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Abstract: In the data communication system, the real-time information interaction
of communication device increases the risk of privacy sensitive data being tam-
pered with. Therefore, maintaining data security is one of the most important
issues in network data communication. Because the timestamp is the most impor-
tant way to authenticate data in information interaction, it is very necessary to pro-
vide timestamp service in the data communication system. However, the existing
centralized timestamp mechanism is difficult to provide credible timestamp ser-
vice, and users can conspire with timestamping servers to forge timestamps.
Therefore, this paper designs a distributed timestamp mechanism based on contin-
uous verifiable delay functions. It utilizes multiple independent timestamp servers
to provide timestamp services in a distributed model and appends the timestamp
to the data once the data is generated. Thus, it can prove that the data already
exists at a certain time and ensure the accuracy of the timestamp. Moreover, a
digital blind signature based on elliptic curve cryptography is utilized to solve
the problem of timestamp forgery in timestamp service. Finally, the security ana-
lysis of the scheme ensures the data security of data communication system and
the concurrency rate of timestamp. The experimental results also show that the
scheme greatly improves the efficiency of digital signatures.
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1 Introduction

With the rapid transformation of the traditional manufacturing industry to the intelligent industry,
productivity efficiency has been greatly improved. However, ensuring the security of data information has
also become one of the concerns of industry and academia [1]. Malicious users may tamper with or falsify
data in communication devices. Generally, trusted third party is an important mechanism to provide data
security and the public key infrastructure (PKI) [2] can establish the trust relationship in the digital society.
And information hiding technology [3,4] can also hide secret data in public media information to ensure the
secure transmission and storage of data. However, it is also necessary to ensure that the communication data
has existed before a certain time to prevent the data information from being tampered with.
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Timestamps have more advantages over traditional techniques. The timestamp is formed by adding time
information to a digital signature. It can correctly provide the time of data generation and prove the identity of
the data owner. The existing schemes utilized a trusted timestamp server (TSS) to embed timestamps for the
data. The data is transmitted to the TSS once it is created. And the TSS responds to the data owner with an
attached timestamp.

However, there are also some problems with the existing timestamp mechanism. The existing
centralized timestamp service model assumes that TSS is secure and trusted. However, providing
timestamps for data through a single TSS may lead to collusion between users and TSS. The recorded
timestamps can be tampered or forged arbitrarily, and the security of these schemes is damaged. As such,
TSS becomes a single point of failure in the systems. In addition, the existing distributed scheme also
needs to provide timestamps through a group of voluntary issuers. That is, users must interact with all
issuers in real-time to protect their outsourced data. Consequently, users should not only bear the
additional communication burden, but also bear the additional cost of all issuers.

In order to solve the problems of single point of failure and user burden, this paper designs a distributed
TSS mechanism to improve the secure storage architecture based on blockchain [5]. In this framework, the
timestamp services supplied by the TSS mechanism and the blockchain provides second timestamp services
and storage services [6]. When the distributed TSS receives the timestamp request from the user or devices, it
executes a random algorithm [7] to select a primary TSS to provide a timestamp for the data. Then, it
conducts a transaction that integrates the timestamped data on a public blockchain [8]. After the
transaction is recorded in a block of the blockchain, the data is timestamped for the second time.
Moreover, this paper is linking computational work to the elapsed time, which avoids that the TSS
interact with the validator. So, non-interactive proofs are generated via verifiable delay functions (VDF)
random oracles. The ability to create forged proofs completely depends on the corruption period and the
ability of the adversary to computer VDF in a shorter time. Thus, it can only be realized through a faster
VDF core. The specific contributions of this paper are as follows.

1. According to the security requirements of the TSS for timestamping data, a distributed TSS structure is
constructed, which can effectively prevent a single TSS from colluding with users to tamper with data.

