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Abstract: This paper proposes a novel framework to detect cyber-attacks using
Machine Learning coupled with User Behavior Analytics. The framework models
the user behavior as sequences of events representing the user activities at such a
network. The represented sequences are then fitted into a recurrent neural network
model to extract features that draw distinctive behavior for individual users. Thus,
the model can recognize frequencies of regular behavior to profile the user manner
in the network. The subsequent procedure is that the recurrent neural network
would detect abnormal behavior by classifying unknown behavior to either regu-
lar or irregular behavior. The importance of the proposed framework is due to the
increase of cyber-attacks especially when the attack is triggered from such sources
inside the network. Typically detecting inside attacks are much more challenging
in that the security protocols can barely recognize attacks from trustful resources
at the network, including users. Therefore, the user behavior can be extracted and
ultimately learned to recognize insightful patterns in which the regular patterns
reflect a normal network workflow. In contrast, the irregular patterns can trigger
an alert for a potential cyber-attack. The framework has been fully described
where the evaluation metrics have also been introduced. The experimental results
show that the approach performed better compared to other approaches and AUC
0.97 was achieved using RNN-LSTM 1. The paper has been concluded with pro-
viding the potential directions for future improvements.
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1 Introduction

Cyber-attacks have become a major threat for network telecommunications due to rapid developments
and growth in IT technology. The majority of cyber-attacks are carried out via breaking network security
using malware that aims to compromise network security [1]. Malware assaults often compromise a
secure network by introducing a harmful external component; thus, the attack originates from outside the
network’s perimeter security. Examples of malware attack tools include trojan horses, viruses, and worms
[2]. Recall that the security breach in this context has a harmful effect on the victim machine, such as
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altering and disrupting data, phishing sensitive transmitted data, or even flooding the network resources with
an extraordinarily traffic to deny access to the network services known as denial of service (DoS) attack.
Nevertheless, the common characteristic of malware attacks is that the potential attack is conceived from
such an external source; ideally, it can be described as an external attack. As a result, an appropriate
approach for securing the network is to propose a perimeter defense in the form of firewalls, antivirus
software, and intrusion detection tools to prevent such a dangerous external component from violating
security regulations.

Cyber-attacks, on the other hand, can be launched from an internal network resource which are known as
insider threats [3]; also, it can be described as an insider attack. The most common type of insider attack is when
the legitimate user engages in cyber-attacks. To put it another way, a valid user is well-versed in security
standards, allowing them to gain access to network resources and quickly commit cybercrime. Moreover,
the legitimate user may relatively utilize the granted credentials to perform the attack. Another form of
insider attack is when the attack is occurred accidentally by the legitimate user. For example, if the user
clicks on a spam link, the network can adversely be infected with malicious malware. Nevertheless, the
insider attack is particularly deceiving since perimeter defenses have a hard time detecting attacks launched
from within the network by actual users. Therefore, the insider attacks constitute a significant challenge in
cyber security, making it desirable to propose powerful methods for detecting insider attacks.

Analyzing user activity is ideal for detecting insider threats [4]. Real users are mainly a key component
of the network. They typically perform tremendous of tasks and activities on a daily basis [5]. This, in turn,
composes frequent patterns of regular usage of variant tasks on the network. Hence, the regular activities and
workflow tasks can underline an insightful pattern to map a distinguish user behavior. Intuitively, when the
real user behavior is recognized, the irregular and abnormal behavior can be distinguished accordingly. To
this end, the Machine Learning (ML) approach is most suitable candidate to detect cyber-attacks based on
analyzing user behavior [6]. In concise, the conjecture is to learn the user’s typical behavior, which is
derived by the enormous daily tasks and activities. Thus, the system can effectively detect abnormal
behaviors whereas the security protocols can render an alert of a potential attack.

