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Abstract: In this work, we design a multisensory IoT-based online vitals monitor
(hereinafter referred to as the VITALS) to sense four bedside physiological para-
meters including pulse (heart) rate, body temperature, blood pressure, and periph-
eral oxygen saturation. Then, the proposed system constantly transfers these
signals to the analytics system which aids in enhancing diagnostics at an earlier
stage as well as monitoring after recovery. The core hardware of the VITALS
includes commercial off-the-shelf sensing devices/medical equipment, a powerful
microcontroller, a reliable wireless communication module, and a big data analy-
tics system. It extracts human vital signs in a pre-programmed interval of 30 min
and sends them to big data analytics system through the WiFi module for further
analysis. We use Apache Kafka (to gather live data streams from connected sen-
sors), Apache Spark (to categorize the patient vitals and notify the medical pro-
fessionals while identifying abnormalities in physiological parameters), Hadoop
Distributed File System (HDFS) (to archive data streams for further analysis
and long-term storage), Spark SQL, Hive and Matplotlib (to support caregivers
to access/visualize appropriate information from collected data streams and to
explore/understand the health status of the individuals). In addition, we develop
a mobile application to send statistical graphs to doctors and patients to enable
them to monitor health conditions remotely. Our proposed system is implemented
on three patients for 7 days to check the effectiveness of sensing, data processing,
and data transmission mechanisms. To validate the system accuracy, we compare
the data values collected from established sensors with the measured readouts
using a commercial healthcare monitor, the Welch Allyn® Spot Check. Our pro-
posed system provides improved care solutions, especially for those whose access
to care services is limited.
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1 Introduction

By digitizing the physical realm, the Internet of Things (IoT) technology enables substantial societal
benefits and magnifies the scope of real-time monitoring systems. Recently, the wide adoption of IoT-
enabled applications has amplified the explosion of real-time monitoring systems for different domains
including home automation [1], energy management [2], environmental monitoring [3], production [4],
security [5], and healthcare industry [6]. The extensive collection of smart expedients and applications is
called the Internet of Things. Indeed, IoT act as a predominant source of big data streams in healthcare
industries which are known for their volume, velocity, and variety. Big data is a new excellent partaker
employed in the healthcare sector that provides high-quality service and procures pioneering and
intelligent solutions. As the capability, dependability, and accuracy of smart medical devices as well as
information and communication technologies (ICT) progress, heterogeneous “real-time data streams”
from interconnected medical devices will be a crucial parameter in making evidence-based decisions [7].
Sensors are the primary constituents of IoT. Indeed, enormous data generated from IoT sensors have been
quite useful in developing and implementing better analysis and prediction methods employed in the
healthcare domain. The data from such sensors can help patient monitoring, predicting the spread of
diseases, and proposing approaches to cover certain pandemic outbursts. Albeit IoT has brought
outstanding scenarios that can help care providers increase profits, reduce medical costs, and enhance
performance, measuring huge data only is not sufficient.

To leverage the benefits of IoT technology, healthcare organizations must develop a system where they
can measure, process, and assess big clinical data in a profitable and scalable way. Big data analytics enable
the medical sector to reshape its domain efficiently. On the top-end, these organizations can employ data
analytic systems to make actionable verdicts from enormous data and support medical staff to save lives
by making early clinical interventions [8]. IoT is finding applications in medical as well as non-medical
scenarios in the healthcare sector [9]. In a medical scenario, IoT is employed to capture physiological
parameters of individuals including body temperature (BT), respiration rate (RR), blood pressure (BP),
pulse rate (PR), level of oxygen saturation (SPo2), and so on. This enables tracking of vital signals and
assists doctors with consoles to visualize the data. Sensors can be implemented and monitored distantly,
thus enabling the best care solutions in the outpatient setting. In a non-medical scenario, IoT can be
employed for tracking physician’s location, tracking resources, locating ambulances during emergencies,
adherence with sanitation standards and performance by tracing resources, people inside the clinic, and
delivering instantaneous data for logistics [9].

