracy rates of
78.858% and 78.82%, respectively. The KNN classifier achieved a better accuracy rate that LDA and
SVM, with 97.913%. The DT also performed well in a comparison with other classifiers in terms of
sensitivity and specificity, with 99.442% and 99.267%, respectively, LDA and SVM achieved similar
results for sensitivity, with 65.642% and 65.577%, respectively, and for specificity measure LDA and
SVM obtained 92.277% and 92.267%, respectively. In the case of F1-score, the DT model obtained
99.36%, whereas KNN obtained a similar performance result of 97.941%. The LDA and SVM classifiers
obtained a similar F1-score with 75.778% and 75.726%, respectively. the DT model outperformed other
classifiers in terms of NPV and PPV, with 98.709% and 99.279%, respectively. The KNN model achieved
performance results similar to those of the DT model, with 98.498% and 97.35%, respectively. By
contrast, the LDA and SVM classifiers achieved a lower performance result for NPV, with 72.567% and
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Figure 6: Performance evaluation of different classifier models when using the MRMR technique

Figure 7: False positive rate of different classifier models when using MRMR technique
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72.527%, respectively. For the PPV measure, LDA and SVM obtained 86.615% and 89.594%, respectively.
Fig. 6 presents the performance evaluation of different classifier models when using the MRMR technique.

Fig. 9 illustrates the FPR for the different classifiers used when employing NCA as a feature selection
method. As Fig. 9 shows, the DT model outperformed other classifiers and achieved the lowest FPR of all
classifiers used with 0.73%, whereas the LDA and SVMmodels obtained worse performance results in terms
of FPR with 7.72% and 7.73%, respectively. The KNN model obtained FPR with 2.273%, better than the
LDA and SVM. Fig. 8 illustrates the performance evaluation of different classifier models when using
NCA technique.
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Figure 8: Performance evaluation of different classifier models when using NCA technique

Table 2: Performance results of different classifier models when NCA is used as a feature selection

Model Accuracy Sensitivity Specificity F1-score FPR PPV NPV

LDA 78.858 65.642 92.277 75.778 7.723 89.615 72.567

SVM 78.82 65.577 92.267 75.726 7.733 89.594 72.527

KNN 97.913 98.539 97.277 97.941 2.723 97.35 98.498

DT 99.355 99.442 99.267 99.36 0.733 99.279 99.432

Figure 9: False positive rate of different classifier models when using NCA technique
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Fig. 10 compares the accuracy rates of all classifiers when NCA and MRMR are used to select features.
As shown in Fig. 10, the MRMR technique obtained higher accuracy rates than the NCA technique when
used with different classifier models. In particular, the DT model with MRMR outperforms all other
classifiers as it obtained higher accuracy, sensitivity, specificity, F1-score, and lower FPR.

We have compared the performance of our proposed anomaly-based IDS with that of recently developed
detection techniques (see Tab. 3). Compared with Ludwig [21], our proposed approach enhanced the
accuracy rate by 7.09% while significantly reducing the FPR by 14.31%. Our anomaly-based IDS method
also outperformed a recently proposed method by Kasongo [19], who used the GA algorithm for feature
selection and the RF model as the detection model. Our method improved the accuracy rate by 11.97%.
We also compared the proposed anomaly detection with other techniques that used a deep learning model
proposed by Muna et al. [17]; the accuracy rate of our proposed work was enhanced by 0.98%, and FPR
was reduced by 1.4%. The proposed method also achieved a higher accuracy rate and a reduced FPR
compared with Awotunde et al. [22]. Our method improved the accuracy and FPR by 0.68% and 0.7%,
respectively. Tab. 3 presents the classification accuracy and FPR of the proposed method with existing
anomaly detection models.

5 Conclusion

In this paper, we proposed an anomaly-based IDS method to overcome modern cyberattacks in IIoT
environments. The proposed work employed two feature selection techniques to reduce data
dimensionality, improve computational resources, and improve detection performance. We used a set of
machine learning techniques in the classification phase to determine whether a given flow of traffic was
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Figure 10: Comparison of MRMR and NCA with different classifier models

Table 3: Comparison of the proposed method with existing methods

Ref Accuracy FPR

Ludwig [21] 92.49% 14.71%

Kasongo [19] 87.61% N/A

Muna et al. [17] 98.6% 1.8%

Ali et al. [34] 99.54% N/A

Awotunde et al. [22] 98.9% 1.1%

Proposed Method 99.58% 0.4%
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normal or an attack. We evaluated, analyzed, and validated the proposed work using the X-IIoTID, the most
recent and comprehensive data set for IIoT environments. The performance results demonstrated the DT
model with MRMR as a feature selection technique achieved a higher accuracy rate of 99.58%, a
sensitivity rate of 99.59%, a specificity rate of 99.58%, an F1-score rate of 99.59%, and a lower FPR of
0.4% than other techniques used in recent studies. In the future, we will extend our work by employing
different classification algorithms such as deep learning techniques. We will also investigate, analyze, and
evaluate additional feature selection techniques to select a lightweight and efficient mechanism. In
addition, the integration of anomaly detection with other emerging technologies, such as blockchain, will
be investigated.
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