2. In the process of generating hash chains structure with distributed timestamps, this paper builds
timestamps based on a continuous VDF (cVDF) [9] for a new block that need to be timestamped,
which can implement the function of work proof in a relatively low cost and sustainable way.

3. In the block generation process of the hash chain structure, the timestamped data is transferred to the
block for storage [10] and the timestamp is generated for the block itself when the block is generated. At
this time, the timestamp can not only be the timestamp of the block itself, but also equivalent to the
second timestamp of the data, which improves the data security and ensures the immutability of blocks.

4. The timestamp can be constructed by adding the date to a digital signature, where it uses a digital
blind signature based on elliptic curve cryptography (ECC) [11]. It can well protect the data
information privacy of users, and has high security performance, short information length and low
storage space requirements.

2 Related Work

2.1 Verifiable Delay Functions

AVDF is closely related to time-lock puzzles. The VDF requires a specified number of sequential steps to
evaluate and will produce a function with a unique output that can be validated effectively and publicly. In
2018, Boneh et al. [12] give some application scenarios for VDF as well as formal models, security
analysis and general construction methods. However, these candidate constructions do not fully satisfy all
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the essential properties of VDF. Subsequently, Wesolowski [13] and Pietrzak [14] both used the method of
successive square operations in a finite group of unknown order to construct VDF, differing in the
construction of their generating proofs. But this approach does not meet the desired efficiency of
verifiability. In particular, even if the VDF could quickly verify each call, it would still be necessary to store
all proofs of intermediate values in order to verify the final output of the iterative function, so the proof size
and verification time grow linearly with the number of calls. Therefore, Ephraim et al. [9] first proposed a
continuous VDF based on a tree structure to achieve successive iterations, so that the output of each
intermediate iteration can be effectively verified, and the final computed proofs can be efficiently aggregated.

In 2019, De-Feo et al. [15] proposed a new VDF based on the assumption of ECC and instantiated this
framework using super singular elliptic curves and bilinear pairs. The structure of this VDF is non-interactive
in nature, and the output is validly validated without additional proof. However, the only safe way to
instantiate a VDF is to require a trusted setup to perform a random homologous traversal. In fact, this
setup needs to start with a super singular elliptic curve with an unknown automorphic ring. In the same
year, Döttling et al. [16] obtain a simple construction of a tight VDF from any SNARGs combined with
repeated hash. Landerreche et al. [17] proposed for the first time to study non-interactive cryptographic
timestamps based on VDF using random oracle model under the framework of universal composability.
In 2020, Song and Zhu et al. [18,19] argue that VDF is a core function of next generation blockchain
systems that involve square operations on many complex operations (such as large number divisions and
multiplication operations) that account for a large proportion of the computation of VDF. Schindler et al.
[20] proposed a random beacon protocol, which has a unique set of guarantees that target realistic system
models. Gritti [21] was the first to propose a publicly verifiable proof of retrievability and reliability
using VDF, combining the publicly verifiable proof of retrievability scheme [22,23] with an exponentially
VDF scheme in a finite group proposed. Rotem [24] combines a VDF candidate structure based on the
correct exponential proof of the repeat square function to produce a VDF with batch validation.

2.2 Timestamp Protocols

The timestamp authenticates the time when the data is generated by certain technical means, so as to
verify whether the data has been tampered with after it is generated. Simple timestamp protocol is based
on trusted third party. However, it may introduce time delay issues, especially when users make frequent
timestamp requests. In 1991, Haber and Stornetta proposed their linear chaining scheme [25], which
forces a potentially untrustworthy TSS to produce true relative timestamps. The tree linking scheme [26]
and binary linking scheme [27,28] further improve linear linking scheme. But such protocols only
provide relative timestamps, which cannot satisfy some applications. In 2005, Bonnecaze Alexis proposed
a distributed timestamping scheme [29], which provides absolute timestamps. With a multi-server
architecture, it is difficult for users to collude with these signers to generate fake timestamps.
Unfortunately, this scheme is based on a network of servers managed by an administratively independent
entity, which is difficult to construct in a local area network, so its reliability may be severely compromised.