Systematic vital signals monitoring is an integral part of patient care, which targets to expedite the early
detection of abnormal parameters of worsening patients. Instability in vitals is an extremely sensitive
predictor of clinical deterioration and imminent adversarial happenings including heart attack or even
death [10]. The erstwhile prediction of subtly deteriorating patients enables enhanced consequences such
as reduced mortality rate and better-quality care [11]. Conventional discontinuous manual parameter
monitoring systems (e.g., early warning score and new early warning score) lead to unobserved patient
deterioration due to insufficient observation [12]. Remote patient monitoring systems in conjunction with
sensor technology and ICT enable unremitting patient surveillance and provide the greatest opportunity to
measure vital signs remotely. The realization of IoT also hinges on the increasing application of big data
analytics to deliver an alert about a possible risky event for a patient [11]. The adoption of big data
analytic tools in the medical industry has been limited so far. Complex algorithms are required for the
applications like calculating whether minor variations in parameters reflect an up-and-coming health
problem. These organizations also require access to various datasets that exist in data centers across
healthcare organizations. In order to process real-time data streams, many healthcare institutions and
investigators have developed big data analytical tools like Apache Spark, Apache Flink, Apache Storm,
etc. With these processing tools, it has become more effective to process real-time data streams.
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Therefore, some medical specialists have done an irreversible shift towards stream computing applications
using medical big data analytic tools [13]. As for as we know, no research work has been conducted to
achieve online disease diagnosis and risk prediction. This motivates us to develop a prototype model with
IoT-enabled sensors and a real-time risk prediction model to assess the patient’s health status in real-time.
VITALS integrates an IoT-based kit to measure physiological parameters and a big data analytics system
for data ingestion, processing big data streams, data archiving, information retrieval, and visualization.

1.1 Main Contribution

The major objective of this work is to develop a multisensory online vitals monitor for the remote patient
monitoring system. The key contributions of the manuscript are four-fold.

� We identify the drawbacks of traditional vital sign monitoring systems and their inappropriateness in
remote health services.

� We explore the necessity for developing real-time physiological signs monitoring system and decision
making by integrating IoT and big data analytics technologies to provide a reliable, real-time, and
transparent interconnection among stakeholder components of the proposed system.

� We implement our system on three patients for 7 days to check the effectiveness of sensing, data
processing, and data transmission mechanisms. To validate the accuracy of the proposed system,
the outputs of the system are related to the sensed data values through a commercial healthcare
monitor, the Welch Allyn® Spot Check.

� We develop a mobile application to send the measure parameters and statistical graphs to doctors and
patients in order to enable them to track health conditions remotely.

1.2 Paper Organization

The article is framed as follows. The following Section provides existing healthcare systems aiming to
provide continuous remote healthcare monitoring and classify patient data. In Section 3, we present the
architecture of the proposed system VITALS in detail. Section 4 describes the implementation details of
our model and evaluates the results obtained from a real-time scenario. In Section 5, we conclude this paper.

2 Related Work

Of late, adopting IoT-sensor technologies and big data analytics to monitor patient health has increased
exponentially. Several IoT-based health monitoring applications have already been commercialized and
existing in the market owing to the aptitude of these systems to deliver fast, secure, and lucrative
solutions [14,15]. Islam et al. presented an overview of extant IoT–based health monitoring systems, and
cutting-edge network models, recent developments, platforms, and applications in this domain [16]. Also,
the authors emphasized security and privacy problems in existing relevant systems. They developed a
security model targeting to reduce security breaches. Srinivasan et al. developed an intelligent monitor
that gathers vital parameters of patients using various sensors and enables a physician to measure vitals
distantly, diagnose diseases rapidly, and also sends warnings to both the physician and the guardian of the
patient through emails or messages in real-time [17]. Acharya et al. proposed a health monitor using an
IoT-based kit [18]. The proposed system measured human vitals such as PR, electrocardiogram (ECG),
BT, and RR using appropriate sensors and raspberry pi. The vital signals are gathered from sensing
elements and transmitted to raspberry pi for processing and again sent to the network. The key downside
of this approach is that no interfaces for data visualization are designed. Majumder et al. introduced an
IoT-based multi-sensory system to gather data from the body area network for delivering the primary
evidence and early warning of the chances of heart attack [19]. The major goal of this work is to develop
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and implement an integrated IoT system to measure PR and BT through smartphones using low-power ICT
without distressing day-to-day activities.

Mohammed et al. developed an IoT-enabled healthcare monitoring system using suitable sensors (for
measuring ECG, BT, PR, and SPo2), the MySignals development shield, and a low-power long-range
(LoRa) communication technology [20]. The sensors integrated with MySignals and LoRa wireless
connectivity. The major objective of this work is to enable MySignals to collect vitals and send these
signals to a personal computer through the LoRa connectivity module. The authors used statistical
analysis methods to assess the efficiency of this system. Reshma et al. developed a healthcare system that
assimilates Arduino Uno microcontroller and an infrared-based PR sensor [21]. The proposed approach
has the potential to measure patient vitals including BT and PR. The PR sensor was employed for
measuring the pulse rate directly. Also, the proposed approach enables its customers to measure the value
of BT by calculating their mean blood vessel weight. The results are displayed on the Android platform.

