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Abstract: Since the end of the 1990s, cryptosystems implemented on smart cards
have had to deal with two main categories of attacks: side-channel attacks and
fault injection attacks. Countermeasures have been developed and validated
against these two types of attacks, taking into account a well-defined attacker
model. This work focuses on small vulnerabilities and countermeasures related
to the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm. The work
done in this paper focuses on protecting the ECDSA algorithm against fault-injec-
tion attacks. More precisely, we are interested in the countermeasures of scalar
multiplication in the body of the elliptic curves to protect against attacks concern-
ing only a few bits of secret may be sufficient to recover the private key. ECDSA
can be implemented in different ways, in software or via dedicated hardware or a
mix of both. Many different architectures are therefore possible to implement an
ECDSA-based system. For this reason, this work focuses mainly on the hardware
implementation of the digital signature ECDSA. In addition, the proposed
ECDSA architecture with and without fault detection for the scalar multiplication
have been implemented on Xilinx field programmable gate arrays (FPGA) plat-
form (Virtex-5). Our implementation results have been compared and discussed.
Our area, frequency, area overhead and frequency degradation have been com-
pared and it is shown that the proposed architecture of ECDSA with fault detec-
tion for the scalar multiplication allows a trade-off between the hardware
overhead and the security of the ECDSA.

Keywords: Elliptic curve cryptography (ECC); Montgomery ladder; fault
detection method; fault injection attack; digital signature; ECDSA; FPGA

1 Introduction

In our daily life and with technological progress, the development of applications, especially those
deployed in client-server mode over the Internet (such as e-mail, access to Web servers, access to
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databases, e-commerce, etc.) is rapidly growing. These applications require security by the use of symmetric
or asymmetric cryptographic systems. Asymmetric cryptographic systems offer the best advantages in terms
of security and easy implementation. On the other hand, used alone, encryption systems do not ensure
authenticity, which is equal to Authentication + Integrity. In fact, the main security technique
implemented so far is the digital signature. It makes it possible to ensure the authenticity and integrity
properties of the exchange. It is based on asymmetric cryptography and hash functions. The digital
signature is an encrypted fingerprint added to the message. It ensures integrity, authenticity and non-
repudiation by the sender. It is based on asymmetric cryptography and hash functions.

ECDSA is a variant of digital signature algorithm (DSA) that uses cryptography on elliptic curves. It is
the most standardized algorithm of signature schemes based on elliptic curves. It is important to remember
that a cryptographic signature generated with an ECDSA algorithm having the size 64 bits has the same
security level as an Rivest Shamir Adleman (RSA) cryptographic signature of size 2048 bits. In recent
years, research on ECDSA hardware implementation has become very popular [1–6]. A lot of research is
being done to improve ECDSA’s performance and this has led to a large number of implementations. In
2018, Asif et al. [6] developed a new architectural design of the ECDSA algorithm, for intelligent
transport system (ITS) applications, which is able to validate the constraints in real time. The authors
employed parallel processing techniques to minimize hardware delays which reduces real-time security
and end-to-end delay of ITS messages. In a recent paper by Kamalakannan et al. [7], a modified ECDSA
schema is proposed to be implemented in wireless sensor networks (WSNs) and radio frequency
identification (RFIDs) devices. This schema offers more security and lower calculation costs by reducing
the reverse operation applied in the key generation and signature phase.

