
Algorithms for Pre-Compiling Programs by Parallel Compilers

Fayez AlFayez*

Department of Computer Science and Information, College of Science, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
*Corresponding Author: Fayez AlFayez. Email: f.alfayez@mu.edu.sa

Received: 19 December 2021; Accepted: 10 March 2022

Abstract: The paper addresses the challenge of transmitting a big number of files
stored in a data center (DC), encrypting them by compilers, and sending them
through a network at an acceptable time. Face to the big number of files, only
one compiler may not be sufficient to encrypt data in an acceptable time. In this
paper, we consider the problem of several compilers and the objective is to find an
algorithm that can give an efficient schedule for the given files to be compiled by
the compilers. The main objective of the work is to minimize the gap in the total
size of assigned files between compilers. This minimization ensures the fair dis-
tribution of files to different compilers. This problem is considered to be a very
hard problem. This paper presents two research axes. The first axis is related to
architecture. We propose a novel pre-compiler architecture in this context. The
second axis is algorithmic development. We develop six algorithms to solve the
problem, in this context. These algorithms are based on the dispatching rules
method, decomposition method, and an iterative approach. These algorithms give
approximate solutions for the studied problem. An experimental result is imple-
mented to show the performance of algorithms. Several indicators are used to
measure the performance of the proposed algorithms. In addition, five classes
are proposed to test the algorithms with a total of 2350 instances. A comparison
between the proposed algorithms is presented in different tables discussed to show
the performance of each algorithm. The result showed that the best algorithm is
the Iterative-mixed Smallest-Longest- Heuristic (ISL) with a percentage equal
to 97.7% and an average running time equal to 0.148 s. All other algorithms
did not exceed 22% as a percentage. The best algorithm excluding ISL is Itera-
tive-mixed Longest-Smallest Heuristic (ILS) with a percentage equal to 21,4%
and an average running time equal to 0.150 s.
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1 Introduction

This work addressess the time challenge of transmitting a big number of encrypted files through a
network. Sending several data at the same time by activating the encryption mode is a challenging task.
Indeed, compiler data encryption requires time to process data. Faced with huge data we will end up
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facing a problem of assignment otherwise a problem of waiting will appear and can lead to problems and
delay sending data.

Authors in [1], proposed a technique utilizing the scheduling algorithms for memory-bank management,
register allocation, and intermediate-code optimizations. The objective was the minimization of the overhead
of trace scheduling and the Multi-flow compiler was described. The trace scheduling compiler using the
VLIW architecture was examined and investigated in [2–6].

In [7], authors proposed compiler-assisted techniques for operating system services to ensure sufficient
energy consumption. The simulation shows the effectiveness of the proposed techniques to achieve better
results using dynamic management systems.

A recent study in [8] presented a manner to perform the whole-program transfer scheduling on
accelerator data transfers seeking to reduce the number of bytes transferred and enhanced program
performance and efficiency.

Other studies such as [9–12] investigate the register allocation and instruction assignment.

A novel domain-specific language and compiler were developed to target FPGAs and CGRAs from
common source code in [13]. Authors prove that applications written in spatial are, on average, 42%
shorter and achieve a mean speedup of 2.9x over SDAccel HLS.

Several patents were developed regarding the allocation compiler code generation and scheduling, such
as in [14,15]. Parallel architectures such as multiprocessors are still difficult to exploit in the presence of
compilers [16].

Several authors treated the fair load balancing into computer [17–19]. Other domains that others treated
the load blanching are the projects assignment and gas turbines aircraft engines [20–25]. Recently, a novel
research work to fight COVID-19 using load balancing algorithm is developed in [26]. Other works treated
the scheduling algorithms and the load balancing are [27,28].

The aim of this work is to introduce a novel architecture manipulating the transmission of data through
network guaranteeing the effectiveness of encryption. This paper introduces a novel architecture to show the
necessity of security into a network. The proposed control aims to ensure a fair distribution of the set of files
to different compilers which are responsible for the encryption. To the best of authors knowledge, this
problem has never been studied in the literature. Several interesting papers in the literature deal with trace
scheduling compiler [29–32].