In 2011, Ting et al. [30] propose to implement a delegated timestamping mechanism through a forward
secure proxy signature scheme [31] to provide digital timestamps with enhanced validity guarantees and
national standard-compliant digital time traceability [32]. In 2019, Zhang et al. [33] propose two accurate
blockchain-based timestamping schemes that solves the single point of failure problem. To make this
scheme well compatible with cloud storage services, the log server is constrained by the cloud service
provider to maintain outsourced files and their timestamps.

3 System Model

For the sake of ensuring data security, this paper propose a blockchain [34] based data security storage
architecture. As shown in Fig. 1, the architecture is mainly divided into three layers: user layer, distributed
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TSS layer and blockchain layer. This describes the key components of each layer and the process of
timestamping data through a distributed TSS mechanism is described in detail.

Users: The user is the owner of the data, and she/he creates a new data. The user computers the hash
value of the data information through a hash algorithm. Then, the hash value is transferred to the
distributed TSS mechanism, and a primary TSS is randomly selected through a random algorithm.

Distributed TSS: TSS is a timestamp authority system based on the PKI technology, which provides
accurate and reliable timestamp services for everyone. The solution of providing timestamps for data
through a single TSS maybe lead to collusion between the users and the TSS, which cannot fully ensure
the data security. A distributed TSS mechanism is designed in this article that maintains the same time
source through time synchronization server [35]. The distributed hash link TSS uses accurate time source,
high strength and standard security mechanism to confirm the existence of system processing data at a
certain time and the time order of related operations. And it provides basic services for time non-
repudiation and anti-tampering in information system.

Blockchain: Blockchain is conducive to improving the efficiency of data storage and ensuring data
privacy and security. It is a distributed ledger database based on multiple technologies such as peer-to-
peer (P2P) network [36], consensus mechanism [37], cryptography technology [38] and smart contract
[39]. Its multi integrated technical architecture gives itself technical characteristics such as
decentralization and programmability. Therefore, the use of blockchain is sufficient to ensure that all
timestamped data information stored in its system is secure. And it can output a timestamp of a specific
data to device, which indicates the physical time of data storage.

Figure 1: The system model of providing timestamp for data by distributed TSS
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4 Scheme Construction

4.1 Modelling Verifiable Delay Functions

In order to build a distributed TSS mechanism, the following related concepts are explained with reference
[17]. Here a cryptographic hash function is used to link the VDF-proof sequences to form a distributed TSS,
which is modeled as the originally proposed random oracle sequence. By adding VDF to these sequences, it can
enhance the constructions and maintain the property that dictates that such sequences can only be built in a
sequential manner, so as to preserve the security from our previous construction.

Public-key signatures. Assume EU-CMA signature scheme with security parameter λ. For consistency, we
represent the computations related to this scheme as interaction with a signature oracle Σ in the following way:

– Each participant has a public/secret key pair (pk, sk) known to Σ.

– On query Σ.sig(sk, msg):

A signature sig 2{0, 1}λ is generated and the tuple (sk, msg, sig) is saved into memory. Return sig.

– On query Σ.verify(pk, msg, sig):

If (sk,msg, sig) is in the memory of Σ and (pk, sk) is a valid keypair, return accept. Otherwise, return reject.

It assumes that the probability that any polynomial probability time (PPT) adversary forges a signature
without knowledge of the corresponding secret key is negligible in λ.

Sequence. This denotes a sequences of n elements from a set X as S = <xi | xi 2X>n, where the elements
of the sequence are indexed by i 2 {1, 2, …, n}.

AVLTrees. Binary trees are a finite set of n nodes, or it consists of a root node and two disjoint left and
right subtrees called the root respectively. The absolute value of the balance factor of the left and right
subtrees is not more than 1, and both the left and right subtrees are balanced binary trees.