Information security heavily relies on integrated circuits (ICs). Unfortunately, ICs face a lot of threats
such as side channel or fault attacks. This work focuses on small vulnerabilities and countermeasures for
the ECDSA. The motivation is that leakage sources may be used in different attack scenarios. By fixing
the leakage, existing attacks are prevented but also undiscovered or non-disclosed attacks based on the
leakage. Moreover, while the elliptic curve scalar algorithm is at the heart of the security of all elliptic
curve related cryptographic schemes, all the ECDSA system needs security. A small leakage of few secret
bits may conduct to fully disclose the private key and thus should be avoided. The ECDSA can be
implemented in different flavors such as in a software that runs on a microcontroller or as a hardware
self-contained block or also as a mix between software and hardware accelerator. Thus, a wide range of
architectures is possible to implement an ECDSA system. In spite of their security, the hardware
implementation of the ECDSA signature is subject to fault injection attacks aimed at recovering the secret
key [8–11]. Fault injection attacks are known to be very effective and easy to implement. They are very
effective against insecure implementations. The main objective of this works is to detect and prevent fault
injection attacks. Therefore, one needs to protect the ECDSA implementation against fault-injection
attacks by the implementation of countermeasure methods. The aim of our work was to obtain a Secure
and robust ECDSA hardware implementation against faults injection attacks. First, we have presented a
hardware implementation of the digital signature ECDSA. It is based on three steps: key generation,
signature generation and signature verification. It requires the efficient implementation of three
intellectual properties (IPs) for random key generation, asymmetric encryption and hash. We have chosen
hash IP and random key generation IP, as well as asymmetric ECC encryption IP, which are the most
efficient for all three IPs in terms of area, frequency and cost each time. For an implementation with a
higher level of security and occupying less resource, we used the Keccak algorithm, as the Keccak
algorithm is more secure than other hash algorithms. In addition to the above, another aspect is studied in
this article, which is the resistance of the hardware implementation of the digital signature ECDSA to
fault attacks. For this reason, we used a countermeasure at a higher hierarchical level of cryptography on
elliptic curves, which is scalar multiplication, to protect against fault attacks. Scalar multiplication kP is
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the most expensive step. This operation is critical for the security of the secret key. In addition, the proposed
ECDSA architecture with and without fault detection for the scalar multiplication have been implemented on
Xilinx FPGA platform (Virtex-5). Both implementation results have been compared and discussed. Their
area, frequency, area overhead and frequency degradation have been compared and it is shown that the
proposed scheme allows a trade-off between the hardware overhead and the security of the ECDSA.

This paper is organized as follows. The second section gives a brief overview of some of the most
relevant work in the literature. Section 3 is devoted to the proposed hardware architecture of ECDSA and
discussion of the results of the proposed architecture synthesis. In the fourth section, a countermeasure at
a higher hierarchical level of cryptography on elliptic curves, which is scalar multiplication, to protect
ECDSA against fault attacks, is presented. Our conclusions are drawn in the final section.

2 Related Works

This section focuses on the methods of countermeasures proposed for the ECDSA algorithm against
fault injection attacks in the literature. Fault injection attacks are known to be very effective and easy to
implement and consist of injecting one or more faults during the execution of the cryptographic process
and using the wrong outputs to obtain information on the secret key. They are very effective against
insecure implementations. Therefore, the need to protect implementations of the ECDSA against fault
injection attacks. However, studies on the resistance of hardware implementation of ECDSA to faults
injection attacks are lacking. One of the first examples of error analysis and detection procedures for
signature is presented in [8]. The authors presented a countermeasure to protect systems based on ECC
against fault attacks. It uses a check value together with the redundancy provided by the point
representation to protect the data path and the program flow. Another method of countermeasure is
described in [10]. The proposed countermeasures consist in adding a cyclic redundancy check (CRC) in
the private key or using the public key to validate the signature before sending it. However, this method
is expensive. In [12], the authors applied non-linear error detection codes to protect ECDSA operations
from fault-based attacks. Their algorithms provide nearly perfect error detection capability at a reasonable
overhead. Another countermeasure is described in [13]. The authors proposed a new algorithmic
countermeasure capable of repelling all attacks by fault. The proposed countermeasure has a low
computational cost and keeps its computational overhead around 30% w.r.t. the unprotected primitive.

3 Proposed Hardware Architecture for ECDSA Cryptosystem

The digital signature is one of the main advantages of asymmetric cryptography. It is a mechanism to
authenticate a message, that is, to prove that a message is from a particular sender. The signature protocol
ECDSA, proposed in 1992 by Serge Vaudenay, is a variant of the DSA standard which, unlike the
original algorithm, uses cryptography on elliptic curves. It is now the most standardized signature
scheme, appearing in the American national standards institute (ANSI) X9.62, federal information
processing standards (FIPS) 186-3, institute of electrical and electronics engineers (IEEE) 1363-2000 and
International organization for standardization (ISO)/international electrotechnical commission (IEC)
15946-2 [14] standards. The benefits of ECDSA over DSA and RSA are shorter key lengths and faster
signing and encryption operations.