Cloud computing is employed as an enabling technology that allows IoT systems to deliver reliable and
easier communication between multiple sensors/devices and stakeholders of the healthcare system. Al-
Kababji developed an IoT-enabled fall detection and ECG tracking mechanism using cloud computing
and a mobile application [22]. The authors particularly developed this system to monitor elderly patients’
by measuring their accelerometer and ECG data continuously. In another study, Mohammed et al.
proposed a health monitor using cloud computing and web services [23]. The authors developed a mobile
application known as ECG Android App to visualize data gathered from patients. Xin and Wu proposed a
wearable cuffless device to monitor both diastolic and systolic BP. The sensed data are sent to the cloud
server for storage and further analysis [24]. The effectiveness and accuracy of this system are verified on
60 patients. Guntha integrated cloud and fog computing with real-time noninvasive blood glucose and BP
monitoring system [25]. This system also stores the sensed parameters in a cloud server for further
analysis or long-term data storage.

The abovementioned works reveal that recently, numerous architectures, models, and approaches have
been emerged and implemented to deliver better-quality care for individuals. Conversely, very few
dependable models have developed that can successfully implement a holistically real-time, lucrative, and
intelligent method in the medical industry. Some extant healthcare systems focused on how diverse smart
things efficiently assimilating, while others focused on the security of patient data. Real-time data
processing and prediction are the most important endeavors in healthcare ecosystems, particularly in
emergency care units [26]. With issues such as communication delay, traffic congestion, central node
reliance, etc., the extant system using the cloud platform fails to address the critical requirement of real-
time data processing and prediction [27]. The time taken for transferring data to the cloud server from the
sensing sites and send the outcomes to the customers is considerably high. The prevailing cloud-based
techniques do not deliver any dependable and noteworthy solution to handle this problem. Bearing the
aforementioned deficiencies in mind, the prevailing cloud-based healthcare system cannot deliver viable
healthcare solutions for serious real-time use-cases. Also, earlier research works demonstrated that cloud
technology provides innumerable services and benefits to the healthcare systems; but, for data processing
and management, they fail to consider the growing demands for real-time performance and fulfill the user
needs. By considering these restrictions of the conventional cloud technology, we developed a novel
approach that integrates the potentials of IoT and big data analytics systems to deliver real-time, lucrative,
and effective data processing and management services. The proposed framework helps in processing and
managing emergency use-cases at the online data analytic system instead of centralized processing at the
cloud server. The proposed system provides real-time data processing and decision-making and provides
accelerating and lucrative care delivery with less likelihood of data loss.
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3 Proposed System

The proposed monitoring system is intended to measure four bedside vital signals using different
biosensors. For this purpose, we develop a working prototype model with appropriate sensors to measure
PR, BT, BP, and SPo2. Once the vital parameters are measured, they are transmitted to data analytics
tools using a WiFi module for further analysis or long-term storage. The overall architecture of VITALS
is shown in Fig. 1. Our VITALS captures the physiological parameters of the patients remotely and
achieves real-time data processing effectively. The key objective of VITALS is the automation of the
measurement of the vital signals of the patient, resulting in better healthcare services. The developed
system will further make things easier to the corresponding processes related to the various participants
such as patients, caregivers, physicians, and other medical staff. Each patient is equipped with different
biosensors to measure a set of vital parameters. The proposed system enables an automatic vital signals
measurement system for multiple patients at programmed intervals to ensure reliable care service. Also, it
aids to collects vital signals and provides access to the corresponding stakeholders if needed.

Our proposed system uses an AVR-IoT WG development board (AC164160) as shown in Fig. 2. This
evaluation board comprises a smart ATmega4808 microcontroller, a secure ATECC608A cryptographic
coprocessor, and a specialized ATWINC1510 smart connect WiFi module to deliver the most simple and
efficient method for interfacing sensing nodes with big data analytic tools. The AVR-IoT WG platform
enables several biosensors and medical equipment to capture four important physiological signals
including BT, PR, BP, and SPo2.

In this work, the AVR-IoT WG is employed to collect vitals from sensors including MCP9808 (to
measure body temperature), MAX30100 (to measure SPo2), and medical equipment called Healthgenie

Figure 1: The architecture of VITALS
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BPM01W (to measure blood pressure and pulse rate). Our proposed system captures patient physiological
signals as “live data streams” using multisensory maneuvers and other medical apparatus.