1. AVL.root(S): It computers the root hash value of the AVL tree for some ordered finite sequence S.
2. AVL.path(S, v): It outputs the AVL path of the string sequence S.

3. AVL.verify(T): It given an input sequence T, if T is a valid AVL tree path, then output accept.
Otherwise, it outputs reject.

The Sloth structure of Wesolowski [40] uses iterative modular square root and binary permutation
function, which just meets our notion of a VDF. Unfortunately, this construction only has a logarithmic
usability. In [13], it clearly proposed that Wesolowski’s effective VDF can also satisfy the candidate
structure. Because its output consists of only two field elements, and the succinctness of the proof
minimizes overhead of generating timestamp.

Ephraim et al. proposed cVDF with the same properties. It can not only perform fast verification, but
also satisfy fast computation iterations. Although Wesolowski’s VDF can aggregate these intermediate
proofs to obtain a single short proof, the verification time still grows linearly with t. In contrast, cVDF
allows continuous iteration of a function, and the output of multiple iterations can be effectively verified
in a time without much correlation. Moreover, cVDF can verify each intermediate state without
recalculation, and the output of each step is publicly verifiable. Most importantly, cVDF supports
multiple iterations of hyper-polynomials.

Landerreche believes that a VDF V = (VDF.gen, VDF.verify, VDF.extend) has security parameters λ and
parameters g, v 2 N. Each algorithm is defined as follows:

VDF.gen(x, s)→(s, p) is a slow cryptographic algorithm that takes an input x 2 {0, 1}* and strength s 2
N, and computeres the output (s, p) in s·g parallel time steps;
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VDF.verify(x, s, p)→{accept, reject} is a fast cryptographic algorithm, in which the algorithm inputs x, p
and strengths, and verifies in up to s·v time steps. If (s, p) = VDF.gen(x, s), output accept; Otherwise output
reject;

VDF.extend() is a slow cryptographic algorithm, in which the algorithm inputs x, (s, p) = VDF.gen(x, s)
and strength s* and extend in s·g parallel time steps.

In the evaluation algorithm, an output value and a proof are generated. The output value is computed
through the specified sequence time steps, but the calculation of the proof is not obtained through the
given sequence steps. Therefore, the calculation of the proof should not take too long compared with
the output value of the function. This paper treats two outputs as one output value, and assume that the
construction is effective and immediate. This method shows in Wesolowski’s VDF that the calculation of
the proof can be regarded as a part of the whole calculation, because the proof can usually be generated
by parallelization without significantly affecting the calculation time. If it is not assumed that the
calculation of the proof is immediate, the extended VDF waste multiple calculation proofs (more than
one calculation). It can reduce the efficiency of the extended VDF and the security properties are not
affected by allowing VDF extension.

Algorithm 1: Fc
cVDF is parameterized by the calculation rate γ > 0. Let Q be the query log, and s the strength

of the resulting proof.

— Input a security parameter λ and get a random seed x:

·Let cVDF.sample(1λ)→x.

— Input a start time start and a random seed x, and initialize Q to empty, that is, Q :=h.

·Update (x, clock())[Q→Q.

— Input (output, x) at time t0 = clock():

·Let ts←mint{(x, t) 2 Q}, return ? if there is no such ts;

·Return (s, p) := ((t0-ts)·γ, cVDF(x, s)).

— Input (x, p, s):

·If cVDF.verify(x, s) = p, then return accept; otherwise, return reject.

— Input (x, p, s) and continue computation from a given existing function output:

·If cVDF.extend(x, s) = p then update query log Q[{(x, clock()−s/γ)}, else return ?.

This links each party’s cVDF-rate to the global clock and model it as a read-only global oracle, which
returns increasing time receipts. This allows us to generate a non-interactive proof that proves that a certain
amount of time has passed since the prover recorded the message. As shown in Algorithm 1, refer to [17] to
use the functionality Fc

cVDF to simulate the execution of the oracle cVDF during the whole construction process.