In this section, we introduce how to calculate the signature using ECC-based crypto-systems. For this,
three Algorithms 1–3 are needed: private and public key pair generation, signature generation and signature
verification. The ECDSA system is based like other algorithms processed on a public and a private key. To
create its two keys, we follow algorithm 1.

CSSE, 2023, vol.44, no.3 2179



Algorithm 1: Key Pair Generation

1. Select an elliptic curve E(a,b)

2. Select a point G (xG, yG) ∈ E (a,b) of order n.

3. Select a big integer d in the Interval [1, n−1].

4. Compute the point Q (xQ,yQ) = d.G (Scalar Multiplication of Montgomery).

The private and public key pair generation algorithm uses the random number generation (RNG) for
random generation of the private key. Subsequently, the public key is computed by the scalar
multiplication of the private key by the generating point of the elliptic curve E.

Algorithm 2: ECDSA Signature Generation

Input: Private Key d, message M and Public key Q (xQ,yQ)

Output: Signature (r,s)

1. Select a random or pseudorandom integer k, 1 ≤ k ≤ n−1.

2. Compute k.G = (x1, y1).

3. Compute r = x1 mod n. if r = 0 then go to step 1.

4. Compute k−1 mod n.

5. Compute e = H (m) with the secure hash algorithm (Keccak).

6. Compute s = k−1 (e+d.r) mod n. if s = 0 then go to step 1.

7. The signature for the message m is (r,s).

Having both keys (private and public), the algorithm 2 allows the generation of the signature of a
message m by using a chosen hash function named H.

The verification step made by the algorithm 3 is needed to verify the signature (r, s).

Algorithm 3: ECDSA signature verification

Input: Public key G (xG,yG), message M and signature (r,s) to be verified.

Output: Verification or rejection of signature.

1. Verify that r and s are in the interval [1, n−1].

2. Compute e = H (m) with the secure hash algorithm (Keccak).

3. Compute w = s−1 mod n.

4. Compute u1 = ew mod n and u2 = r mod n.

5. Compute X = u1G + u2Q. (Compute using the point addition formula on an elliptic curve).

6. If X = 0, then reject the signature. Otherwise compute v = x1 mod n.

7. The signature is accepted if and only if v = r.

An architectural description of the ECDSA signature authentication cryptosystem has been developed
(see Fig. 1).
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This architecture is composed of five modules:

■ A 163-bit ECC processor: based on the method of Montgomery, for the calculation on the scalar
multiplication operation.

■ A hash block: Generates the hash used in both the electronic signature generation and verification
operation of the message.

■ A Random Number Generator: generates a sequence of random numbers used as keys during the
signature process.

■ An intermediate register to maintain the hash.
■ Control unit: Generates the control signals of the function blocks as well as the clock signals.Since the
signature is based on three IPs that are: the ECC IP, the RNG IP and the hash IP, we study the most
efficient algorithms for these three IPs in terms of power, speed and cost each time. In this next section,
we study these IPs and their architecture.

3.1 Grain Design

The key represents the first parameter that must be well chosen to have a secure system. So having a key
that is easy to implement on hardware platforms but at the same time difficult to attack is the first concern. It
is therefore necessary to make the right choice of the algorithm to generate this key. There are several
hardware methods for generating cryptographic keys, the best known are linear feedback back shift
registers (LFSRs). These LFSRs can be used for other stream encryption generators such as those used
for the Global system for mobile communications (GSM) standard (A5/1, A5/2 and W7). There are also
generators based on non-linear feedback shift register (NLFSR), known as Grain [15]. In addition,
cellular automata (CA) are an important family of stream ciphering generators [16]. The Tab. 1 compares
the different stream cipher algorithms.
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Figure 1: Proposed architecture of ECDSA
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Being a synchronous stream encryption primitive, the Grain can be better implemented in hardware. It is
bit-oriented while RC4 provides byte-by-byte encryption (used in secure sockets layer (SSL) and
802.11 wireless fidelity (WiFi)) but has weaknesses in initialization. On the other hand, we find the A5/1
(used in GSM) which is basically good but easily breakable. A characteristic that makes the Grain very
powerful is the possibility of increasing the speed by means of hardware, which makes it very fast. It is
well suited for real time applications. For this reason, we adopt this method in our implementation.