This study proposes a framework for detecting cyber-attacks using coupled with user behavior analytics
(UBA). The proposed framework has been motivated by the idea of applying deep learning methodology, a
well-known disciplinary of ML, to recognize user behavior. More specifically, the framework proposes two
models as follows. The first model is to represent the user activities as sequences of ordered event. These
sequences are fitted into a deep learning model to extract features to map the regular behavior of user.
The second model operates for detecting the potential attack by classifying the recognized behavior to
either normal or abnormal behavior. Thus, the anticipated cyber-attack can be detected accordingly.

The contributions of the proposed work can be summarized as follows. (i) This paper utilizes user
activities to map distinctive behavior patterns to detect cyber-attacks that are mostly triggered from inside
the network. (ii) The study presents a novel method to model the user behavior in terms of handling the
streams of activities. More specifically, the user behavior is represented as a sequence of events to map
the user activities. The intuition is that event sequence frequencies would present accurate, readable
patterns for the user behavior. (iii) Finally, the proposed framework has applied deep learning to extract
features from the event streams representation. The importance is that user activities are stochastic and
randomly featured, so deep learning is ideal for learning from unstructured data. This is a situation in
which ideal features must be extracted from user activities to handle measured behavior.

The remainder of this paper is structured as follows. Section 2 presents a brief review of the related work
in the literature. In Section 3, the proposed framework has been explained in detail. Next, in Section 4, the
evaluation metrics have been introduced. Finally, Section 5 presents conclusions as well as future directions
for the work.
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2 Related Work

Amid the last decade, ML has been progressively being used to detect Cybersecurity-related attacks in
response to the expanding variety and advancement of modern attacks. ML has proved to be advantageous in
detecting and classifying malware attacks by providing exceptional flexibility in the automated detection of
attacks [7–12]. Several studies have been conducted to detect Cybersecurity-related attacks using ML. A
study by [13], primarily investigated the possibility of exploring security attacks using ML. Their
breakthrough was limited up to the detection of malicious code attacks in webpages. The results obtained
from this study shows that ML can be used for the detection of attacks with high detection of accuracy
than signature-based methods and heuristics-based methods. A study by [14] used the 4-gram for feature
extraction along with information gain entropy. The investigators use SVM, Naïve Bayes and Decision
Trees classifiers to perform the classification of the malicious code. The results obtained show that the
Area Under Curve (AUC) of 0.996 was achieved by using the J48 Decision Tree classifier. An approach
for detecting malicious code attacks using API call sequence was proposed and implemented by [15].
Their study uses a small dataset for the classification of a fake medical website using K-NN ML
Classifiers. A study by [16] implemented an approach for the detection of malicious JavaScript code
attacks in webpages. Many studies have also been conducted for the detection of malware in Android
mobile phones using Machine Learning with high accuracy [17–20].

UBA has been described by Gartner [21], as the subset and process for the detection of Cybersecurity
threats, attacks, and monetary frauds. UBAworks on the methods of analyzing the behavior of humans using
statistical analysis and algorithms for the detection of Cybersecurity attacks. Several approaches have been
proposed to counter Cybersecurity attacks [22–24]. The limitations with approaches are that they are limited
to a specific group of people whose behavior is being analyzed for the detection of Cybersecurity attacks.

Keeping in view the advantages of using ML coupled with UBA towards detecting Cybersecurity
attacks. We propose a framework based on ML and UBA by analyzing the behavior of common users for
attack detection, which is the main contribution of this work.

3 Proposed Framework

This section introduces a throughout explanation of the proposed detection framework. Fig. 1 depicts an
illustration of the proposed framework. Initially, the framework consists of two models as follows: (i) User
Behavior Modelling and (ii) Attack Detection Modelling. The first model is concerned with representing the
user activities as streams in which features are extracted to construct the user profile. The second model is
concerned with training the user profile using the recurrent neural network (RNN) model to classify the user
activities to either normal or abnormal behavior. Thus, the possible attack can be captured. The following
subsections provide further details of each model as follows.