Participants can only interact with the random oracle cVDF through the function Fc
cVDF , which simulates

the execution of the cVDF over time. Participants perform calculations and output results by querying this
function, and they get a certain strength of proof based on the amount of time and rate γ that elapsed between
these two events. Every valid proof is accepted (cVDF(x, s) = p), and the adversary can guess the valid proof
by executing the verification query, which can only be done successfully with negligible probability. Note
that the cVDF oracle is only active when responding to a query, but the returned output still depends only
on the difference between the reception of the cVDF calculation start and end time. This ensures that our
cVDF oracles faithfully models cVDF calculations associated with the passage of the clock.
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4.2 Block Generation and Chain Structure

After the data is stored, the distributed TSS randomly selects an edge node [41] of the device to generate
a new block. If this new block is the first block, then its previous block hash is set to zero [42]. Our prover
maintains a list of blocks, each block contains a cVDF certificate, a record to be timestamped, and additional
information. These blocks are linked by using a hash function [43], and each block contains the hash of the
previous block.

The two important functions of the hash chain are the construction of blocks and chains. The block
forming is used to form a block from a set of events, and the chain forming is to link the generated
blocks together to form a hash chain structure similar to a blockchain. Next, this have to define the
concept of block and chain.

Block. This defines a block for a party P with public key pk as a tuple B = (num, prev, vp, vo, t, e) and the
relevant explanation is as follows.

1. num is the serial number of the block.

2. prve is the root hash of the previous block. For the initial block, and it sets the hash of the public key
pk to the hash of its previous block. That is, when num = 0, prev = H(pk).

3. vp is a (time receipt, signature)-pair.

4. vo = (s, p) is a cVDF output.

5. t is a time receipt of the creation of the block.

6. e is the data information to be timestamped.

It assumes that there is a credible distributed timestamp synchronization system to ensure that the time
and date of the timestamp provided by the distributed hash link TSS for each data message are highly
consistent, so as to effectively ensure the accuracy and reliability of the block timestamp. Each element
of the sequence of the string sequence must be composed of the output of cVDF(p) preceded by a time
receipt(t). Additionally, we have prev and c are leaves. These assumptions allow to easily describe the
connection between these instances and the next cVDF input.

Chain. This defines a block for a party P with public key pk as a sequence of blocks C = Bi where for all
0 ≤ i ≤ k.

1. The sequence number of the i-th block is i, that is, Bi.num = i.

2. The hash value of the previous block of the i-th block is AVL.root(Bi−1). For the initial block, it sets
the hash of the public key pk to the hash of its previous block. That is, when i = 0, Bi.prev = H(pk).

3. The output of the i-th block is the output of cVDF in this block, that is, Bi.p = cVDF(Bi.t || Bi.prev || Bi.
sig, Bi.s) for i ≥ 1.

4. Σ.verify(pk, Bi.t || Bi.prev, Bi.sig) = accept.

5. The time receipt of block Bj is greater than the time of the block before it. That is, Bi.t, Bj.t for all i＜j≤ k.

Finally, each node compares its own data with the blockchain and updates the blockchain. In order to
save the storage space of each node, after the edge node of the device uploads these blocks to the server,
the data stored in each node can be periodically cleared.

4.3 Distributed Hash Link TSS Scheme

Through the timestamp security protocol, this paper proposes a timestamp scheme that combines the
distributed protocol and the linear link protocol to construct a distributed hash link protocol. The
construction idea is as follows.
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1. The k random signers required in the distributed protocol are replaced with k TSS to reduce the
burden of users.

2. The request of N users at the same time required in the linear link protocol is changed to k TSS and
the TSS is randomly selected to timestamp the data, so as to avoid the risk of collusion between users
and TSS.