This paper is organized as the following in Section 2, we begin with an overall presentation of the novel
proposed architecture. The studied problem is described in Section 3. The proposed algorithms solving the
studied problems are developed in Section 4. Section 5, presents experimental results to show the
performance of the proposed algorithms. A conclusion is presented in Section 6.

2 Novel Proposed Architecture

In this paper, we propose a new architecture for the data transmission process that requires several
security processes. Authors in this project discovered the need of fare distributing that appears when there
are files need to be encrypted using compilers before being sent through the network. In presence of big
data, we must impose appropriate algorithm that organize the manner of transmission of the files among
compilers to guarantee the optimum usage of recourses by distributing the files among compilers for
encryption process taking into account the file size. In order to do that, we propose to add a new
component into network architecture. This component will be known as “scheduler” that responsible to
give a good planning of the dispatching files to different compilers to guarantee time efficiency in the
encryption tasks.
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The novel architecture proposed in this paper is described in Fig. 1. The component “reception process”
is represented by “Scheduler r” and “decrypter” in Fig. 2. This architecture is decomposed into
7 components. These components are given as following:

� Data center: this component is responsible to collect all files that need to be sent through the network.
The collection of files must be done in a secure place.

� scheduler s: is the scheduler responsible to give an appropriate distribution of files that need to be
encrypted by the compiler before sending the files through routers.

� Encrypter: this component is responsible to encrypt files. The encrypter contain different compilers
that are responsible of executing the encryption algorithm.

� Routers: Scheduler r: scheduler that responsible to receive files from routers and apply the appropriate
algorithm to assign files to compilers (see Fig. 3).

� Decrypter: this component applies the algorithm that can decrypt files to be readable by the receiver.

� Terminal server: the receiver accounts.

3 Problem Description

In a specific network, any data breach can impact directly to national security, therefore, enforcing a
strong encryption system is very important. A strong security system must be applied for any confidential
national data to guarantee security and avoid any data leaks.

This section describes the proposed new network architecture that focused on the scheduler component.
Assuming that big data saved in DC need to be sent through a network at the same time, a problem of
concurrency can appear. The data is stored as files in DC and each file has its size in bytes. Assuming
that file sizes are known and have to be encrypted by a specific coding generator algorithm before

Figure 1: Data sent process

Figure 2: The reception process component

CSSE, 2023, vol.44, no.3 2167



sending. The coding algorithm that encrypts files is executed by a compiler. A compiler requires a fixed time
to encrypt each file from DC. Processing time varies depending on the file size. This work deals with the
problem when there are several identical compilers and addresses the following question. How to assign a
file to a compiler while maintaining fair load distribution among these compilers? The case where one
compiler is still processing encryption tasks, while the second compiler is paused because it has finished
all encryption requests shows the importance of fair distribution among compilers. A new scheduling
algorithm is required to address such a challenge.

Before we give the solution to the scheduling problem, we must give some notation as follows.

Denoting by j the index of each file fj which will be sent and by sj its corresponding size with
j ¼ 1; . . . ; nf

� �
and nf is the number of files. Now, the problem becomes as to how to schedule files having

sj sizes on the nc compilers. Each file fj can be assigned to only one compiler Coi with i ¼ 1; . . . ; ncf g. We
denote by Csj the cumulative sizes executed by the compiler Coi when the file fj is scheduled. The total
executed sizes for each compiler Coi after finishing assignments will be denoted by Tsi which will be
represent the total size executed by the compiler Coi. The minimum (maximum) total sizes on compiler after
finishing scheduling on all compilers is denoted by Tsmin (Tsmax). The total sizes executed by each compiler is
sorted as follows: Ts2 � Ts2 � . . . � Tsnc . The following example can explain the presented problem.

Example 1

We consider a given instance, with two compilers nc ¼ 2 with five files nf ¼ 5. The sizes of the
compiled files are presented In Tab. 1.