3.1 User Behavior Model

The first step of this model is to handle user behavior profiling. The objective is to collect the various
data events of different types related to the user’s activities. User behavior profiling searches for such pattern
usage, which will imply suspicious behavior irrespective of whether such events emanate from a
cybercriminal, an insider, or malware. User behavior analysis does not thwart the attack but helps identify
and evaluate any potential attack through user activities. The data collected from user behavior can be
obtained from the current as well as past user activities. The collected data points may include different
values, i.e., the user’s ID and IP address. It is worth mentioning that the majority of work in the literature
has handled aggregated vectors of set of features. However, in this study, we have considered the entire
characteristics of the audit data. Thus, the obtained data is structured as a series of events in which each
event composed one or many data. The aim is then to build a distinctive user profile based on auto
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extraction of features. In this study, we first train the model to extract features and then to recognize normal
patterns behavior of each user in the network.

3.1.1 Feature Representation
The features are extracted from a sequence of activities for each user. Note that each sequence is indexed

temporally by the time in which the sequence is acquired.

Given a series of user activity S, it is represented as a stream of events such that S ¼ e1; e2; . . . ; enf g where
n 2 N is the length of the stream. For an event ei is a set of data points such that ei ¼ p1; p2; . . . ; pl½ � where
pj 2 Rn denotes a vector of input series. Thus, the feature can be extracted from the data stream to handle
abstracted forms of features.

Prior to feature extraction, it is important to proceed with data normalization for better feature extraction
at RNN [25]. The reason is that the outputs of the activation function reach a saturation point, after which
they remain constant. As a result, when utilizing RNN cells, it is necessary to ensure that the inputs are
properly normalized so that the outputs do not fall into the saturated range. Thus, the next step is to
normalize the instances of the numerical data to a range from 0 to 1. To this end, we use the common
min-max scaling normalization formula. Thus, given a vector pj, which represents a series of certain data
points entry, the vector is scaled to p0 2 0; 1½ � as given in Eq. (1):

Figure 1: The basic models of the proposed framework
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p0 ¼ pj �min pj
� �

max pj
� ��min pj

� � (1)

The activity sequence is sent to a RNN as a vector for extracting features from the raw data, so the idea is
to build an abstracted feature space. Recall that RNNs are universal approximators similar to artificial neural
networks (ANNs); however, RNN has the advantage where the feedback loops of recurrent cells handle the
temporal order as well as the temporal dependencies of the sequences from the start. To satisfy optimal
feature extraction for the sequential structure of the obtained data, we employ long short-term memory
(LSTM) to map an ideal feature space. Thus, LSTM has been employed to obtain abstracted feature
vector using the deep layer from the raw data.

The LSTM receives inputs as a series of activities ½S1; S2; . . . ; SN � for each user. Thus, given a user series
Sui , the layer input is a vector of normalized features p0 which represents a stream of user’s activity.
Afterward, the model maps a set of hidden state vectors ½hu;p1 ; hu;p2 ; . . . ; hu;pj � to show the probable
association between each input vector. Recall that LSTM has memory to build hidden state vectors based
on prior inputs, unlike standard deep-learning neural networks, which only find the computed hidden
state vector as a function of the current input sequence. The hidden state function is triggered using three
vectors as follows: remember vector r, save vector s, focus vector f . As a result, a long-term memory cell
ct will be formed after each hidden layer, which will be merged with the hidden state vectors, to
remember the influence of earlier inputs. Formally, the Eqs. (2)–(6) show the mathematical notation of
each gate vector with the generated cell in the hidden layers as follows:

rut ¼ a W r;pð Þ ht�1; pt½ � þ br
� �

(2)

sut ¼ a W s;pð Þ ht�1; pt½ � þ bs
� �

(3)

f ut ¼ a W f ;pð Þ ht�1; pt½ � þ bf
� �

(4)

cut ¼ rt � ct�1 þ st � acðWc pt½ � þ Uc ht�1½ � þ bc (5)

hut ¼ ft � ahctÞ (6)

where a :ð Þ is the activation function, in which in this case is the sigmoid function, and � indicated the
element wise multiplication.