The AC164160 employs the divide and conquer technique through smart elements such as a powerful
microcontroller, a secure cryptographic coprocessor chip, and a WiFi communication module to decrease the
complexity of the algorithm implementation. The ATECC608A chip in this board is used to store private
keys, authenticate the firmware, and provide a secure boot process for the connected maneuvers. This
coprocessor chip engenders both the public and private keys by a random number generator and enables
devices to create secure communication. The ATWINC1510 WiFi communication module is particularly
designed for low-power sensing applications. It has an option of an embedded antenna or a micro coaxial
connector for an external antenna. This WiFi unit also assimilates a power amplifier, low-noise amplifier,
switch, and power controlling module, which leads to a compact structural design.

The sensing elements and other maneuvers are implemented and controlled through embedded C
programming codes. The sensors and Healthgenie BPM01W equipment capture different physiological
parameters and transmit them to the analog to digital converter to obtain digital signals. Nonetheless, data
collected from the related biosensors/equipment are vulnerable to loss before ingesting by Kafka due to
(i) obstacles and distance between connected sensors and the master node; (ii) congestion in the
overwhelmed network setting; and (iii) failure in the sensors itself. In this situation, the caregivers cannot
make the correct decision about the patient health status or store data for further analysis. In order to
prevent this missing data problem, data preprocessing methods must be employed before making any
decision or storing data. Hence, these signals are preprocessed by the ATmega4808 microcontroller and
sent to the big data analytics system for analysis and visualization through a selected WiFi module as
shown in Fig. 3.

The big data analytics system used in VITALS contains Apache Kafka to gather live data streams from
biosensors every 30 min, Apache Spark to categorize the vital signs and notify the medical professionals
while detecting abnormalities in patient vitals, HDFS to store data streams for future analysis. For
information retrieval and visualization, VITALS employs Spark SQL and Hive to explore and understand
the health status of the individuals and Matplotlib to visualize the results. In addition, we develop a

Figure 2: AVR-IoT WG development board

Figure 3: (a) ATmega4808 (b) ATWINC1510 module
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mobile application called VITALS to receive and display patients’ vital signals on a smartphone platform in a
text and graphical form. In this work, we develop a working prototype model with appropriate sensors to
measure the vitals of the patient remotely as given in Fig. 4.

3.1 Role of IoT-enabled Sensors in VITALS

Vital signals reflect the operation of the body’s homeostatic mechanisms. Monitoring and inferring the
physiological signals are significant tasks of a healthcare system that can provide knowledge about the basic
health condition of the individuals. Also, they are of paramount significance in defining treatment and triage.
Indeed, vitals act an important role in calculating medical deterioration in critical care. The rate of vitals
anomalies reflect the persistent patient condition, frequency of readmission to clinics, return emergency
room visits, and exploitation of healthcare assets in the hospitals. Body temperature, pulse rate, blood
pressure, and oxygen saturation are standard vital parameters to reflect the status of the life-sustaining
functions and severity of the disease. Mostly, vitals vary with age, gender, body mass index, fitness, and
overall health. Tab. 1 displays the normal range of physiological parameters for healthy persons while
resting for different phases of life.

Figure 4: Prototype of the developed model

Table 1: Ranges of normal vital signals [28]

Life span Body temperature
(°C)

Oxygen
saturation
(%)

Pulse rate
(bpm)

Blood pressure

Diastolic
(mmHg)

Systolic
(mmHg)

Older adult
(>70 years)

35–37.2 95–100 60–100 60–80 90–120

Adult (> 19 years) 36.5–37.2 96–100 60–100 60–80 90–120

Adolescent (≤
19 years)

36.5–37.2 96–100 60– 90 62–80 94–120

School-age (6 –

12 years)
36.6–37 97–100 75–110 54–80 84–120

(Continued)
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The selection of biosensors and medical equipment for capturing patient vitals hinges on the reliability,
availability, affordability, and compatibility of the sensors/devices with AVR-IoT WG and
ATmega4808 microcontroller. The designated devices are connected to the development board using their
appropriate interface units. Each sensing node collects and pre-processes the data and transfers it to the
big data analytics system. The sensitivity and ruggedness of the sensors also act an important role in
developing VITALS. A small variation in the readout of the sensor will modify the implication of the
vital signals. For a reliable analysis, high-quality off-the-shelf sensors are designated.