We chose an algorithm to schedule files on compilers. The algorithm will give the schedule shown in
Fig. 3. It is clear to see that compiler 1 execute the encryption program for files {2,3,4}. Contrariwise, for
compiler 2, files {1,5} are picked. Based on Fig. 3, the compiler 1 has a total executed size 6790.
However, compiler 2 has a total size of 6012. The size gap between compiler 1 and compiler 2 is
Ts1 � Ts2 ¼ 778. The main objective is to search a schedule that improve the result by reducing the
obtained gap. In this regards we must search another schedule (if exist) more efficient with gap less than 778.

We need some indicators to evaluate the performance of different algorithms and the impact of the
chosen algorithm on the reducing of the calculated gap. In this paper, we propose to follow the indicator

Table 1: 2-compilers and 5-files instance example

j 1 2 3 4 5

sj 2314 1235 4658 897 3698

= 6012

3 2

5

4

1

= 4658

= 6790

8 = 5893

= 3698

Compiler 1

Compiler 2

93

C

= 6790

= 6790

= 6012

Figure 3: Files-compilers dispatching for example 1
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that calculate the difference between all compilers executed sizes and the compiler having the minimum total
size. For Example, 1, the indicator is Ts1 � Ts2. In general, we must calculate Tsi � Tsmin with
i ¼ 1; . . . ; ncf g. Therefore, considering the nc compilers the total size gap is given in Eq. (1) below:

Min
Xnc
i¼1

Tsi � Tsmin½ � (1)

Hereafter, let Ts gð Þ ¼ Pnc
i¼1

Tsi � Tsmin½ � the final gap between the total sizes executed by compilers. In this

paper, Eq. (1) is the objective of the studied problem. The problem is considered as NP-hard in the strong
sense. In this study, we utilize several heuristics to solve the problem.

4 Approximate Solutions

In this section, we present several approximate solutions to solve the problem. We develop algorithms
that return results within a good timing. The proposed heuristics are based essentially on the longest and
smallest sizes dispatching rules with some variants. We choose the dispatching rules because the running
time of those algorithms is more suitable.

4.1 Longest Size Heuristic (LS)

The files are sorted in non-increasing order of their sizes. After that, we schedule the files on the compiler
which has the minimum total size at this time.

4.2 Smallest Size Heuristic (SS)

The files are sorted in increasing order of their sizes. After that, we schedule the files which on the
compiler that has the minimum total size at this time.

4.3 Half-mixed Longest-Smallest Heuristic (HLS)

This heuristic is the moderation between the LS and the SS heuristics. Indeed, the half number of the files
will be treated applying LS and the remaining files will be treated by applying SS. Hereafter we denote by
“Schedule fj

� �
” the procedure that able to assign the file fj to the most available compiler. The first step to

apply HLS, we must order files according to the non-decreasing order of its sizes.

The algorithm of the HLS is given as follows.

Algorithm 1: Half-mixed Longest-Smallest algorithm (HLS)

Step 0 Set j ¼ nf :

Step 1 While ðj > nf
2
Þ

Step 2 Schedule fj
� �

Step 3 j��
Step 4 EndWhile

Step 5 While j � nf
2

� �

Step 6 Schedule fj
� �

Step 7 jþþ
Step 8 EndWhile

Step 9 Calculate Ts gð Þ
Step 10 Return Ts gð Þ.
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4.4 Half-mixed Smallest-Longest Heuristic (HSL)

This heuristic is the moderation between the SS and the LS the heuristics. Indeed, the half number of the
files will be treated applying SS and the remaining files will be treated by applying LS.

4.5 Iterative-mixed Longest-Smallest Heuristic (ILS)

For this heuristic, instead of scheduling half of the larger files, we iterated over larger b and smaller
nf � b by doing b variant from 1 to nf � 1. The first step to apply ILS, we must order files according to
the non-decreasing order of its sizes. The algorithm of the heuristic ILS is given as follows.

4.6 Iterative-mixed Smallest-Longest- Heuristic (ISL)

For this heuristic, we adopt the same idea developed for ILS. The modification is instead we start by the
largest files, here we start by the smallest files after that the nf � b largest files.