3. In the process of timestamp service, the status of the TSS as a third party or notary is crucial. Our
digital signature algorithm adopts the distributed hash link TSS scheme of ECC blind signature.

The prover maintains a block list, and stores the cVDF proof, timestamp records and additional
information in the block. All blocks are linked by the cryptographic hash function, and each block
contains the hash value of the previous block, forming the first proposed timestamp paper by Hubble and
Stornata hash chain structure, which is similar to the chain structure of blockchain. In order to improve
the security and efficiency of the structure, we can use the structure of k TSS linear chains to adopt a
distributed balanced binary tree structure (e.g., Merkle tree [44]) with a primary TSS and k − 1 auxiliary
TSS, and put all TSS signature pairs. In the same block, the output information of each block represents a
timestamp. Next, the specific steps of the distributed hash link timestamp scheme are as follows.

1. The user sends the data y and the logo ID of the data y that need to be timestamped to k distributed
TSS mechanisms, namely (y, ID);

2. Randomly select the TSS as the primary TSS through the random algorithm, while other k − 1 TSS
are regarded as auxiliary servers;

3. The k-TSS sign the data (y, ID), and each generates a timestamp signature pair. Then, they generate k
signature pairs Vm: Vm = sigm(tm, IDm, ym) {m = 1, 2, …, k}, where tm is the time and date when the
m-th TSS signed the data, and then k − 1 auxiliary TSS respectively send Vm to the primary TSS;

4. The primary TSS stores the data signatures sent by k − 1 auxiliary TSS and the Vm generated by itself
into a block and establishes a binary tree structure according to the sequence of the signature time of
each. Here default the m-th TSS as the primary service provider, and set Vm as the timestamp pairing
of the leftmost node of the binary tree structure;

5. The primary TSS outputs the root information of the binary tree as the timestamp of y, and stores the
data and the timestamp in the block.

In the chain structure, Bi.prev = AVL.root(Bi−1) allows us to generate an AVL tree for the entire chain by
linking the AVL tree through prev. We use the root of the previous block as part of our cVDF input, so it can
make a similar AVL tree connection through the poke cVDF input. This structure starts from any element in a
block and ends at the end of the chain, passing through every VDF proof and including every time receipt.

5 Security Analysis

This section discusses the security properties of distributed TSS. It assumes that the electronic signature
system used by TSS is secure and reliable, and its key has not been cracked. If an attacker wants to tamper
with data information, an incorrect timestamp is required instead of the real timestamp in a distributed TSS
structure. First, the attacker needs to collude with the primary TSS, and also needs to obtain information
about other TSS in the distributed TSS structure in order to collude. Secondly, it is also necessary to
ensure that the hash values generated by the hash function between linked blocks are consistent. Next,
the steps taken by the attacker to tamper with the data are analyzed.

1. Attackers colludes with the primary TSS to obtain the signatures Vm of all TSS;

2. Attackers colludes with any TSS and replaces the correct (y, IDn) with the wrong (y
0
, ID

0
n);
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3. Attackers must also replace the real Ln+1 with a fake L
0
nþ1, and need to maintain H(L

0
nþ1) = H(n + 1) to

ensure the consistency of the subsequent ID.

Since the hash chain is sequence numbered by each time information, and it adds cVDF-proof to each
block to enhance the strength of the hash chain and timestamp, it is impossible for an attacker to add other
information to the hash chain and tamper with it. First of all, the choice of the primary TSS is randomly
selected through a random algorithm. As long as the random algorithm is designed well, it becomes very
difficult for the attacker and the primary TSS to collude with each other. At the same time, the attacker
cannot obtain the information of other TSS, making it impossible to replace the correct (y, IDn) with the
wrong (y

0
, ID

0
n). Finally, TSS publishes the mid-order traversal values of its tree structure every day, and

the binary tree’s mid-order traversal and the pre-order traverse can only constitute a binary tree, making it
impossible for an attacker to replace all real TSS with pseudo TSS.