Grain 128 [17] supports 128-bit key and 96-bit initial vector (IV). It uses a linear feedback shift register
(LFSR) to ensure good statistical properties. To exhibit non-linearity, a non-linear feedback shifts register
(NFSR) is used with a non-linear filter. The nonlinear filter takes the contribution of both shift registers.
The Fig. 2 illustrates the operation of this algorithm. Grain 128 provides high-performance security, small
size, and simplicity when implemented [18]. It also offers the possibility to increase the speed thanks to
the implementation of the polynomial functions (f (x) and g (x)) and the filter function (h (x)) several
times. For this, we chose to ensure the generation of keys in the ECDSA protocol by the grain 128, given
its hardware characteristics.

The grain-128 synthesis results are presented in Tab. 2. They were created using the Virtex5
XC5VFX70T-FF665-(-3) platform and the integrated synthesis environment “ISE 14.7 tool” component’s
packages.

Table 1: Comparison of the different encryption algorithms by stream

Encryption algorithms The length of the key (bit) Initialization vector (bits)

Rivest Cipher 4 (RC4) 8-2048 8

MUGI 128 128

A5/1 64 114

W7 128 128

CA 16 × 16 256 16

Grain V1 80 64

Grain 128 128 96

NFSR LFSR

FILTER
H(x)

G(x) F(x)

Figure 2: Grain diagram

Table 2: Grain-128 performances

Area (Slices) Area (Luts) Frequency (MHz) Throughput (Mbps) Efficiency (Mbps/slice)

Grain-128 400 404 259.271 259.271 0.64
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According to the implementation results, the grain generator is the ideal trade between area and
frequency. Moreover, the grain-128 preserves the benefits of the grain-80 by supporting a 128-bit key and
a 96-bit initialization vector.

3.2 Keccak Architecture Design

One of the most important applications of hash functions is their use in electronic signatures. The
electronic signature is a mechanism analogous to the handwritten signature to guarantee the integrity of
an electronic document and proving to the reader of the document the identity of its author. Such
mechanisms utilize the methods of asymmetric cryptography. There is a variant algorithm that performs
the hashing, Tab. 3 gives the best known algorithms which are MD5 (Message Digest 5), SHA-0 (Secure
Hash Algorithm 0), SHA-1, SHA-256, SHA-384, SHA-512 and Keccak.

These functions process a variable length input to output a fixed length message. Tab. 3 compares these
different hashing algorithms according to different parameters: message size, Condensed size and number of
rounds. From the Tab. 3, we note that MD5, SHA0 and SHA-1 have the same parameters except that the size
of the MD5 digest is smaller (128 bits). In addition, we note that there are often collisions produced by these
algorithms, so their security is no longer guaranteed. Cryptographic hash function standards since 1993 were
the functions of the SHA family (SHA-0, SHA-1 and SHA-2), but some weaknesses were discovered for this
set of functions. For this, national institute of standards and technology (NIST) launched a public competition
in 2008, in order to choose a new function as standard. The Keccak family [24] won this competition in 2012,
and subsequently became the new SHA-3 standard [25]. Therefore, the new algorithm is expected to be more
secure. It is for this reason; we adopt the Keccak algorithm in our implementation. Keccak is a family of hash
functions designed by Guido Bertoni, Joan Daemen, Michael Peeters and Gilles Van Assche [23]. Its
instances are sponge functions, based on an internal permutation, called Keccak-f. Each instance of the
family is characterized by the size of the permutation, b. There are 7 different Keccak-f permutations,
denoted Keccak-f [b], with b ∈ {25, 50, 100, 200, 400, 800, 1600}. The Keccak-f [1600] function was
submitted to the SHA-3 competition and was recently selected by NIST as the new standard.