3.1.2 Pattern Learning
The further step is to learn the user’s behavior whenever the features are extracted, as explained in the

previous stage as shown in Fig. 2. Thus, the extracted features are fed into LSTM for the training process.
Recall that LSTM has the advantage that it can grasp sequential dependencies, so it has been well employed
for temporal data analysis. This is especially the case of the user’s behavioral analytics, where the pattern in
the abstracted features can be recognized for distinctive behavior. The input of the LSTM is a vector of

abstracted features for each user, such that s
0
u;1; s

0
u;2; . . . ; S

0
u;N

h i
. The input vector is converted to a one-hot

vector where each transformed vector is fitted to the LSTM to produce an output prediction. Therefore,
we compute the loss function between input and output values in all iterations to measure the error rate
using the Mean Square Error (MSE) as given in Eq. (7).

MSE ¼ 1

N

XN

i
xi � yij j2 (7)

Note that xi denotes the encoded input value while yi denotes the decoded output value in the model
parameters. The MSE is determined in the following way. Note that the MSE is kept to be minimized
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during the training process. In this context, MSE has been used as the loss function where it is subject to the
minimization at each subsequent iteration in the model using Adam optimizer [26]. Thus, the weights at each
layer are updated accordingly.

3.2 Attack Detection Model

In this study, we employ LSTM to perform the sequential classification on the input user behavior to
detect whether the behavior is normal or malicious. Because the LSTM network is trained on normal
behavior, the model learns the users’ normal behavior. The LSTM network is given both normal and
anomalous sequences throughout the testing phase. Typically, the model produces a low MSE rate for the
normal data (normal behavior) while resulting in a large error rate in abnormal data (malicious behavior)
since it learns on a normal pattern. Thus, we dedicate a threshold # to classify output to either normal or
abnormal behavior. The parameter # is defined in Eq. (8).

# ¼ c
1

N

XN

i
ei

� �
(8)

where c is some constant and ei is the ESM for the ith vector. Thus, the model would predict two classes as
given in Eq. (9).

y ¼ abnormal � behavior; if e > #
normal � behavior; otherwise

�
(9)

where y is the predicted class in the model.

4 Performance Evaluation

This section presents an evaluation to determine the effectiveness of the proposed model. The evaluation
is concerned with examining the performance of the proposed model at the hyper-parameter tune. Moreover,
the evaluation is conducted to compare the performance of the proposed model with traditional anomaly
detection approaches such as support vector machine (SVM). Computer emergency and response team

Figure 2: The structure of utilized LSTM for feature extraction
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(CERT) dataset [27] has been used for the evaluation process in this study. Thus, we first begin introducing
details of the dataset, including the structure of the data and.

4.1 Dataset

The dataset is publicly available on [27]. The latest version released is CERT v4.2 which has been used
in this study. It is worth mentioning that CERT v4.2 has more instances of abnormal activities than the
previous versions. It is synthetic data consisting of user activities for 1000 users with generated events of
� 32M (log lines) in 502 days. Inside the total recorded activities, there are about 7K log lines which
represent anomalous activities; these logs have been inserted manually by experts to the data records.

The recorded activity is logline consists of data pertaining to logon/logoff, device, and hypertext transfer
protocol (HTTP). Fig. 3 shows a snippet of the data fields which represent the activities of users. In the
experiment, each user activity is parsed to a vector, including id, date, user, pc, and activity type.

The dataset is divided into two parts: training and testing. The training dataset is 70% of the dataset in
which it is directed at model training with hyper-parameter adjustments. The testing subset is 30% of the
dataset so it has been utilized to assess the performance of the proposed model.

4.2 Evaluation

We use several evaluation methods to evaluate the proposed model. Confusion Matrix (CM) is used to
measure the performance of classification for the proposed model. The classification can either be predicted
correctly or incorrectly. In concise, CM handles four different conditions for binary classification problems,
as applied in this study, as follows: True Positive (TP), False Negative (FN), True Negative (TN), and True
Negative (TN). Thus, TP represents whether the model correctly predicts the instance as positive while FN
represents the number of positive instances that are predicted as negative. On the other hand, FP presents if
the model wrongly predicts an instance as positive, whereas TN calculates the instances predicted as negative
correctly. Consequently, CM is used to measure the Receiver Operator Characteristics (ROC) curves to
evaluate the performance of the proposed models.