In this framework, two sensors, MCP9808, MAX30100, and non-smart medical equipment Healthgenie
BPM01W are selected for measuring BT, SPo2, BP, and PR to provide a common interpretation of patient
health condition but can be scaled up in the context of the number of sensors if needed. The
ATWINC1510 WiFi unit transmits the measured parameters, date, and time to a master node directly.
ATmega4808 is used to collect and pre-process the sensed signals. A compact ATECC608A secure
element is used as standby storage for captured parameters. It uses a battery to energize the sensors and
other devices in VITALS. The specification of these devices is given in Tab. 2.

3.1.1 Body Temperature Monitoring
The core temperature of the body remains constant except the user develops a febrile illness. The

standard BT of humans relies on various factors including age, gender, ambient temperature, time of day,
exercise, hot or cold drinks consumption, eating habits, etc. For example, the normal BT can range from
97.8°F (36.5°C) to 99°F (37.2°C) for a healthy adult. BT may be anomalous owing to hypothermia
(<95°F) or fever (>98.6°F). In order to measure patient BT, we use an integral MCP9808 digital

Table 1 (continued).

Life span Body temperature
(°C)

Oxygen
saturation
(%)

Pulse rate
(bpm)

Blood pressure

Diastolic
(mmHg)

Systolic
(mmHg)

Preschooler (3 –

5 years)
37–37.2 98–100 80–120 50–78 82–110

Toddler (1– 2 years) 37.2–37.6 98–100 80–130 50–80 80–112

Infant (2 months –
1 year)

37.4–37.6 98–100 80–160 50–70 74–100

Neonate (0–
2 months)

35.3–37.5 98–100 70–190 20–60 60–90

Table 2: Specification of Sensors/Device used in VITALS

Sensor/medical equipment Measuring parameters Range Accuracy Response time

MCP9808 Body temperature –40 to 125°C ± 0.5°C (25°C) ≤ 1 min

MAX30100 Oxygen saturation 60 to 100% ± 0.1% (25°C) < 5 s

Healthgenie BPM01W Pulse rate 30–180 bpm ± 5% (25°C) < 30 s

Blood pressure 0–299 mmHg ± 3 mmHg (25°C) <1 min
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temperature sensor in the development board which is given in Fig. 5. It measures BT from –40°C to +125°C
and converts to a digital word with ±0.5°C accuracy. It contains user-programmable registers which assist
users to select operating modes (e.g., low-power or shutdown modes), the critical limits and the condition
of BT notifications. Hence, it is very much suitable for flexible BT sensing applications. When the BT
varies beyond the definite bounds, the MCP9808 generates and sends an alert signal.

3.1.2 Blood Oxygen Saturation Monitoring
The blood oxygen saturation level of individuals is a critical parameter for predicting the improvement

and severity of illness. SPo2 indicates the peripheral saturation of hemoglobin by oxygen. It reflects the
general health status of the individuals. SPo2 of a normal healthy adult is 96%–100%. It drops if
somebody has a respiratory disease or any other sickness [29]. For patients with minor respiratory
problems, the SpO2 ought to be 90% or more. Furthermore, the resting SpO2 value is considerably lower
in patients who are in serious condition. Supplementary oxygen must be given if the level of SpO2 drops
below 90%, which is undesirable for a prolonged period. In this work, a pulse oximeter is realized using
a MAX30100 sensor as given in Fig. 6. It is a non-invasive optical maneuver for measuring Spo2 values.
The MAX30100 consists of two light-emitting diodes (one for discharging red light and another one is
for emitting infrared light), and a photodetector (for measuring the reflected light from the patient), and a
low-noise analog signal processing unit to sense data. It runs with 1.8 V to 3.3 V batteries and can be
switched off through a program with trivial standby current, allowing the supply unit to remain coupled
at all times.

Figure 5: MCP9808 digital temperature sensor

Figure 6: MAX30100 oximetry sensor
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3.1.3 Blood Pressure and Pulse Rate Monitoring
Blood pressure (BP) values are the predominant determining factor of therapeutic decisions as it

specifies blood flow when the heart is relaxing (diastole) and contracting (systole). It is impacted by
cardiac output, the volume of blood, peripheral vascular resistance, and thickness and elasticity of the
vessel wall. Trends or variations in BP values reveal primary pathophysiology or the body’s efforts to
sustain homeostasis. For example, a reduction in BP is a common indication in patients prior to heart
attacks [30]. A variation in BP alone, however, does not specify that the patient will have a disease, but it
enables the medical staff to do additional comprehensive analysis. The significance of sensing BP
precisely cannot be over-emphasized; but, it is one of the most imprecisely measured parameters [31]. If
a BP reading continuously undervalues the diastolic pressure by 5 mmHg, it leads to two-thirds of
hypertensive patients being deprived of preventative therapy [32]. Therefore, it is obligatory to measure
the correct values of BP. The proposed VITALS system employs Healthgenie BPM01W upper arm BP
monitor to read the exact blood pressure of the patient.