3.2.1 Sponge Construction
Another construction called sponge construction has been proposed by Bertoni et al. in 2008 [26]. It is

an iterated algorithm capable of producing arbitrary size outputs. Unlike the Merkle-Damgard construct
which is based on a compression function, the sponge construction relies on an internal transformation of
fixed size that is to say on a permutation f, operating on the words of b bits [20].

Table 3: Comparison of the different hash algorithms

Parameters Algorithms Message size (bits) Condensed size (bits) Number of rounds

MD5 [19] <264 128 80

SHA-0 [20] <264 160 80

SHA-1 [21] <264 160 80

SHA-256 [22] <264 256 64

SHA-384 [22] <2128 384 80

SHA-512 [22] <2128 512 80

SHA_3(Keccak) [23] <2128 256 24
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The footprint of a message m is calculated as follows: We start by adding a filling sequence (injective
padding), then we divide the resulting string into blocks m1… mk of size t. Then, the b bits of the internal
state are initialized with the value ‘0’. The procedure takes place in two successive steps (see Fig. 3):

■ The absorption step: During this phase, the blocks of the message are processed (“absorbed”)
iteratively. The first block m1 is Xorated (exclusive OR) with the internal state. The result is then
subjected to a transformation f. Then, the second block m2 is Xored with the state and the
transformation f is applied again. The same operations are repeated until all message blocks are
processed.

■ The pressing step: During this phase, values of the internal state are generated at different times by
calls of the transformation f. The size of the prints extracted, can be chosen according to the needs.

3.2.2 Description of the Keccak-f Permutation
The permutation Keccak-f applies to a state of 1600 bits, which is represented by a three-dimensional

binary matrix, a [x] [y] [z], with 0 ≤ x, y < 5 and 0 ≤ z < 64. As a result, the state can be viewed as 64 slices,
each of which contains 5 rows and 5 columns. The initial number of laps for the Keccak-f swap was set at
18 laps, but increased to 24 for the second round of the SHA-3 competition. This change is due to the
publication of the zero-sum distinction by Aumasson and Meier [27]. These differences do not directly
affect the security of the function, but violate the hermetic sponge strategy which guarantees the security
of the hash function provided that the internal permutation has no exploitable structural properties. Each
round R is composed of a sequence of 5 permutations, θ, ρ, π, χ, ι, which modify the state. Each
transformation is charged with a different function, in order to ensure both confusion and a good
diffusion in all directions of the state in three dimensions. The proposed architecture of Keccak is
illustrated in Fig. 4.

3.2.3 Simulation and Synthesis Results of Keccak IP
On the FPGA Virtex5 XC5VFX70T-FF665-(-3), the KECCAK IP was introduced. In terms of

frequency, Area, Throughput (Gbps) and Efficiency (Mbps/slice), Tab. 4 shows its output.

With a performance of 256 bits each 25 clock cycles and a throughput of 14.054 Gbps, this design
achieves a maximum operating frequency of 343.124 MHz.

F F F F F

r

c

m1 m2 mk
Z1 Z2 Z3

Absorption Compression 

Figure 3: Principle of sponge functions
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3.3 Proposed Architecture of ECC Asymmetric Cryptosystem

The main operation in any protocol using elliptic curves is the multiplication of a point on the curve by a
scalar; the calculation of kP = P +… + P, where k = (kiki-1…k1k0) is an integer and P a point on the curve. In
order to carry out this operation effectively, many methods have been proposed. They are generally based on
the so-called “double-and add” algorithm consisting in performing series of doubling interspersed with
additions, according to the binary representation of the scalar K. To defend against simple power analysis
(SPA) attacks, we will try to break the relation between current consumption and the branch side chosen
in the algorithms and scalar multiplication. If the main bit ki is 1 or 0, there are many ways to standardize
the calculations performed. The Montgomery scale allows scalar multiplication to be performed by