As long as the hash function for linking the block is designed well enough, it can ensure that the hash
value of the block will not be affected. To be exact, the distributed TSS model is secure by ensuring that not
all TSS is colluding with attackers. Meanwhile, preventing malicious TSS from colluding with attackers can
also be prevented by realistic management system.

6 Performance Analysis

6.1 Comparison of Timestamp Protocols

This section compares our protocol with other protocols. For this reason, several mature timestamping
protocols are selected here as benchmarks. The specific comparison results are shown in Tab. 1. First of all,
the distributed protocol transfers the dependence on TSS trust to the dependence on user cooperation. The
more users participating, the safer the timestamp, but the pressure on the user load will increase
exponentially. Secondly, the linear link protocol is not much different from distributed protocol in terms
of terminal and transport requirements. But when the validator challenges the linear link protocol,
complete verification is equivalent to recalculating the entire link. Therefore, as long as the number of
TSS participants is well controlled, our distributed hash link protocol is a relatively secure solution.

Calculation. Since the timestamp protocol must hash the data that the user needs to authenticate, all
timestamp protocols must perform at least one hash function calculation. At the same time, both plain
timestamp protocols and linear timestamp protocols are constructed by adding time information to digital

Table 1: Comparison of timestamp protocols

Classification Calculation Storage TSS/Users Security

Plain Hash function, verify signature TSS’s signature Completely
dependent on TSS

Poor

Linear link
[25]

Hash function, verify signature TSS’s signature,
IDn, IDn+1

Completely
dependent on TSS

General

Tree [26] Hash function, verify timestamps
in the same round

Timestamp of
each round

TSS and Users
cooperate

Good

Distributed
[29]

Hash function, random generation
function

k signatures Completely
dependent on users

General

Our protocol Hash function, random generation
function

k signatures Randomly select
TSS

Excellent
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signatures, so they all need to verify the data signature. The tree timestamp protocol decomposes the
timestamp into many rounds, and only one timestamp verification is required for each round. However, in
order to prevent the time stamp from being forged, both the distributed time stamp protocol and the time
stamp protocol in this paper use the random generation algorithm to select the issuer and the main time
stamp server respectively for digital signature.

Storage. Both plain timestamp protocols and linear timestamp protocols need to store signatures that
provide timestamp services for data. In addition, the linear timestamp protocol also needs to store the
identity information ID of the n-th and (n + 1)-th users to form a linear link structure. The tree timestamp
protocol can generate timestamps in the process of each round, so it needs to store the timestamps of
each round to avoid the loss of timestamps. However, the distributed timestamp protocol and our
timestamp protocol need k issuers or servers to provide signatures, so they store k signatures to ensure the
accuracy of the final timestamp.

TSS/Users. The whole process of timestamp service depends on either TSS or the user itself. Both plain
timestamp protocols and linear timestamp protocols rely completely on TSS. The tree timestamp protocol
relies on cooperation between TSS and users. The distributed timestamp protocol rely completely on user.
However, these protocols either increase the additional burden on TSS or users. Our protocol proposes to
use a random algorithm to select one of k servers, so that the entire timestamp service process relies only
on the randomly selected primary server.

6.2 Concurrency Rate of Distributed TSS Mechanism

The concurrency capability of the timestamp mechanism refers to the rate at which the timestamp
mechanism can process timestamp requests concurrently. In the simulation experiment of concurrency
rate of distributed timestamp mechanism, when the distributed TSS is started, the main control process
starts 10 Apache HTTP server sub-processes, and each sub-process has 30 threads. The minimum number
of threads allowed by the main control process is 150 and the maximum number of idle processes is
1200. The main control process can start up to 105 processes. At the same time, 3000 clients are allowed
to access at the same time. Under the condition that the length of the signature key of the TSS is
1024 bits, the client simulates the user to obtain the timestamp through HTTP/HTTPS.