5 Experimental Results

In this section, we adopt and examine several classes that gives different manner of generation of
instances in order to discuss the results and examine the assessment of the proposed algorithms.

All developed algorithms are coded with Microsoft Visual C++ (Version 2013). The proposed
algorithms were coded and executed on an Intel(R) Core (TM) i5-3337U CPU @ 1.8 GHz and 8 GB
RAM. The operating system utilized throughout the research work is windows 10 with 64 bits. these
algorithms were examined on five different types of sets of instances. We generate the size sj based on
different distributions and each distribution represents a class. Let U n;m½ � be the uniform distribution
between n;m½ � and N n;m½ � be the normal distribution. The generation of all instances in this paper based
on classes will be as follows.

Algorithm 2: Iterative-mixed Longest-Smallest algorithm (ILS)

Step 0 Set j ¼ nf :

Step 1 For b ¼ 1 to nf � 1
� �

Step 2 While ðj > nf � bÞ
Step 3 Schedule fj

� �

Step 4 j��
Step 5 EndWhile

Step 6 j ¼ 1

Step 7 While j � nf � b
� �

Step 8 Schedule fj
� �

Step 9 jþþ
Step 10 EndWhile

Step 11 Calculate Tsb gð Þ
Step 12 j ¼ nf
Step 13 EndFor

Step 14 Calculate Ts gð Þ ¼ min
1�b�nf�1

Tsb gð Þ
Step 15 Return Ts gð Þ.
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� Class 1: sj in U 100; 500½ �.
� Class 2: sj in U 1000; 3000½ �.
� Class 3: sj in U 100; 2000½ �.
� Class 4: sj in N 50� 500½ �.
� Class 5: sj in N 25� 1000½ �.
The triple nf , nc and Class is the criterion that allows us to generate sizes.

The pair (nf , nc) have varied values. We choose the varied values presented in Tab. 2.

Tab. 2 have in total 2350 instances. Different variables are selected to measure the performance
assessment of the proposed algorithms. These variables are:

� Hb the best returned value of all algorithms.

� H the value returned by the studied heuristic.

� GAP ¼ H � Hb

H
.

� Time the running time for algorithm in seconds. We denoted by “−” is the time is less than 0.001 s.

� Perc the percentage among all instances that the condition Hb ¼ H is satisfied.

An overall of results, present Perc and Time given by all proposed algorithms, is depicted in Tab. 3.

Tab. 3 shows that the algorithm that conduct the best value is ISL with Perc ¼ 97:7% and
Time ¼ 0:148 s, compared to SPT which have a Perc equal to 16:2%. On other hand, the heuristic ILS is
participated with 21.4%. Tab. 4 shows the behavior of GAP according to nf . From Tab. 4 we can see that
when varying the number of files (nf ), the GAP of the proposed algorithms changes. The latter table
shows that there isn’t any correlation between the number of files and the evaluated average gap.

Table 2: Generation of nf ; nc
� �

nf nc

20; 50 2; 3; 5

100; 200; 250; 300 2; 3; 5; 10

500; 1000 2; 3; 5; 10; 15

1500, 2000, 2500 2; 3; 5; 10; 15; 20

Table 3: Overall, of all algorithms

LS SS HLS HSL ILS ISL

Perc 17.4% 0.0% 0.0% 16.4% 21.4% 97.7%

Time – – – – 0.150 0.148
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For algorithms [LS; SS;HLS;HSL; ILS; ISL] the worst GAP values was obtained for the following
values of nf [200,300,1500,250,300,20] respectively. In addition, Tab. 4 shows that heuristic ISL have the
best GAP ¼ 0 for all nf excluding nf ¼ {20,50,100}. The corresponding running time for algorithms
detailed in Tab. 4 is given in Tab. 5 below.

Tab. 5 shows that running time increase when the number of files increase for ILS and ISL. For other
algorithms the time is less than 0.001 s. Tab. 6 presents the results of the GAP value according to the
number of compilers nc. The worst GAP ¼ 0:99 value is given for SS when nc ¼ 2; 10f g and for HLS
when nc ¼ 2. The best GAP value is obtained by ISL when nc ¼ 3 and nc ¼ 20.