Figure 4: Proposed architecture of keccak

Table 4: KECCAK performances

Area (Slices) Clock cycles Frequency (MHz) Throughput (Gbps) Efficiency (Mbps/slice)

KECCAK 1309 25 343.124 14.054 10.73
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performing an exact addition of points and doubling for each bit of k. Using this algorithm, one can expect
the current consumption to vary only slightly depending on whether the bit ki is 1 or 0. The Montgomery
algorithm is one of the effective parries against side channel attacks (SCA). Its original version was
introduced by Montgomery, and applied only to a special category of elliptical curves (Montgomery
curves). Recently, this method has also become applicable to elliptic curves defined on GF (2m) thanks to
the addition and doubling formulas. The computation of kP is carried out by expressing the key k in the
binary form: k = ki-1 ki-2 … k1 k0 and applying a chain of elementary doubling and addition operations.
To obtain an efficient scalar multiplication, it is therefore necessary that the elementary operations be
efficient and less expensive, such as the doubling and addition methods that have been used (addition and
doubling of Montgomery). So the most efficient algorithm of scalar multiplication is the algorithm
represented in projective coordinates which is given by the algorithm 4.

Algorithm 4: Montgomery scalar multiplication

Input: k=(kn-1,kn-2,…,k1,k0) with kn-1=1

P(x,y)∈F2m

Output: Q=kP

Procedure: MontPointMult (K.P)

1. Set X1 <=x, Z1 <=1, X2 <=x
4+b, Z2<= x2

2. For i= (n−2) to 0 do

2.1: If (ki=1) then

Madd (X1,Z1,X2,Z2)

Mdouble (X2,Z2)

2.2: Else

Madd (X2,Z2,X1,Z1)

Mdouble (X1,Z1)

3. x3= X1/Z1

4. y3=(x+X1/Z1).[(X1+xZ1)(X2+xZ2)+(X
2+y)(Z1.Z2)].(xZ1Z2)

−1+y

5. Return (x3, y3)

The architecture of an ECC cryptosystem is elucidated in Fig. 5. It consists of 7 modules: the first and
second modules are successively addition and point doubling which constitute the basic calculation unit of
the ECC, the third module is an affine-projective converter while the fourth serves to do the inverse
conversion (from projective coordinates to affine coordinates), more than a controller that serves to
synchronize the various modules via synchronization signals. The first step is to transform the affine
coordinates into projective coordinates by the affine-projective converter, the latter receives the entries
(x, y) and the transforms into X1, Z1, X2, Z2. The first converter outputs will be the inputs of the
calculation unit, and they must undergo a succession of doubling and point addition operations according
to the Ki test bit value. Finally, the outputs X1, Z1, X2, Z2 of the calculation unit must undergo a
transformation at the second converter (projective-refinery) level to obtain the outputs (x, y) in affine
coordinates. The three blocks of this architecture are synchronized by the synchronization signals from
the controller.
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In the proposed architecture, we have optimized the architecture of the ECC, it includes only two
reusable Montgomery multipliers. This reuse of the multipliers increases the performance of the IP of the
proposed architecture in this way from the point of view of slice occupancy and frequency. Tab. 5 shows
the outcomes of the ECC implementation.

An FPGAVirtex 5 was used to test the proposed ECC-IP. The suggested FPGA implementation of ECC
Point Multiplication is compared to numerous recent works in the literature in terms of area and frequency in
Tab. 5. Our ECC Point Multiplication implementation takes considerably less area than other
implementations. Our implementation has the highest frequency when compared to [30] and [31]. When
compared to our work, the implementation proposed in [29] has the highest frequency. However, it
require additional area. In comparison to the approach given in [28], our implementation utilizes 356.14%
less occupied slices. The suggested version in [32] employs more Occupied Slices than ours, but has a
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Figure 5: Proposed architecture of ECC asymmetric cryptosystem

Table 5: Performances of ECC

ECC point
multiplication

FPGA platform Area Frequency (MHz)