Fig. 2 shows the experimental results of the concurrency rate of the TSS. The abscissa represents the
number of concurrent accesses to the TSS N, and the ordinate represents the average number of requests
that the TSS can handle per second under a certain value of N. It can be seen from the experimental
results that when N = 2500, the average timestamp request value that the TSS can handle per second
reaches the maximum (around 1200 and 1600). when N > 2500, the timestamp processed by the TSS are
gradually decreasing.

Figure 2: Overview of the concurrency rate of distributed timestamp
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6.3 Ciphertext Length of Distributed TSS Mechanism

For ECC signature encryption algorithm and RSA encryption algorithm, their key lengths are shown in
Tab. 2. Obviously, ECC signature encryption uses a 160 bits key to achieve the same security effect as RSA
signature encryption with a 1024 bits key.

The length of the key actually refers to the length of the public key modulo n. Theoretically, the larger
the n, the higher the security strength of the algorithm. For ECC signature encryption algorithm based on
discrete logarithm calculation on elliptic curve and RSA encryption algorithm based on large integer
factorization problem, the security strength of ECC is higher than that of RSA. In other words, if you
need to provide the same security strength, the key length required by ECC is much lower than that of
RSA. This effectively solves the problem of improving the security strength by increasing the key length.

The ciphertext lengths of ECC signature encryption and RSA signature encryption with different
security levels are experimentally tested here. As shown in Fig. 3, when signing and encrypting the data
information of 200 bits at the encryption level of 80 bits, the ciphertext length of RSA is 128 bytes,
while the ciphertext length of ECC is 40 bytes, which is not very different from each other. At the
security level of 256 bits, RSA encryption algorithms have a redaction length of 1920 bytes, while ECC
has a redaction length of only 64 bytes. In terms of ciphertext length, ECC doesn’t change significantly
with the increase of security level, while RSA increases significantly with the increase of security level. It
can be seen that the storage space occupied by ECC signature encryption algorithm is far less than that of
RSA signature encryption.

Next, this section selects data with a size of about 2 M to conduct 5 sets of experimental tests to compare
RSA and ECC signature encryption to data information encryption. In Fig. 4, although the two types of
encryption signature time exceed 2 mins, it is obvious that the ECC signature is about 30s faster than the
RSA signature on average.

Table 2: Comparison of ECC and RSA key length

Security level ECC encryption key length RSA encryption key length

80 bits Private key Public key Private key Public key

160 bits 160 bits 1024 bits 1024 bits

Figure 3: Comparison of ciphertext length between ECC and RSA signature encryption
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The ECC encryption algorithm has a small amount of computation and fast processing speed. With the
same computing resources, although RSA can improve the speed of encryption and signature verification by
selecting smaller public keys, RSA’s private key decryption is completely incomparable with ECC. At the
same time, ECC’s key generation speed is more than 100 times faster than RSA. For example, for a
160 bits ECC and a 1024 bits RSA, the signature time of ECC is 3.0 ms and the key pair generation time
is 3.8 ms, but the RSA encryption algorithm is as high as 228.4 and 4708.3 ms, respectively, so under the
same conditions, ECC has higher encryption performance.

7 Conclusion

This paper proposes a secure storage architecture based on blockchain to meet the requirements of data
security. Moreover, this paper uses timestamp technology to solve the security problem that data may be
forged and tampered with. And a distributed model with multiple TSS is proposed to provide timestamp
services, which improves the reliability and accuracy of timestamps. The time synchronization services
are provided for distributed TSS mechanism. In addition, this paper utilizes blind signature encryption
algorithm of ECC based on discrete logarithm calculation on elliptic curve to improve security of the
signature in distributed TSS, and blockchain technology is applied to provide secure storage services and
secondary timestamp services for data. Meanwhile, the data reliability and availability are also improved
by using a distributed timestamp and the blockchain.
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