Table 4: Variation of GAP according to nf

nf LS SS HLS HSL ILS ISL

20 0.42 0.82 0.75 0.54 0.39 0.08

50 0.63 0.88 0.84 0.74 0.61 0.03

100 0.69 0.92 0.89 0.73 0.69 0.02

200 0.72 0.93 0.90 0.66 0.69 0.00

250 0.71 0.94 0.92 0.85 0.71 0.00

300 0.72 1.00 0.99 0.67 0.72 0.00

500 0.69 0.90 0.86 0.66 0.67 0.00

1000 0.67 0.90 0.87 0.69 0.66 0.00

1500 0.63 1.00 1.00 0.68 0.63 0.00

2000 0.60 0.94 0.92 0.61 0.58 0.00

2500 0.55 0.95 0.93 0.71 0.55 0.00

Table 5: Running time for each algorithm and each number of files

nf LS SS HLS HSL ILS ISL

20 – – – – – –

50 – – – – – –

100 – – – – 0.001 0.001

200 – – – – 0.002 0.002

250 – – – – 0.003 0.003

300 – – – – 0.003 0.003

500 – – – – 0.016 0.015

1000 – – – – 0.087 0.085

1500 – – – – 0.219 0.219

2000 – – – – 0.417 0.407

2500 – – – – 0.660 0.658
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The corresponding running times for algorithms detailed in Tab. 6 are given in Tab. 7 below. Tab. 7
shows that running time increase when the number of files increases for ILS and ISL. For other
algorithms, the time is less than 0.001 s.

The behavior of the average gap according to different classes is showed in Tab. 8. This last table shows
that there is not any correlation between the different classes and average gap. Thus, all classes having the
same difficulty because the average gap differed slightly between class and other one.

Table 6: Variation of GAP according to nc

nc LS SS HLS HSL ILS ISL

2 0.58 0.99 0.99 0.64 0.57 0.02

3 0.65 0.79 0.71 0.71 0.61 0.00

5 0.65 0.98 0.97 0.64 0.65 0.02

10 0.69 0.99 0.98 0.68 0.69 0.00

15 0.65 0.75 0.67 0.72 0.63 0.00

20 0.65 0.98 0.98 0.82 0.64 0.00

Table 7: Running Time for each algorithm and each number of compilers

nc LS SS HLS HSL ILS ISL

2 – – – – 0.109 0.110

3 – – – – 0.111 0.113

5 – – – – 0.119 0.117

10 – – – – 0.167 0.161

15 – – – – 0.065 0.061

20 – – 0.001 0.001 0.690 0.685

Table 8: Variation of GAP according to Class

Class LS SS HLS HSL ILS ISL

1 0.49 0.99 0.98 0.76 0.49 0.01

2 0.67 0.99 0.97 0.76 0.66 0.02

3 0.65 0.99 0.99 0.83 0.65 0.02

4 0.75 0.89 0.83 0.60 0.71 0.00

5 0.65 0.78 0.75 0.47 0.64 0.00
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The corresponding running times for algorithms detailed in Tab. 8 are given in Tab. 9 below.

Tab. 9 shows that the algorithms ILS and ISL have the running time higher than LS; SS; HLS and HSL.

6 Conclusion

This work mainly focused on the fair distribution problem of files before the encryption process in
compilers. The main contribution of this paper is based essentially on two approaches. Firstly, the
proposal of a novel architecture regarding the transmission of different files in the presence of big data
into the network using encryption process for files before transmitting to a network. Secondly, scheduling
problem of assigning fair file loads to compilers in order to ensure timely compilation process. The
problem studied in this paper is an NP-hard problem. In order to assure a fair distribution of files among
different compilers, this work gives several solutions and approaches. These approaches improve the
network performance and allow sending the maximum data in remarkable time. Several algorithms are
proposed to solve the current challenge. The experimental results show that no dominance between
algorithms and time is very interesting. The proposed heuristics can be used in the future to compare with
other algorithms and develop an exact method to solve the problem.
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