LUTs Occupied slices

Proposed Virtex-5 XC5VFX70T 11261 3865 218.257

[28] XCV2600E - 17630 46.5

[29] Virtex-4 XC4VLX200 33414 17929 250

[29] Virtex-4 XC4VLX200 30895 16544 256

[29] Virtex-4 XC4VLX200 26557 14203 263

[30] Virtex-4 XC4VLX200 - 10417 121

[31] Virtex-5 XC5VLX110 29095 10362 153

[32] Virtex-5 XC5VLX110 - 5768 343.3
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higher total frequency. Our proposed implementation is more ideal for ECDSA implementation due to its
efficiency.

4 Experimental Results and Comparisons

The synthesis was carried out using the integrated synthesis environment (ISE) 14.7 tool. The Xilinx
Virtex5 XC5VFX70T-FF665-(-3) hardware target. The architecture synthesis results are presented in the
Tab. 6. The Tab. 6 presents the results of ECDSA implementation in terms of area (look-up table (LUT)
and Slices), frequency, number of cycles and execution time.

From the synthesis results, our proposed implementation of ECDSA can achieve an operating frequency
of 110.521 MHZ and takes 7748 slices.

A comparative study was made between our results and the state of the art in the Tab. 7 in terms of
frequency, occupation (signature + verification) and execution time.

The implementation proposed in [1] has the maximum frequency, but it requires more area than our
work. However, our implementation has the highest frequency than [5], [7] and [34]. Compared to our
work, the implementation proposed in [33] has the maximum frequency but uses more Occupied Slices
then our implementation. In addition, by comparing our results to those found in [33], our results are the
best in terms of area. Our architecture offers a 36% gain in terms of area.

5 Proposed Fault Detection Scheme for the ECDSA Implementations

When calculating an ECDSA signature, scalar multiplication kP is the most expensive step. The time
required to calculate a signature, signature verification or shared secret exchange is mainly consumed by
this operation. This operation is critical for the performance of the cryptographic system but also for the
security of the secret key. The scalar used in an ECDSA signature is a number d chosen at random but if
it is discovered by an attacker who also knows the signature (s,r) and the message m, as a result, the
secret key K is compromised:

Table 6: FPGA implementation of the proposed design: Results

Occupied slices LUTs Frequency (MHz) Number of cycles Execution time

ECDSA 7748 17355 110.521MHz 84885 1,6977 ms

Table 7: FPGA implementation of ECDSA: Results and comparison

Design FPGA platform Field (bits) Area Frequency (MHz)

[1] Virtex-5 GF(2163) 20628 148.963

[5] Virtex-5 GF(2163) 18504 107.4

[7] Virtex-5 GF(2163) 16387 13.156

[33] Virtex-5 GF(2163) 23760 195.309

[34] Virtex-6 GF(2163) 18740 100

Our Virtex-5 GF(2163) 17355 110.521
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K ¼ s:d � e

r
mod n (1)

The ephemeral key has been the source of many publications to find the secret key. The most powerful
attack in terms of complexity and the amount of signatures required is proposed by Schmit et al. [8]. Their
attack is based on modification of the program flow to determine enough bits of the ephemeral key. The
signature key d can be derived by a lattice attack. In addition, in the case of a particular implementation
of the decomposition technique, Barthe et al. [9] described a hidden channel attack using leaked
information when calculating a multiplication. This information makes it possible to find a certain
number of low-order bits of the nonce k. Applied on a small amount of signatures, the secret key can be
found through network reduction. This type of attack can be generalized to other implementations of the
decomposition technique from the moment when the nonce k is manipulated with data known by the
attacker. Scalar multiplication is therefore critical, because if the scalar used is discovered a secret can be
compromised, except in the case of verification of an ECDSA signature because no secret elements are
manipulated. From a performance point of view, this operation must also be implemented effectively.