4.3 Results

The conducted experiments have been implemented using the well-known machine learning library
TensorFlow [28]. The default parameters have been configured to 5 for the hidden layers and 50 for the
patch size, where the epoch is set to 10. The learning rate is also set to 1. Note that the parameters are
configured according to the RNN with LSTM regularization as proposed in [29]; therefore, the
parameters are tested and tuned to obtain the best performance. Tab. 1 shows the different parameter
configurations for three RNN-LSTM models. Thus, the conducted experiments evaluate the ROC curves
for each of the RNN-LSTM models. Fig. 4 depicts the ROC results concerning each model. It can be
seen from the Fig. 4 that different configurations yield different results. The best performance is recorded
for RNN-LSTM 1 with AUC 0.97. The other models recorded AUC with 0.96 and 0.73 respectively. The

Figure 3: Snippet of the data fields that represent the user activities in the dataset
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overall result indicated promising performance for the proposed RNN-LSTM model which considers the
streaming of user activities to represent the use’s behavior for protentional cyber-attacks in the network.

The evaluation is also conducted to measure the proposed RNN-LSTM model’s performance to other
literature models. We used SVM as it is used in the literature [30] as a baseline for anomaly detection. It
learns a decision hypersphere to classify positive instances from the anomalies in the data suitable to
detect abnormal user behaviour. Fig. 5 shows the ROC results of the best performing RNN-LSTM
1 compared with SVM. The result show better performance for the proposed RNN-LSTM 1 comparing
with SVM.

Table 1: Parameter settings for the RNN-LSTM models.

RNN model #Units per layer #Mini-batch #Epoc

RNN-LSTM1 55 20 10

RNN-LSTM2 39 20 10

RNN-LSTM3 20 20 10

Figure 4: Illustration for the ROC curves of the RNN-LSTM models

Figure 5: ROC result of best RNN-LSTM comparing with SVM baseline
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5 Conclusion

This study presents a novel framework for detecting cyber-attacks combiningML, and UBA is provided.
The main contribution is that the proposed framework represents user behavior as a series of whole events to
represent user activities in a network. Thus, the model can express latent patterns, unlike the case of
representing abstracted features. The user sequences are fed into RNN model to automatically extracting
features. To maintain the sequential extraction of data, we used LSTM. In this context, the model can
recognize the frequency of routine activities to profile a distinctive user’s behavior. Following that, LSTM
is also used to train the model for detecting unseen behavior to either regular or irregular behavior. The
importance of the suggested framework stems from the rise in cyberattacks, particularly when the attack
originates from inside the network. Insider attacks are typically more difficult to detect since security
protocols struggle to distinguish assaults from trusted network resources, such as users. As a result, user
activity can reveal interesting patterns, with regular behavior reflecting typical network workflow,
whereas abnormal behavior triggers an alarm for a possible cyberattack. The MSE between the input and
output was kept to a minimum during the training phase. The model produced low MSE for normal
patterns and high MSE for anomaly patterns throughout the testing phase. Therefore, a threshold value
was used to manage the performance parameters.

In this study, the features are learnt from the raw data in which it can incorporate the latent behavior of
the user. However, the relations between different features can be considered to extract a more meaningful
representation of the user’s behavior. The latent behavior of the user, from which a more accurate feature
representation can be extracted, is known as distributed behavior. However, traditional sequential
processing cannot capture this phenomenon and its complexity. This is especially required in the case of
insider thread detection due to the sparsity of user’s actions and activates recorded from different sources,
which can make considering the entire series increase the complexity of the model. Thus, in the future, it
is worth discussing how the relations between various activities would be learnt to improve feature
extraction for better model classification.
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