Pulse rate is the count of heart beats per minute (bpm). In order to collect the value PR of an individual,
most medical devices use the volume of blood flow. Typical PR ranges from 60 to 100 bpm for a healthy
adult. The normal relaxing PR for adult females 75 bpm and males is approximately 70 bpm [33].
VITALS employ Healthgenie BPM01W to measure pulse rate. The medical equipment used to measure
BP and pulse rate is given in Fig. 7. It is a non-smart device and the measured values are transmitted to
the microcontroller using Universal Asynchronous Receiver/Transmitter (UART) which is embedded in
the development board.

3.2 Role of Big Data Analytics in VITALS

The big data analytics used in VITALS is implemented on top of the Apache Spark streaming platform.
VITALS consists of the following data analytic tools: (i) Apache Kafka to gather live streams from connected
biosensors; (ii) Apache spark to classify the patient data and send an alert to the healthcare professionals
while detecting abnormalities in patient physiological parameters; (iii) HDFS to store data streams for
future analysis, and (iv) two information retrieval tools (Spark SQL and Hive) and one graphing tool
(Matplotlib) to enable medical staff to access/visualize medical records of patients and to analyze/
understand the health status of the patient. Fig. 8 illustrates the flow of data streams from connected
biosensors and medical equipment to the big data analytics system used in VITALS.

Our system employs Apache Kafka to collect data streams from patient vitals such as BT, PR, BP, and
SPo2. Generally, Kafka is working on the idea of “topics” and input streams are stored as keys. We install
Kafka on the master node and create a topic, called “Patient_Vitals”, to gather parameters from biosensors

Figure 7: Healthgenie BPM01W for measuring BP and PR
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then transmit them to a Spark streaming for data processing. In this work, after receiving data streams from
Kafka, Spark streaming explore them in real-time and send warning messages to the medical professionals
during an emergency case detection. For this purpose, we develop a risk prediction and recommendation
module that engenders an alert when an abnormal vital signal is detected. Also, it endorses an apt action
that should be taken by the medical staff whenever the patient vitals deviate from the threshold values.

The real-time prediction process in VITALS includes the following modules: the learning module and
the deployed model. The learning module accepts the input batches to train the model and directs the training
sequences to the deployed model to learn and generate the result. The learning module receives the batch
result and then prefers one-to-one analysis from the training sequences and calculates the score (weight)
for new data. This model implements the learning process constantly and it updates parameters for each
result, which is almost “learning-on-the-fly”. It supports envisaging differences in distribution rapidly and
increases the accuracy in many cases. For each vital sign data collected from the connected sensors is
related to early warning score between 0 and 3 where 0 denotes the score for normal health status where
other values signify the anomaly. Therefore, the severity of the disease is increasing with the score as
given in Tab. 3.

For example, the data gathered from the connected sensors are 38°C (BT), 90% (SPo2), 48 (PR), and
120 (Systolic BP), then the calculated score set is {1, 2, 1, 0}. After computing the score set for every
time instance, Apache Stream evaluates the score and directs an alert to the medical professionals with

Figure 8: Big data analytic tools in VITALS

Table 3: NEWS for bedside vital signs [34]

Vitals 3 2 1 0 1 2 3

BT (°C) <35 35.1–36 36.1–37.9 38–39 ≥39.1

SPo2 (%) <85 85–92 >92

PR (Bpm) <40 41–50 51–100 101–110 111–130 >130

BP (mmHg) <70 71–90 91–170 171–200 >200
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proper recommendations in emergency cases. In our work, we employ the clinical responses guide, National
Early Warning Score (NEWS) developed in [35] to calculate the severity of the disease and provide proper
recommendations to the medical staff who treat the patient currently. For this purpose, the master node
computes the cumulative score from data gathered from the sensors at a particular time and then
recommends suitable action to be taken by the medical professionals. Furthermore, the criticality level is
predicted from this cumulative score as shown in Tab. 4.