To protect against these attacks, we used a countermeasure at a higher hierarchical level of cryptography
on elliptic curves, which is scalar multiplication and can therefore be used on any elliptic curve that we
proposed in our paper [35]. The proposed fault detection method is based on scrambling technique. The
countermeasure is to duplicate the scalar multiplication scheme, so that the executions of the scalar
multiplication algorithm are performed simultaneously. We used this approach to scramble the byte
between the two executions of the scalar multiplication algorithm, so that each byte of the first data path
is scrambled with the respective byte in the second data path. In this way, we have ensured that an error
on one data path will produce an error on the second data path. The scrambling mechanism is used at the
end of each block: Affine_procective converter, kP calculation unit and Projective_affine converter. This
approach is simple and easy for hardware implementation. The proposed technique is presented in Fig. 6.

Figure 6: Technique of scrambling byte-wise in Montgomery Scalar Multiplication block [35]

CSSE, 2023, vol.44, no.3 2189



Our design for hardware implementation of ECDSA digital signature with and without fault detection
method for Montgomery scalar multiplication, was simulated, synthesized, and implemented using
XC5VFX70T board from Xilinx Virtex-5 family. In addition, the developed method has been examined
practically as shown in Fig. 7, the test results are fully functional. The FPGA implementation of the
ECDSA digital signature algorithm with and without fault detection method for Montgomery scalar
multiplication has been accomplished on a Xilinx Virtex-5 XC5VFX70T package FF1136 speed-3, using
Xilinx ISE 13.1 as synthesis tool, ModelSim (PE Student Edition 6.4b); which provides a complete
simulation and debugging environment for complex FPGA designs. It supports several description
languages, including VHSIC hardware description language (VHDL) for simulation, and Xilinx
ChipScope Pro 14.7 as a logic analyzer for debugging. The design was coded using VHDL.

The architecture of the ECDSA signature with and without fault detection method for the Montgomery
scalar multiplication has been described using VHDL language, simulated by ModelSim simulator 6.4b and
synthesized with XILINX ISE 14.7. The FPGA platform target was XC5VFX70T from Xilinx Virtex-
5 family. Tab. 8 presents the results of the ECDSA synthesis on the Virtex 5 card.

The original ECDSA implementation necessitates 9921 occupied Slices for a frequency of
110.521 MHz. The ECDSA implementation with fault detection method need a 21.9% overhead of the
Occupied Slices and 1.92% degradation of the frequency compared to ECDSA implementation against
fault without fault detection method.

Figure 7: Hardware implementation photo

Table 8: Resource overhead and degradation results

ECDSA signature Area Frequency (MHz)
(degradation)

LUTs (overhead) Occupied slices (overhead)

Without fault detection 17355 7748 110.521

With fault detection 21088 (21.51%) 9921 (21.9%) 108.4 (1.92%)
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ECDSA’s suggested design is resistant to fault attack. The employment of a duplication scheme and
scrambling approach for the Montgomery Scalar Multiplication algorithm as a countermeasure against
fault attacks at a higher hierarchical level of cryptography on elliptic curves. Due to variances in FPGA
technology employed and a lack of FPGA implementation results from other papers, a direct comparison
of performance of hardware implementations with other reported results is not available. Therefore, it is
difficult to give a fair comparison in this regard, but, in any case, our results clearly show that
FPGA-based implementations of the ECDSA algorithm with and without fault detection methods are very
attractive for many applications.

6 Conclusion

In this paper, we have presented a hardware implementation of the digital signature ECDSA. It is based
on three steps: key generation, signature generation and signature verification. It requires the efficient
implementation of three IPs for random key generation, asymmetric encryption and hash. we have chosen
hash IP and random key generation IP, as well as asymmetric ECC encryption IP, which are the most
efficient for all three IPs in terms of area, frequency and cost each time. However, other aspects can be
studied: resistance to attacks, etc. For this reason, we used a countermeasure at a higher hierarchical level
of cryptography on elliptic curves, which is scalar multiplication to protect against fault attacks. In
addition, the proposed ECDSA architecture with and without fault detection for the scalar multiplication
have been implemented on Xilinx FPGA platform (Virtex-5). Its frequency and area have been compared
and discussed. The FPGA implementation results show that the proposed architecture achieves good
performance in terms of frequency and area.
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