For the aforesaid example, the cumulative score is 4. Now the master node creates a notification to
medical staff alerting that the frequency of surveillance of the vital signs should be once in 4 to 6 h.
Hence, it is mainly imperative to consider NEWS for giving appropriate recommendations and enable
healthcare workers to monitor changes in bedside signals and consequently the early predictions of
patient deterioration. Fig. 9 depicts the clinical responses guide based on the calculated cumulative score.
Nowadays, healthcare organizations are struggling to store their patient medical record securely. Mostly,
hospitals tend to build their own data centers. These data centers enable the doctor to understand
diseases, the progress of patient wellbeing over time, and improve the care quality. Our proposed system
uses HDFS to archive data. HDFS uses distributed file system concepts that store medical data across
several nodes, known as clusters. HDFS splits the medical records into chunks, and then it distributes
them to the clusters. Typically, it is pigeonholed by the following features: (i) it delivers superior data
reliability by implementing the data redundancy methods in multiple nodes (at least three), which is most
useful in IoT-enabled applications, thus the data availability is guaranteed during hardware failures; and
(ii) data in HDFS are handled concurrently thus effective information retrieval is ensured, which is
important for medical applications especially in emergencies. In our work, we considered three clusters to
store data in the form of HDFS files.

The VITALS uses two information retrieval tools (Spark SQL and Hive) and one graphing tool
(Matplotlib) to enable the medical staff to obtain the patient vitals from HDFS. Hive is used for data
warehousing to process queries and analyze big datasets archived in HDFS. In addition, it allows
customers to generate metadata storage with tabular forms or views in a relational database. This makes
our system more efficient by reducing the access time. Moreover, it supports the practitioners to compute
the criticality level of diseases. The VITALS installs Hive on the driver and uses a table in the main
directory of HDFS. Then, the doctors can search the patient clinical data through the HiveQL console.
SparkSQL is used to realize a data abstraction called DataFrames for structured data processing. It
enables SparkSQL to use schema and it is realized by domain-specific language. Matplotlib is a
comprehensive library in Python and uses its mathematical extension NumPy to create cooperative,
active, and static visualizations. Our VITALS enable us to write a Python script to access data stored in
HDFS periodically and to visualize them using Matplotlib. We develop a mobile application to send
statistical graphs to doctors and patients to enable them to track the health conditions remotely.

Table 4: Cumulative score and the severity of the disease [35]

Cumulative score Criticality level

≥7 High

≥5 or 3 in one parameter Medium

1–4 Low

0 None
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4 System Implementation and Evaluation

The proposed healthcare monitoring framework is built over the Apache Spark version 2.3.1 which
involves one driver node and three slaves. Our system employed Ubuntu 14.04 virtual machines to create
the clusters. The master, as well as executor nodes, contains quad cores, 16 GB of RAM, and 100 GB
disk storage. We developed a working prototype model with appropriate sensors. The proposed risk
prediction and recommendation module is implemented to identify the criticality level of the health
condition of the patient and send an alert to the medical professionals with suitable recommendations.

4.1 To Assess the Accuracy of the Selected Sensors

The accuracy of the sensors for BT, SPo2, BP, and PR are also assessed by relating their observed data
values to that of the Welch Allyn® Spot Check which is commercial multi-parameter vital signs monitor
given in Fig. 10. The Welch Allyn® Spot Check is widely used in hospitals and is known for its
reliability. This is carried out by doing concurrent measurements at the selected patients using VITALS
and Welch Allyn® Spot Check for each subject. All measured data are then analyzed to calculate
potential differences in the acquisitions. We show here the tabulated readings of Tab. 5 taken from both
the developed prototype and Welch Allyn® Spot Check vital sign monitor, to evaluate the effectiveness
of the sensors. It can be observed in Tab. 5 that the average difference between the values obtained from
the developed BT sensor and the observed value of BT from Welch Allyn® Spot Check is 0.17. While
for SPo2, a 0.23 difference between the values obtained by the designated SPo2 sensor and with the
value obtained by Welch Allyn® Spot Check.

It can also be observed in Tab. 6 that the average difference of the values taken by the BP monitor and the
observed value of BP from Welch Allyn® Spot Check is 0.67/0.33. While for PR, a 0.33 difference between
the established PR monitor and with the Welch Allyn® Spot Check was observed.

Figure 9: Cumulative score and related recommendation [35]
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4.2 Development of a Mobile Application

We developed a mobile application for patients and doctors (who use smartphones) named VITALS.
This app is created on Android OS by means of the Java language. The app enables patients to visualize
their measured physiological parameters with time stamps. It contains a patient module and a physician
module. The patient’s account is created by requesting the patients to enter their details such as name,
email-id, gender, age, address, and contact details. Each new user registering on our app will be provided
with a user id and password. The complete system workflow is that patients register themselves on the
system and enter their details such as their user id and password to access their vital signals. Doctors

Figure 10: Welch allyn® spot check

Table 5: Comparison of values measured by VITALS and welch allyn® spot check vital monitors

P.ID Body temperature Oxygen saturation

VITALS Welch Allyn® Spot Check Diff VITALS Welch Allyn® Spot Check Diff

VITALS 001 36.4 36.1 0.30 99.6 99 0.6

VITALS 002 37.5 36.8 0.70 97.8 98 −0.2

VITALS 003 36.7 37.2 −0.50 98.3 98 0.3

Average Difference 0.17 Average Difference 0.23

Table 6: Comparison of values measured by VITALS and welch allyn® spot check vital monitor

P.ID Blood pressure Pulse rate

VITALS Welch Allyn®
Spot Check

Diff VITALS Welch Allyn®
Spot Check

Diff

VITALS 001 180/110 178/107 2/3 116 114 2.00

VITALS 002 185/93 184/91 1/2 119 120 –1.00

VITALS 003 127/84 128/88 –1/–4 108 105 3.00

Average Difference 0.67/0.33 Average Difference 0.33
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register themselves on the portal and access patient vitals. Fig. 11 shows the home web page of our VITALS
application where patients and physicians can register themselves for the system.

Fig. 12 depicts the patient and doctor login page of the VITALS application. Then, VITALS will identify
patients who are authorized users and display the appropriate results for the corresponding request. The
estimated vital signals of the particular patient are displayed on the phone screen in real-time. Each vital
sign data collected from the connected sensors is related to early warning score between 0 and 3 where
0 denotes the score for normal health status where other values signify the anomaly. Therefore, the
severity of the disease is increasing with the score. The authorized user can access vital parameters at any
time instances by entering their ID and password. The established mobile application extracts information
from big data analytics system and displays the results as given in Figs. 13a and 13b. The system is able
to present reports and dates with recommended decisions.

Figure 11: Proposed system home page

Figure 12: Patient/doctor login page
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The authorized medical professionals can access patient’s data through this application. They can select
a particular patient (refer to Fig. 14) and view the data in the form of statistical graphs as given in Fig. 15.

Figure 13: Sample patient view of the system (a) Score and recommendation for People with normal health
condition (b) Score and recommendation for patient with abnormal health condition

Figure 14: Sample physician view of the system
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5 Conclusions and Future Directions

The integration of IoT, big data analytics system, and mobile applications is a predominant approach in
the real-time healthcare monitoring system. This convergence is intended to decrease the total medical cost
and increase the quality of care delivery to individuals, especially patients. In this work, we design a
multisensory IoT-based real-time vitals monitor to sense BT, SPo2, BP, and PR and constantly transfer
these signals to the big data analytics system which aids in enhancing diagnostics at an earlier stage. For
this purpose, we use the AVR-IoT WG development board to collect vitals from sensors including
MCP9808 (to measure BT), MAX30100 (to measure SPo2), and medical equipment called Healthgenie
BPM01W (to measure BP and PR). The developed kit extracts vital signs in a 30 min interval and sends
them to the big data analytics system through the WiFi module for further analysis. We use big data
analytic tools including Apache Kafka, Apache Spark HDFS, Spark SQL, Hive, and Matplotlib. In
addition, we develop a mobile application to send measured data with an overall health condition to the
patients and doctors. To validate the accuracy of the system, we implement our system on three patients
for 7 days. We compare the data values collected from established sensors with the measured parameters
using the Welch Allyn® Spot Check. The VITALS provides improved healthcare facilities to patients,
especially for those whose access to care services remotely.

We plan to extend the scope of the application of VITALS to (i) generate an automatic notification to
ambulance, family, or friends. The alert will specify the criticality level and the GPS position of the
patient to rush an ambulance from a nearby hospital to the patient location. The ambulance will exploit
the GPS coordinates to get to the particular location hastily and concurrently tracks the vitals and
conveys them to the concerned hospital; (ii) add a module for medicine dispensing system to send alarms
to the patient to remind him/her of the scheduled timely medication/injections and out of schedule
medicine dosages; (iii) design wearable system (e.g., accelerometer sensor) to monitor potentially infected
Covid-19 patient and send an alert to the concerned people in case of emergency and based on violation
of self-quarantine regulations; and (iv) send doctor prescriptions to selected pharmacies so that the
patients can get the medicine delivered to their doorstep.

Funding Statement: The authors received no specific funding for this study.

Figure 15: Statistical graphs of patient vital signs
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